JP2017058267A - Reflection type component analysis device - Google Patents

Reflection type component analysis device Download PDF

Info

Publication number
JP2017058267A
JP2017058267A JP2015183656A JP2015183656A JP2017058267A JP 2017058267 A JP2017058267 A JP 2017058267A JP 2015183656 A JP2015183656 A JP 2015183656A JP 2015183656 A JP2015183656 A JP 2015183656A JP 2017058267 A JP2017058267 A JP 2017058267A
Authority
JP
Japan
Prior art keywords
light
optical path
reflected
reference light
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015183656A
Other languages
Japanese (ja)
Other versions
JP6624495B2 (en
Inventor
坂本 尚志
Hisashi Sakamoto
尚志 坂本
軍 鄭
Jun Zheng
軍 鄭
勇斗 藤田
Yuto Fujita
勇斗 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Satake Engineering Co Ltd
Satake Corp
Original Assignee
Satake Engineering Co Ltd
Satake Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Satake Engineering Co Ltd, Satake Corp filed Critical Satake Engineering Co Ltd
Priority to JP2015183656A priority Critical patent/JP6624495B2/en
Publication of JP2017058267A publication Critical patent/JP2017058267A/en
Application granted granted Critical
Publication of JP6624495B2 publication Critical patent/JP6624495B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an optical unit that allows reflection light and reference light to be inexpensively guided without use of an optical fiber in a reflection type component analysis device.SOLUTION: A component analysis device comprises: a measurement unit 2 that loads an analysis object; an illumination unit 10 that irradiates irradiation light; a main body that becomes an irradiation optical path; a light reception unit 26 that receives reflection light and reference light; a reflection light optical path pipe 13 that optically guides the reflection light; a reference light optical path pipe 16 that optically guides the reference light; an optical path switch unit 5 that connects to the reflection light optical path pipe or the reference light optical path pipe, and switches the light to be guided to the reflection light or the reference light to guide the light to the light reception unit; and an analysis unit that analyzes a component to be contained in the analysis object. The reflection light optical path pipe and the reference light optical path pipe are disposed in the main body, and the reference light optical path pipe is provided at a position between the reflection light optical path pipe and the illumination unit. In between the reflection light optical path pipe and the illumination unit, a reference light reflector 14 is provided that causes the reference light to be reflected toward an opening part on a main body side of the reference light optical path pipe.SELECTED DRAWING: Figure 4

Description

本発明は、穀粒等の分析対象物からの反射光の光量を測定して分析対象物の成分を求める反射型の成分分析装置に関するものである。 The present invention relates to a reflection-type component analyzer that determines the component of an analysis object by measuring the amount of reflected light from the analysis object such as grain.

従来、反射型の成分分析装置では、分析対象物からの反射光を受光して分析対象物の成分を求めるために、前記反射光の光量と、分析対象物に向けて照射した照射光である参照光の光量とを測定して吸光度を求めることが行われている。 Conventionally, in a reflection-type component analyzer, in order to receive reflected light from an analysis object and obtain a component of the analysis object, the amount of the reflected light and irradiation light irradiated toward the analysis object The absorbance is obtained by measuring the amount of reference light.

例えば、特許文献1に記載された成分分析装置は、一つの受光部で反射光及び参照光(リファレンス光)の各光量を測定するために、光ファイバを使用してこれらの光をそれぞれ受光部に導光している。この方法によれば、光ファイバの使用により、前記反射光及び参照光を容易に導光することが可能であるが、光ファイバを使用しているため、部品コストが高くなるだけでなく、装置の組立時に高い取付精度が求められ専用の治具が必要になるなど生産コストが高くなるという問題があった。 For example, the component analyzer described in Patent Document 1 uses an optical fiber to measure each light quantity of reflected light and reference light (reference light) with a single light receiving unit. It is guided to. According to this method, it is possible to easily guide the reflected light and the reference light by using an optical fiber. However, since the optical fiber is used, not only the component cost increases, but also the apparatus There is a problem that the production cost becomes high, such as high mounting accuracy is required at the time of assembly, and a dedicated jig is required.

特開2000−292344号公報JP 2000-292344 A

そこで、本発明は、反射型の成分分析装置において、光ファイバを使用せずに、安価に反射光及び参照光を導光することが可能な光学部を提供することを目的とする。 Therefore, an object of the present invention is to provide an optical unit capable of guiding reflected light and reference light at low cost without using an optical fiber in a reflection type component analyzing apparatus.

上記目的を達成するため、本発明は、分析対象物を載置する測定部と、該測定部に載置された分析対象物に照射光を照射する照明部と、内部が前記照射光を前記測定部まで導光する照射光路となる本体と、前記分析対象物から反射した反射光及び前記分析対象物で反射していない前記照射光である参照光を受光する受光部と、前記反射光を前記受光部に向けて導光する反射光路管と、前記参照光を前記受光部に向けて導光する参照光路管と、前記受光部と前記反射光路管及び前記参照光路管との間に位置し、回転自在な円板で形成され、該円板を回転させることでこの円板に設けた複数の光路のいずれかを、前記反射光路管又は前記参照光路管と接続し、導光する光を前記反射光又は前記参照光に切り換えて前記受光部に導光する光路切換部と、前記受光部が受光した光量に基づいて分析対象物に含まれる成分を分析する分析部とを有する成分分析装置において、前記反射光路管は、前記本体内に配設され、一端に分析対象物から反射した反射光が入射する開口部を設け、他端に前記光路切換部に向けて開口した開口部が設けられており、内部に前記反射光を前記光路切換部に向けて反射する反射光反射体が設けられ、前記参照光路管は、前記本体内であって、前記反射光路管と前記照明部の間の位置に配設され、一端に前記参照光が入射するように前記本体内で開口する本体側開口部を設け、他端に前記光路切換部に向けて開口する開口部が設けられ、前記反射光路管と前記照明部との間には、前記参照光を前記参照光路管の前記本体側開口部に向かって反射させる参照光反射体を設ける、という技術的手段を講じるものとした。 In order to achieve the above object, the present invention provides a measurement unit for placing an analysis object, an illumination unit for irradiating the analysis object placed on the measurement unit, and an illumination unit for irradiating the irradiation light. A main body serving as an irradiation light path that guides the light to the measurement unit, a reflected light reflected from the analysis object, and a light receiving unit that receives the reference light that is the irradiation light that is not reflected by the analysis object; and the reflected light Positioned between a reflected light path tube that guides light toward the light receiving unit, a reference light path tube that guides the reference light toward the light receiving unit, and the light receiving unit, the reflected light path tube, and the reference light path tube And a light that is formed of a rotatable disk and that is connected to the reflected light path tube or the reference light path tube by rotating any of the plurality of light paths provided by rotating the disk. An optical path switching unit that switches the reflected light or the reference light to the light receiving unit And an analysis unit that analyzes a component contained in the analysis object based on the amount of light received by the light receiving unit, wherein the reflected light path tube is disposed in the main body and has an analysis object at one end. An opening for receiving the reflected light reflected from the light is provided, an opening opened toward the optical path switching unit is provided at the other end, and the reflected light reflects the reflected light toward the optical path switching unit. A reflector is provided, and the reference optical path tube is disposed in the main body at a position between the reflective optical path tube and the illumination unit, and the reference light is incident on one end in the main body. A body-side opening that opens is provided, and an opening that opens toward the optical path switching unit is provided at the other end. Between the reflected light path tube and the illuminating unit, the reference light is transmitted to the reference light path tube. Reference light reflector for reflecting toward the main body side opening Provided, it was a technical take steps stuff that.

請求項2に記載の発明は、前記光路切換部に、前記反射光を前記受光部まで直線的に導光する第一光路と、前記参照光を複数の反射体でその光路を複数回折り曲げて前記受光部まで導光する第二光路とを設け、前記複数の反射体の反射面を円錐面としたことを特徴とするものである。 According to a second aspect of the present invention, the optical path switching unit includes a first optical path that linearly guides the reflected light to the light receiving unit, and a plurality of reflectors bending the optical path by a plurality of reflectors. A second optical path for guiding light to the light receiving portion is provided, and the reflecting surfaces of the plurality of reflectors are conical surfaces.

請求項3に記載の発明は、前記光路切換部に、前記参照光を前記受光部まで直線的に導光する第一光路と、前記反射光を複数の反射体でその光路を複数回折り曲げて前記受光部まで導光する第二光路とが設けられており、前記複数の反射体の反射面が円錐面であることを特徴とするものである。 According to a third aspect of the present invention, the optical path switching unit includes a first optical path that linearly guides the reference light to the light receiving unit, and a plurality of reflectors bending the optical path by a plurality of reflectors. A second optical path for guiding light to the light receiving portion, and the reflecting surfaces of the plurality of reflectors are conical surfaces.

請求項4に記載の発明は、前記複数の反射体の数が二つであり、前記第二光路を二回折り曲げることを特徴とするものである。 According to a fourth aspect of the present invention, the number of the plurality of reflectors is two, and the second optical path is bent twice.

請求項5に記載の発明は、前記参照光路管を前記分析対象物に向かう照射光の進行方向に対して前記反射光路管と重なる位置に配設することを特徴とするものである。 The invention according to claim 5 is characterized in that the reference optical path tube is arranged at a position overlapping the reflected optical path tube with respect to the traveling direction of the irradiation light directed toward the analysis object.

請求項6に記載の発明は、前記光路切換部に、前記参照光を、その光路を複数回折り曲げて前記受光部まで導光する第三光路が配設されており、該第三光路には前記参照光が通過する基準板を設ける、という技術的手段を講じるものとした。 According to a sixth aspect of the present invention, the optical path switching unit is provided with a third optical path for guiding the reference light to the light receiving unit by bending the optical path a plurality of times, and in the third optical path, The technical means of providing a reference plate through which the reference light passes was taken.

本発明によれば、分析対象物を載置する測定部と、照射光を照射する照明部と、内部が照射光路となる本体と、分析対象物から反射した反射光及び参照光を受光する受光部と、反射光を受光部に向けて導光する反射光路管と、参照光を受光部に向けて導光する参照光路管と、回転自在な円板で形成され、該円板を回転させることでこの円板に設けた複数の光路のいずれかを、反射光路管又は参照光路管と接続し、導光する光を反射光又は前記参照光に切り換えて受光部に導光する光路切換部とを有する成分分析装置において、前記反射光路管は、前記本体内に配設され、一端に分析対象物から反射した反射光が入射する開口部を設け、他端に前記光路切換部に向けて開口した開口部が設けられており、内部に前記反射光を前記光路切換部に向けて反射する反射光反射体が設けられ、前記参照光路管は、前記本体内であって、前記反射光路管と前記照明部の間の位置に配設され、一端に前記参照光が入射するように前記本体内で開口する本体側開口部を設け、他端に前記光路切換部に向けて開口する開口部が設けられ、前記反射光路管と前記照明部との間には、前記参照光を前記参照光路管の前記本体側開口部に向かって反射させる参照光反射体を設ける構造としたので、前記反射光路管により反射光が受光部に向けて導光されるとともに、前記参照光路管と参照光反射体により参照光が受光部に向けて導光される。よって、光ファイバ等の導光のための部品を使用せずに前記反射光及び参照光を受光部で受光することができ、部品コストを抑えることが可能となるとともに、装置の組立が容易となる。 According to the present invention, the measuring unit for placing the analysis object, the illumination unit for irradiating the irradiation light, the main body having the irradiation light path inside, and the light reception for receiving the reflected light and the reference light reflected from the analysis object. And a reflection optical path tube for guiding the reflected light toward the light receiving unit, a reference optical path tube for guiding the reference light toward the light receiving unit, and a rotatable disk, and rotating the disk Thus, any one of a plurality of optical paths provided on the disc is connected to a reflected light path tube or a reference light path tube, and light to be guided is switched to reflected light or the reference light and guided to the light receiving unit. The reflected light path tube is disposed in the main body, and is provided with an opening through which reflected light reflected from the analysis object is incident at one end and directed toward the optical path switching unit at the other end. An opening is provided, and the reflected light is directed inside the optical path switching unit. And the reference light path tube is disposed in the main body at a position between the reflected light path tube and the illumination unit so that the reference light is incident on one end. A main body side opening that opens in the main body, an opening that opens toward the optical path switching unit is provided at the other end, and the reference light is passed between the reflected light path tube and the illumination unit. Since the reference light reflector that reflects toward the main body side opening of the reference light path tube is provided, reflected light is guided toward the light receiving portion by the reflected light path tube, and the reference light path tube The reference light is guided toward the light receiving unit by the reference light reflector. Therefore, the reflected light and the reference light can be received by the light receiving unit without using a light guide component such as an optical fiber, so that the component cost can be reduced and the assembly of the device is facilitated. Become.

請求項2に記載の発明によれば、前記光路切換部に、反射光を受光部まで直線的に導光する第一光路と、参照光をその光路を複数回折り曲げて受光部まで導光する第二光路とを配設しており、該第二光路には複数の反射体が設けられ、該複数の反射体で参照光の光路を複数回折り曲げて受光部に参照光を導光するものであって、前記複数の反射体の反射面が円錐面であるので、前記光路切換部の円板を回転させて前記第二光路と参照光路管との位置を合わせて接続させたときに、接続する位置(角度)がズレたとしても参照光が前記反射体で反射する角度を常に一定に保つことができる。このため、前記光路切換部の円板を回転させるステッピングモータ等の駆動手段に高精度のものを使用しなくても、前記ズレが原因となる測定精度の低下を防止することができるとともに、部品コストが削減できるという効果がある。 According to the second aspect of the present invention, the optical path switching unit guides the reflected light linearly to the light receiving unit and guides the reference light to the light receiving unit by bending the optical path a plurality of times. A second optical path is provided, and a plurality of reflectors are provided on the second optical path, and the reference light is guided to the light receiving unit by bending the optical path of the reference light by the plurality of reflectors. And, since the reflecting surface of the plurality of reflectors is a conical surface, when the disk of the optical path switching unit is rotated and the second optical path and the reference optical path tube are aligned and connected, Even if the connection position (angle) is deviated, the angle at which the reference light is reflected by the reflector can always be kept constant. For this reason, it is possible to prevent a decrease in measurement accuracy caused by the deviation, without using high-precision driving means such as a stepping motor that rotates the disk of the optical path switching unit, There is an effect that the cost can be reduced.

請求項3に記載の発明によれば、前記光路切換部に、参照光を受光部まで直線的に導光する第一光路と、反射光をその光路を複数回折り曲げて受光部まで導光する第二光路とを配設しており、該第二光路には複数の反射体が設けられ、該複数の反射体で参照光の光路を複数回折り曲げて受光部に参照光を導光するものであって、前記複数の反射体の反射面が円錐面であるので、前記光路切換部の円板を回転させて前記第二光路と反射光路管との位置を合わせて接続させたときに、接続する位置(角度)がズレたとしても反射光が前記反射体で反射する角度を常に一定に保つことができる。このため、前記光路切換部の円板を回転させるステッピングモータ等の駆動手段に高精度のものを使用しなくても、前記ズレが原因となる測定精度の低下を防止することができるとともに、部品コストが削減できるという効果がある。 According to the third aspect of the present invention, the optical path switching unit guides the reference light linearly to the light receiving unit and the reflected light to the light receiving unit by bending the optical path a plurality of times. A second optical path is provided, and a plurality of reflectors are provided on the second optical path, and the reference light is guided to the light receiving unit by bending the optical path of the reference light by the plurality of reflectors. And since the reflecting surface of the plurality of reflectors is a conical surface, when the disk of the optical path switching unit is rotated and the second optical path and the reflected optical path tube are aligned and connected, Even if the connection position (angle) is deviated, the angle at which the reflected light is reflected by the reflector can always be kept constant. For this reason, it is possible to prevent a decrease in measurement accuracy caused by the deviation, without using high-precision driving means such as a stepping motor that rotates the disk of the optical path switching unit, There is an effect that the cost can be reduced.

請求項4に記載の発明によれば、前記複数の反射体の数を二つとしたので、前記第二光路で参照光を二回折り曲げるだけで、前記反射光と共通の受光部で参照光を受光することができる。よって、装置の光学部を複雑にする必要はなく簡素な構造とできるので装置の小型化が図れる。 According to the fourth aspect of the present invention, since the number of the plurality of reflectors is two, only the reference light is bent twice in the second optical path, and the reference light is shared by the light receiving unit common to the reflected light. It can receive light. Therefore, it is not necessary to make the optical part of the apparatus complicated, and the structure can be simplified, so that the apparatus can be downsized.

請求項5に記載の発明によれば、参照光路管を分析対象物に向かう照射光の進行方向に対して反射光路管と重なる位置に配設する構造としたので、これら二つの光路管によって遮られる分析対象物への照射光の量を最小限に抑えることができる。よって、測定するのに十分な量の照射光を分析対象物に照射することが可能である。また、分析対象物からの反射光の一部が照射光路に入ってきても、この反射光は反射光路管で遮られるので参照光路管に迷光として入射されることを防ぐ効果もある。 According to the fifth aspect of the present invention, since the reference optical path tube is arranged at a position overlapping the reflected optical path tube with respect to the traveling direction of the irradiation light directed toward the analysis object, the two optical path tubes block the reference optical path tube. It is possible to minimize the amount of irradiation light to the analysis target. Therefore, it is possible to irradiate the analysis object with a sufficient amount of irradiation light for measurement. Further, even if a part of the reflected light from the analysis object enters the irradiation optical path, the reflected light is blocked by the reflected optical path tube, so that it is effective to prevent the reflected light from entering the reference optical path tube.

請求項6に記載の発明によれば、前記光路切換部に、前記参照光を、その光路を複数回折り曲げて前記受光部まで導光する第三光路を配設し、該第三光路に前記参照光が通過する基準板を設ける構造としたので、この第三光路で参照光を受光部まで導光させるだけで成分分析装置の校正時に利用する基準光を測定できる。よって、装置の組立を複雑にすることなく、また、装置を大型化することなく、前記基準光が測定可能となる。 According to the sixth aspect of the present invention, the optical path switching unit is provided with a third optical path for guiding the reference light to the light receiving unit by bending the optical path a plurality of times, and the third optical path includes the third optical path. Since the reference plate through which the reference light passes is provided, it is possible to measure the reference light used when the component analyzer is calibrated by simply guiding the reference light to the light receiving unit through this third optical path. Therefore, the reference light can be measured without complicating the assembly of the apparatus and without increasing the size of the apparatus.

また、請求項2に記載の発明によれば、前記光路切換部は、前記反射光を前記受光部まで直線的に導光する第一光路と、前記参照光をその光路を複数回折り曲げて前記受光部まで導光する第二光路とが配設されており、前記第二光路には複数の反射体が設けられ、該複数の反射体で前記参照光の光路を複数回折り曲げて前記受光部に前記参照光を導光するものであって、前記複数の反射体の反射面が円錐面であるので、前記円板を回転させて前記第二光路と参照光路とを接続させたときに、接続する位置(角度)がズレたとしても参照光が反射する角度を常に一定に保つことができる。このため、前記光路切換部を回転させるステッピングモータ等の駆動手段に高精度のものを使用しなくても、このズレが原因となる測定精度の低下を防止することができるとともに、部品コスト削減できるという効果がある。 According to the invention of claim 2, the optical path switching unit includes a first optical path for linearly guiding the reflected light to the light receiving unit, and bending the reference light by bending the optical path a plurality of times. A second optical path that guides light to the light receiving unit, and a plurality of reflectors are provided in the second optical path, and the light receiving unit is configured by bending the plurality of optical paths of the reference light by the plurality of reflectors. The reference light is guided, and the reflecting surfaces of the plurality of reflectors are conical surfaces, so when the disk is rotated and the second optical path and the reference optical path are connected, Even if the connection position (angle) is deviated, the angle at which the reference light is reflected can always be kept constant. For this reason, it is possible to prevent a decrease in measurement accuracy caused by this deviation and reduce component costs without using a high-precision driving means such as a stepping motor for rotating the optical path switching unit. There is an effect.

さらに、請求項3に記載の発明によれば、前記複数の反射体の数を二個としたので、前記第二光路で参照光を二回折り曲げるだけで、前記反射光と共通の受光部で参照光を受光することができ、装置を小型化できるという効果がある。 Further, according to the invention described in claim 3, since the number of the plurality of reflectors is two, the reference light is bent twice in the second optical path, and the light receiving unit common to the reflected light is used. Reference light can be received, and the apparatus can be downsized.

そして、請求項4に記載の発明によれば、前記光路切換部に、前記参照光を、その光路を複数回折り曲げて前記受光部まで導光する第三光路を配設し、該第三光路に前記参照光が通過する基準板を設ける構造としたので、装置の組立を複雑することなく、また、装置を大型化することなく、成分分析装置の校正時に利用する基準光を測定できるものとした。 According to the fourth aspect of the present invention, the optical path switching unit is provided with a third optical path that guides the reference light to the light receiving unit by bending the optical path a plurality of times. Since the reference plate through which the reference light passes is provided, the reference light used for calibration of the component analyzer can be measured without complicating the assembly of the device and without increasing the size of the device. did.

本発明の成分分析装置の斜視図である。It is a perspective view of the component analyzer of this invention. 本発明の成分分析装置の斜視図である。It is a perspective view of the component analyzer of this invention. 本発明の成分分析装置の平面図である。It is a top view of the component analyzer of this invention. 図3のA−A線概略断面図である。It is an AA line schematic sectional drawing of FIG. 図3のB−B線概略断面図である。It is a BB schematic sectional drawing of FIG. 参照光路を第二光路に接続した状態を説明するための図である。It is a figure for demonstrating the state which connected the reference optical path to the 2nd optical path. 参照光路を第三光路に接続した状態を説明するための図である。It is a figure for demonstrating the state which connected the reference optical path to the 3rd optical path. 反射光路及び参照光路を説明するための図である。It is a figure for demonstrating a reflected light path and a reference light path. 図4の矢印Xの方向からみた円板を示す図である。It is a figure which shows the disc seen from the direction of the arrow X of FIG. 図6の矢印Yの方向からみた円板を示す図である。It is a figure which shows the disc seen from the direction of the arrow Y of FIG. 図7の矢印Zの方向からみた円板を示す図である。It is a figure which shows the disc seen from the direction of the arrow Z of FIG. 円板の斜視図である。It is a perspective view of a disc.

本発明の実施の形態を図面に基づいて説明する。 図1及び図2は、本発明の実施の形態における反射型の成分分析装置1の斜視図を示す。図1は、分析対象物を測定部2に載置した状態を示すものである。成分分析装置は、測定用の底面が透明な容器3に米や麦等の穀粒を充填して測定を行うものである。分析対象物が穀粒の場合、測定する成分はタンパク質などとなる。図2は、分析対象物を載置していない状態を示すものである。 Embodiments of the present invention will be described with reference to the drawings. 1 and 2 are perspective views of a reflection type component analyzer 1 according to an embodiment of the present invention. FIG. 1 shows a state in which an analysis object is placed on the measurement unit 2. The component analyzer performs measurements by filling a container 3 having a transparent bottom surface for measurement with grains such as rice and wheat. When the analysis object is a grain, the component to be measured is protein or the like. FIG. 2 shows a state where no analysis object is placed.

図4は、図3のA−A線概略断面図であり、図5は、図3のB−B線概略断面図である。本体4内の下方には、上方の測定部2に向けて光を照射する照明部10を配置している。照明部10にはハロゲンランプなどの通常の分光分析装置に使用する照明手段を用いることが望ましい。測定部2は、中心付近に分析対象物の反射光が通過する反射光路管13が配置してあり、該反射光路管13を囲んで分析対象物に照射する光が通過する照射光路11が配置してある。なお、本体4内は、照射部10からの照射光を測定部4まで導光する照射光路11となっている。図8は、反射光路管13及び参照光路管15aの構造を説明するための図である。照射光路11には支持板17が設けられており、照明部10から照射された照射光は、支持板17の開口部17aを通過する。反射光路管13には反射光反射体16が設けられており、前記反射光は図4中の矢印で示す方向に反射され、光路切換部5に導光される。該反射光路管13の一端は、開口部が測定部2と接続され反射光が入射し、他端は光路切換部5のカバー5aに接続されている。該カバー5a内には円板5bが配設されている。また、反射光路管13はパイプ13a及びパイプ13bで形成され、一端には開口部19a、他端には開口部19bが設けられている。 4 is a schematic cross-sectional view taken along the line AA in FIG. 3, and FIG. 5 is a schematic cross-sectional view taken along the line BB in FIG. An illumination unit 10 that irradiates light toward the upper measurement unit 2 is disposed below the main body 4. The illuminating unit 10 is preferably an illuminating unit such as a halogen lamp that is used in an ordinary spectroscopic analyzer. The measuring unit 2 includes a reflection optical path tube 13 through which reflected light of the analysis object passes in the vicinity of the center, and an irradiation light path 11 through which the light irradiating the analysis object passes around the reflection light path tube 13 is arranged. It is. In the main body 4, there is an irradiation light path 11 that guides the irradiation light from the irradiation unit 10 to the measurement unit 4. FIG. 8 is a view for explaining the structures of the reflected light path tube 13 and the reference light path tube 15a. A support plate 17 is provided in the irradiation light path 11, and the irradiation light irradiated from the illumination unit 10 passes through the opening 17 a of the support plate 17. The reflected light path tube 13 is provided with a reflected light reflector 16, and the reflected light is reflected in the direction indicated by the arrow in FIG. 4 and guided to the optical path switching unit 5. One end of the reflected light path tube 13 has an opening connected to the measuring unit 2 and receives reflected light, and the other end is connected to the cover 5 a of the optical path switching unit 5. A disc 5b is disposed in the cover 5a. The reflected light path tube 13 is formed by a pipe 13a and a pipe 13b, and an opening 19a is provided at one end and an opening 19b is provided at the other end.

図4では、反射光路管13が円板5bの第一光路22と接続された状態を示している。ここでいう接続とは、反射光路管13の開口部と第一光路22の開口部が位置的に重なった状態のことをいう。また、図9は、図4の矢印Xの方向から見た円板5bを示す図である。第一光路22は、第一貫通孔21で形成され、該第一貫通孔21は、反射光路管13のパイプ13bと同一方向に円板5bを貫通するものである。円板5bは、回転軸8bと接続されており、モータ8の駆動により回転する。図12は円板5bの斜視図である。モータ8にはステッピングモータ等の停止時の角度を制御できるものを使用し、停止時の第一貫通孔21及び第二貫通孔23の位置を制御できるものである。また、光路切換部5を間に挟んで、反射光路管13と対面する位置には受光部6が配置されており、反射光路管13のパイプ13b及び第一光路22を直線的に通過した分析対象物からの反射光は、入射窓25から受光部6に入射し、その中に配置されたセンサ26により受光される。センサ26にはシリコンフォトダイオード等を使用することができる。なお、受光したい反射光の波長域に合わせて適宜センサ26を変更することが望ましい。 FIG. 4 shows a state in which the reflection optical path tube 13 is connected to the first optical path 22 of the disk 5b. The connection here means a state in which the opening of the reflection optical path tube 13 and the opening of the first optical path 22 overlap each other in position. FIG. 9 is a diagram showing the disk 5b as viewed from the direction of the arrow X in FIG. The first optical path 22 is formed by a first through hole 21, and the first through hole 21 penetrates the disk 5 b in the same direction as the pipe 13 b of the reflective optical path tube 13. The disc 5 b is connected to the rotating shaft 8 b and rotates by driving the motor 8. FIG. 12 is a perspective view of the disk 5b. As the motor 8, a stepping motor or the like that can control the angle at the time of stop is used, and the positions of the first through hole 21 and the second through hole 23 at the time of stop can be controlled. In addition, the light receiving unit 6 is disposed at a position facing the reflection optical path tube 13 with the optical path switching unit 5 interposed therebetween, and the analysis is performed through the pipe 13b of the reflection optical path tube 13 and the first optical path 22 linearly. The reflected light from the object enters the light receiving unit 6 through the incident window 25 and is received by the sensor 26 disposed therein. A silicon photodiode or the like can be used for the sensor 26. In addition, it is desirable to change the sensor 26 suitably according to the wavelength range of the reflected light to receive.

図6は、図3のA−A線部分の概略断面図であり、図6では参照光路管15aが円板5bの第二光路24と接続された状態を示している。ここでいう接続とは、参照光路管15aの開口部と第二光路24の開口部が位置的に重なった状態のことをいう。図10は、図6の矢印Yの方向から見た円板5bを示す図である。前記照明部10から照射された光の一部は、参照光として参照光反射体14により矢印で示す方向に反射され、パイプで形成する参照光路管15a内を通過する。参照光路管15aの一端は本体4内に開口しており本体側開口部15bが設けられている。他端は、開口部15cが設けられ光路切換部5のカバー5aと接続している。前記第二光路24は、第二貫通孔23、第一の反射体31及び第二の反射体32で形成されるものであり、第二貫通孔23は、前記参照光路管15aと同一方向に円板5bを貫通するものである。第一の反射体31は、一枚のプレートから形成することができるものである。該プレートの側面が反射面31aであり、該反斜面は円錐面となっている。また、第一の反射体31と対面する位置には、第二の反射体32が配設されており、第一の反射体31と同様に、第二の反射体32は反射面32aが円錐面となっている。なお、図8に示すように、反射光路管13を形成するパイプ13bと参照光路管15aを形成するパイプとは、分析対象物に向かう照射光の進行方向に対して重なる位置に配設される。このため、照射光で生じるパイプ15aの影は、パイプ13bにうつることになり、パイプ15aが単独で測定部2に照射される照射光を遮ることはない。よって、反射光路管13及び参照光路管15aを照射光路11内に設けても、これら光路によって遮られる照射光の量を最小限に抑えることができる。 FIG. 6 is a schematic cross-sectional view taken along the line AA in FIG. 3. FIG. 6 shows a state in which the reference optical path tube 15a is connected to the second optical path 24 of the disk 5b. The connection here means a state in which the opening of the reference optical path tube 15a and the opening of the second optical path 24 overlap each other. FIG. 10 is a diagram showing the disk 5b viewed from the direction of the arrow Y in FIG. Part of the light emitted from the illumination unit 10 is reflected as reference light in the direction indicated by the arrow by the reference light reflector 14 and passes through the reference light path tube 15a formed by a pipe. One end of the reference light path tube 15a is opened in the main body 4, and a main body side opening 15b is provided. The other end is provided with an opening 15 c and is connected to the cover 5 a of the optical path switching unit 5. The second optical path 24 is formed by the second through hole 23, the first reflector 31, and the second reflector 32, and the second through hole 23 is in the same direction as the reference optical path tube 15a. It penetrates the disk 5b. The first reflector 31 can be formed from a single plate. The side surface of the plate is a reflecting surface 31a, and the opposite slope is a conical surface. In addition, a second reflector 32 is disposed at a position facing the first reflector 31. Like the first reflector 31, the second reflector 32 has a reflecting surface 32a having a conical shape. It is a surface. As shown in FIG. 8, the pipe 13b that forms the reflected light path tube 13 and the pipe that forms the reference light path tube 15a are arranged at positions that overlap with the traveling direction of the irradiation light toward the analysis target. . For this reason, the shadow of the pipe 15a generated by the irradiation light is transferred to the pipe 13b, and the pipe 15a does not block the irradiation light irradiated to the measuring unit 2 alone. Therefore, even if the reflection light path tube 13 and the reference light path tube 15a are provided in the irradiation light path 11, the amount of irradiation light blocked by these light paths can be minimized.

次に、導光されて参照光路管15aを通過した参照光について説明する。該参照光は図6に示すように第二光路24を通過し、第一の反射体31の反射面31aで鉛直方向に一回目の反射をし、この反射後に第二の反射体32の反射面32aで鉛直方向に二回目の反射をし、光路が反射光路管12のパイプ13bと同一方向になった状態で前記入射窓25から受光部6に入り、その中に配置されたセンサ26により受光される。 Next, the reference light that has been guided and passed through the reference light path tube 15a will be described. As shown in FIG. 6, the reference light passes through the second optical path 24, is reflected for the first time in the vertical direction by the reflecting surface 31a of the first reflector 31, and is reflected by the second reflector 32 after this reflection. The light is reflected from the surface 32a for the second time in the vertical direction, and enters the light receiving unit 6 through the incident window 25 in a state where the optical path is in the same direction as the pipe 13b of the reflected light path tube 12, and is received by the sensor 26 disposed therein. Received light.

本発明では、光を受光するセンサは一つであるので、前記反射光と参照光とを同時に測定することはない。通常の測定では、反射光と参照光とを順に測定する。しかし、測定条件によっては、反射光を連続的に測定してもよいし、参照光を最初だけ又は最後にだけ測定するようにしてもよい。なお、受光部6を分光器として、入射窓25から入射した反射光及び照射光をそれぞれ分光し、分光した各光の光量を測定して、吸光度を求めるようにすることが好ましい。ところで、本発明では、前記第一光路と前記第二光路とを入れ換えて、参照光を直線的に受光部まで導光させ、反射光を複数回折り曲げて受光部まで導光させてもよい。 In the present invention, since there is one sensor that receives light, the reflected light and the reference light are not measured simultaneously. In normal measurement, reflected light and reference light are measured in order. However, depending on the measurement conditions, the reflected light may be measured continuously, or the reference light may be measured only at the beginning or only at the end. In addition, it is preferable that the light receiving unit 6 is used as a spectroscope, and the reflected light and the irradiated light incident from the incident window 25 are respectively separated, and the amount of light of each separated light is measured to obtain the absorbance. By the way, in the present invention, the first optical path and the second optical path may be interchanged, and the reference light may be linearly guided to the light receiving unit, and the reflected light may be bent multiple times and guided to the light receiving unit.

前記受光部6で受光し測定された反射光及び参照光は、その光量の情報が分析部7に送られ、該分析部7では分析対象物に含まれる成分等が分析される。分析部7には一般的な分析装置を使用することができる。また、分析部7での分析には一般的な分析手法を用いればよい。 The reflected light and the reference light received and measured by the light receiving unit 6 are sent to the analysis unit 7 for information on the amount of light, and the analysis unit 7 analyzes the components contained in the analysis object. A general analyzer can be used for the analysis unit 7. A general analysis method may be used for the analysis in the analysis unit 7.

本発明では、前記第一光路及び第二光路に加えて第三光路を光路切換部5に配設することができる。図7は、図3のA−A線部分の概略断面図であり、図7では参照光路管15aが円板5bの第三光路28と接続された状態を示している。ここでいう接続とは、参照光路管15aの開口部と第三光路28の開口部が円板5bの回転動作により位置的に重なった状態のことをいう。図11は、図7の矢印Zの方向から見た円板5bを示す図である。第三光路は、成分分析装置1の校正を行う場合に使用する基準光を測定する際に使用することができる。 In the present invention, in addition to the first optical path and the second optical path, a third optical path can be disposed in the optical path switching unit 5. FIG. 7 is a schematic cross-sectional view taken along the line AA in FIG. 3. FIG. 7 shows a state where the reference optical path tube 15a is connected to the third optical path 28 of the disk 5b. The connection here means a state in which the opening of the reference optical path tube 15a and the opening of the third optical path 28 are overlapped by rotation of the disk 5b. FIG. 11 is a diagram showing the disk 5b viewed from the direction of the arrow Z in FIG. The third optical path can be used when measuring reference light used when the component analyzer 1 is calibrated.

前記基準光は前記参照光を利用するものであって、参照光路管15aを通過した参照光のうち、第三光路28を通過した光が基準光となる。前記照明部10から上方に向けて照射された照射光の一部は、校正用の基準光として参照光反射体14により矢印で示す方向に反射され、パイプで形成する参照光路管15a内を通過する。第三光路28は、第三貫通孔27、第一の反射体31及び第二の反射体32で形成されるものであり、第三貫通孔27は、前記参照光路15aと同一方向に円板5bを貫通するものである。第一の反射体31は、一枚のプレートから形成することができるものである。該プレートの側面が反射面31aであり、該反斜面は円錐面となっている。また、第一の反射体31と対面する位置には、第二の反射体32が配設されており、第一の反射体31と同様に、第二の反射体32は反射面32aが円錐面となっている。 The reference light uses the reference light, and among the reference light that has passed through the reference light path tube 15a, the light that has passed through the third optical path 28 becomes the reference light. A part of the irradiation light emitted upward from the illumination unit 10 is reflected in the direction indicated by the arrow by the reference light reflector 14 as a reference light for calibration, and passes through the reference light path tube 15a formed by a pipe. To do. The third optical path 28 is formed by the third through hole 27, the first reflector 31, and the second reflector 32, and the third through hole 27 is a disc in the same direction as the reference optical path 15a. It penetrates 5b. The first reflector 31 can be formed from a single plate. The side surface of the plate is a reflecting surface 31a, and the opposite slope is a conical surface. In addition, a second reflector 32 is disposed at a position facing the first reflector 31. Like the first reflector 31, the second reflector 32 has a reflecting surface 32a having a conical shape. It is a surface.

前記第三貫通孔27には基準板29となるフィルタが取り付けられており、第三光路28を通過する基準光は、この基準板29を通過する。成分分析装置1の測定値を校正する場合には、基準板29を通過した基準光の光量を利用することになる。 A filter serving as a reference plate 29 is attached to the third through hole 27, and the reference light passing through the third optical path 28 passes through the reference plate 29. When the measurement value of the component analyzer 1 is calibrated, the amount of reference light that has passed through the reference plate 29 is used.

本発明では、第二光路24及び第三光路28に設けられた二つの反射体を、それぞれ共通の反射体の円錐面を使用する構成としている。しかし、第二光路24と第三光路28とで別々に反射体を設ける構成としてもよい。 In the present invention, the two reflectors provided in the second optical path 24 and the third optical path 28 are configured to use a common conical surface of the reflector. However, a configuration may be adopted in which reflectors are provided separately for the second optical path 24 and the third optical path 28.

次に、導光されて参照光路管15aを通過した基準光について説明する。該基準光は図7に示すように第三光路28を通過し、第一の反射体31の反射面31aで鉛直方向に一回目の反射をし、該反射後に第二の反射体32の反射面32aで鉛直方向に二回目の反射をし、光路が反射光路管13と同一方向になった状態で前記入射窓25から受光部6に入り、その中に配置されたセンサ26により受光される。受光された基準光は、その光量の情報が分析部7に送られ、該分析部にて成分分析装置を校正する際に使用される。この校正方法は一般的な手法を用いることができる。 Next, the reference light that has been guided and passed through the reference light path tube 15a will be described. As shown in FIG. 7, the reference light passes through the third optical path 28, is reflected for the first time in the vertical direction by the reflecting surface 31a of the first reflector 31, and is reflected by the second reflector 32 after the reflection. The light is reflected a second time in the vertical direction by the surface 32a, enters the light receiving unit 6 from the incident window 25 in a state where the optical path is in the same direction as the reflected light path tube 13, and is received by the sensor 26 disposed therein. . The received reference light is used when the information on the amount of light is sent to the analyzer 7 and the component analyzer is calibrated by the analyzer. A general method can be used for this calibration method.

本発明は、上記実施の形態に限るものでなく、発明の範囲を逸脱しない限りにおいてその構成を適宜変更できることはいうまでもない。 The present invention is not limited to the above-described embodiment, and it goes without saying that the configuration can be appropriately changed without departing from the scope of the invention.

本発明の成分分析装置は、分析対象物が米粒等の穀類に限定されることはなく、樹脂ペレット等の粒状物や野菜・柑橘類等の光を反射するものであれば測定をすることが可能である。 The component analyzer of the present invention is not limited to grains such as rice grains, and can be measured as long as it reflects light from granular materials such as resin pellets and vegetables and citrus fruits. It is.

1 成分分析装置2 測定部2a 透明板3 容器4 本体5 光路切換部5a カバー5b 円板6 受光部7 分析部8 モータ8b 回転軸10 照明部11 照射光路13 反射光路管13a パイプ13b パイプ14 参照光反射体(ミラー)15a 参照光路管16 反射光反射体(ミラー)17 支持板18 ブロック21 第一貫通孔22 第一光路23 第二貫通孔24 第二光路25 入射窓26 セン
サ27 第三貫通孔28 第三光路29 基準板31 第一の反射体31a 反射面32 第二の反射体32a 反射面
41 反射光
42 参照光
DESCRIPTION OF SYMBOLS 1 Component analyzer 2 Measurement part 2a Transparent plate 3 Container 4 Main body 5 Optical path switching part 5a Cover 5b Disc 6 Light receiving part 7 Analysis part 8 Motor 8b Rotating shaft 10 Illumination part 11 Irradiation light path 13 Reflection light path pipe 13a Pipe 13b Pipe 14 reference Light reflector (mirror) 15a Reference light path tube 16 Reflected light reflector (mirror) 17 Support plate 18 Block 21 First through hole 22 First optical path 23 Second through hole 24 Second optical path 25 Incident window 26 Sensor 27 Third through Hole 28 Third optical path 29 Reference plate 31 First reflector 31a Reflective surface 32 Second reflector 32a Reflective surface 41 Reflected light 42 Reference light

Claims (6)

分析対象物を載置する測定部と、該測定部に載置された分析対象物に照射光を照射する照明部と、内部が前記照射光を前記測定部まで導光する照射光路となる本体と、前記分析対象物から反射した反射光及び前記分析対象物で反射していない前記照射光である参照光を受光する受光部と、前記反射光を前記受光部に向けて導光する反射光路管と、前記参照光を前記受光部に向けて導光する参照光路管と、前記受光部と前記反射光路管及び前記参照光路管との間に位置し、回転自在な円板で形成され、該円板を回転させることでこの円板に設けた複数の光路のいずれかを、前記反射光路管又は前記参照光路管と接続し、導光する光を前記反射光又は前記参照光に切り換えて前記受光部に導光する光路切換部と、前記受光部が受光した光量に基づいて分析対象物に含まれる成分を分析する分析部と、を有する成分分析装置において、前記反射光路管は、前記本体内に配設され、一端に分析対象物から反射した反射光が入射する開口部を設け、他端に前記光路切換部に向けて開口した開口部が設けられており、内部に前記反射光を前記光路切換部に向けて反射する反射光反射体が設けられ、前記参照光路管は、前記本体内であって、前記反射光路管と前記照明部の間の位置に配設され、一端に前記参照光が入射するように前記本体内で開口する本体側開口部を設け、他端に前記光路切換部に向けて開口する開口部が設けられ、前記反射光路管と前記照明部との間には、前記参照光を前記参照光路管の前記本体側開口部に向かって反射させる参照光反射体を設けることを特徴とする成分分析装置。 A measurement unit for placing the analysis object, an illumination unit for irradiating the analysis object placed on the measurement unit with irradiation light, and a main body serving as an irradiation light path for guiding the irradiation light to the measurement unit A light receiving unit that receives reflected light reflected from the analysis object and reference light that is the irradiation light that is not reflected by the analysis object, and a reflected light path that guides the reflected light toward the light receiving unit A tube, a reference light path tube that guides the reference light toward the light receiving unit, and a position between the light receiving unit, the reflected light path tube, and the reference light path tube, and is formed of a rotatable disk. By rotating the disk, one of a plurality of optical paths provided on the disk is connected to the reflected light path tube or the reference light path tube, and the light to be guided is switched to the reflected light or the reference light. An optical path switching unit for guiding light to the light receiving unit, and an amount of light received by the light receiving unit. An analysis unit for analyzing a component contained in the analysis object, wherein the reflected light path tube is disposed in the main body, and an opening through which reflected light reflected from the analysis object enters at one end The other end is provided with an opening that opens toward the optical path switching unit, and a reflected light reflector that reflects the reflected light toward the optical path switching unit is provided therein, and the reference optical path The tube is disposed in the main body, and is disposed at a position between the reflected light path tube and the illumination unit, and is provided with a main body side opening that opens in the main body so that the reference light is incident on one end thereof. An opening that opens toward the optical path switching unit is provided at the other end, and the reference light is reflected toward the main body side opening of the reference optical path tube between the reflected optical path tube and the illumination unit. Component analysis characterized by providing a reference light reflector Location. 前記光路切換部は、前記反射光を前記受光部まで直線的に導光する第一光路と、前記参照光を複数の反射体でその光路を複数回折り曲げて前記受光部まで導光する第二光路とが設けられており、前記複数の反射体の反射面が円錐面であることを特徴とする請求項1に記載の成分分析装置。 The optical path switching unit linearly guides the reflected light to the light receiving unit, and second guides the reference light to the light receiving unit by bending the optical path by a plurality of reflectors. The component analysis apparatus according to claim 1, wherein an optical path is provided, and a reflecting surface of the plurality of reflectors is a conical surface. 前記光路切換部は、前記参照光を前記受光部まで直線的に導光する第一光路と、前記反射光を複数の反射体でその光路を複数回折り曲げて前記受光部まで導光する第二光路とが設けられており、前記複数の反射体の反射面が円錐面であることを特徴とする請求項2に記載の成分分析装置。 The optical path switching unit linearly guides the reference light to the light receiving unit, and secondly guides the reflected light to the light receiving unit by bending the optical path by a plurality of reflectors. The component analyzing apparatus according to claim 2, wherein an optical path is provided, and a reflecting surface of the plurality of reflectors is a conical surface. 前記複数の反射体の数が二つであり、前記第二光路を二回折り曲げることを特徴とする請求項2又は3に記載の成分分析装置。 The component analyzer according to claim 2 or 3, wherein the number of the plurality of reflectors is two, and the second optical path is bent twice. 前記参照光路管は、前記分析対象物に向かう照射光の進行方向に対して前記反射光路管と重なる位置に配設されることを特徴とする請求項1乃至4に記載の成分分析装置。 5. The component analyzer according to claim 1, wherein the reference optical path tube is disposed at a position overlapping the reflected optical path tube with respect to a traveling direction of irradiation light toward the analysis target. 前記光路切換部は、前記参照光をその光路を複数回折り曲げて前記受光部まで導光する第三光路が配設されており、該第三光路には前記参照光が通過する基準板が設けられていることを特徴とする請求項1乃至5に記載の成分測定装置。
The optical path switching unit is provided with a third optical path for guiding the reference light to the light receiving unit by bending the optical path multiple times, and a reference plate through which the reference light passes is provided in the third optical path. 6. The component measuring apparatus according to claim 1, wherein the component measuring apparatus is provided.
JP2015183656A 2015-09-17 2015-09-17 Reflection type component analyzer Active JP6624495B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015183656A JP6624495B2 (en) 2015-09-17 2015-09-17 Reflection type component analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015183656A JP6624495B2 (en) 2015-09-17 2015-09-17 Reflection type component analyzer

Publications (2)

Publication Number Publication Date
JP2017058267A true JP2017058267A (en) 2017-03-23
JP6624495B2 JP6624495B2 (en) 2019-12-25

Family

ID=58389858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015183656A Active JP6624495B2 (en) 2015-09-17 2015-09-17 Reflection type component analyzer

Country Status (1)

Country Link
JP (1) JP6624495B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1096689A (en) * 1996-09-24 1998-04-14 Kubota Corp Spectroscopic analyzer
JPH1151854A (en) * 1997-08-08 1999-02-26 Kubota Corp Spectroscopic analyzer
JPH11125595A (en) * 1997-10-23 1999-05-11 Kubota Corp Spectral analysis device
JPH11125594A (en) * 1997-10-23 1999-05-11 Kubota Corp Spectral analysis device
JP2000206037A (en) * 1999-01-14 2000-07-28 Bio-Communication Technology Res Assoc Spectroscopic analytical method
JP2000292344A (en) * 1999-02-02 2000-10-20 Kubota Corp Light passage forming device
US20140268127A1 (en) * 2013-03-14 2014-09-18 Sciaps, Inc. Wide spectral range spectrometer

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1096689A (en) * 1996-09-24 1998-04-14 Kubota Corp Spectroscopic analyzer
JPH1151854A (en) * 1997-08-08 1999-02-26 Kubota Corp Spectroscopic analyzer
JPH11125595A (en) * 1997-10-23 1999-05-11 Kubota Corp Spectral analysis device
JPH11125594A (en) * 1997-10-23 1999-05-11 Kubota Corp Spectral analysis device
JP2000206037A (en) * 1999-01-14 2000-07-28 Bio-Communication Technology Res Assoc Spectroscopic analytical method
JP2000292344A (en) * 1999-02-02 2000-10-20 Kubota Corp Light passage forming device
US20140268127A1 (en) * 2013-03-14 2014-09-18 Sciaps, Inc. Wide spectral range spectrometer

Also Published As

Publication number Publication date
JP6624495B2 (en) 2019-12-25

Similar Documents

Publication Publication Date Title
JP5824325B2 (en) System for scattering and absorption analysis
EP2477024B1 (en) Analyzer
CN102589698B (en) Variable-angle reflection measurement device and operation method thereof
JPWO2015119154A1 (en) Surface plasmon resonance fluorescence analyzer and surface plasmon resonance fluorescence analysis method
KR101803676B1 (en) Compact type NDIR gas analyzer
JP6624495B2 (en) Reflection type component analyzer
US20070120048A1 (en) Reflective encoder module
US7294826B2 (en) Bio-sensing apparatus
JP6666881B2 (en) Substance concentration measuring device
JP2008089579A (en) Biochemical measuring device
US7224460B2 (en) Mapping-measurement apparatus
US9632023B2 (en) V-block refractometer
KR102257311B1 (en) Apparatus for aligning measuring head of spectroscope
CN103728015B (en) Optical head and optical system using the same
JP5672376B2 (en) Optical system for reflection characteristic measuring apparatus and reflection characteristic measuring apparatus
JP4742166B2 (en) Sample analyzer
CN106198398B (en) Definition measuring device
JP2014115268A (en) Spectroscopic analyzer
CN105319162A (en) Detecting head for trace liquid analysis and capable of eliminating stray light interference
WO2018003045A1 (en) Beam splitter with aperture function, and detector provided with said beam splitter
JP2011149833A (en) Spectrophotometer, and light source changeover method of the same
US20210239604A1 (en) Optical measuring unit and optical measuring method for obtaining measurement signals of fluid media
JP3295418B2 (en) Spectrometer
JPS61201122A (en) Multiple wavelength spectrophotometer
JP2007218882A (en) Autoanalyzer and spectroscopic device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190626

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190826

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191114

R150 Certificate of patent or registration of utility model

Ref document number: 6624495

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250