JPH07233493A - Electric power converter for water electrolyzing system - Google Patents
Electric power converter for water electrolyzing systemInfo
- Publication number
- JPH07233493A JPH07233493A JP6024283A JP2428394A JPH07233493A JP H07233493 A JPH07233493 A JP H07233493A JP 6024283 A JP6024283 A JP 6024283A JP 2428394 A JP2428394 A JP 2428394A JP H07233493 A JPH07233493 A JP H07233493A
- Authority
- JP
- Japan
- Prior art keywords
- converter
- storage battery
- current
- water electrolysis
- voltage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/36—Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
Landscapes
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は固体高分子電解質膜を利
用する水電解装置の入力として太陽電池の出力を有効に
利用するための装置に関する。本発明は水電解装置の入
力源として出力変動の大きな自然エネルギー(太陽光、
風力、波力エネルギー)等による発電システムを利用す
る場合にも適用できる。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device for effectively utilizing the output of a solar cell as an input of a water electrolysis device using a solid polymer electrolyte membrane. The present invention is a natural energy (sunlight,
It can also be applied when using a power generation system using wind power, wave energy, etc.
【0002】[0002]
【従来の技術】従来技術を図7に示す。太陽電池1と水
電解装置6の間にDC−DCコンバータ103を設置す
ることで水電解装置6へ加える電圧を一定にしており、
太陽電池1の出力をより多く水電解に利用するにはDC
−DCコンバータ103の入力側に大容量の蓄電池を取
付ける必要がある。2. Description of the Related Art FIG. 7 shows a prior art. By installing the DC-DC converter 103 between the solar cell 1 and the water electrolysis device 6, the voltage applied to the water electrolysis device 6 is made constant,
To use more of the output of the solar cell 1 for water electrolysis, DC
-It is necessary to mount a large-capacity storage battery on the input side of the DC converter 103.
【0003】[0003]
【発明が解決しようとする課題】従来の技術では、図7
に示すように太陽電池1と水電解装置6の間に配置した
DC−DCコンバータ103により電圧制御している
が、図5の水電解装置の特性図に示すように水電解装置
6に加える電圧の変動に対して水電解装置の電流は大き
く変動する特性を持つため、水電解装置6に流れる電流
の変動をDC−DCコンバータ103の電圧制御で抑え
ることは非常に難かしい。例えば定格点2V−50A
(図5の点A)において、電圧の変動が±0.01Vあ
ったとすると電流の変動は±2.5Aとなる。つまり電
圧の変動率1%に対し、電流の変動率は10%になって
しまう。したがって水電解装置に流れる電流の変動は大
きなものになりやすく、この電流変動が原因となり水電
解装置内の水電解セルの寿命を縮める恐れがある。また
太陽電池出力をより多く水電解に利用するためには図8
に示すように太陽電池出力の多くを大容量の蓄電池に蓄
える必要があり、システムの大形化、コスト増をまね
く。さらに蓄電池に蓄える電力が多くなるほど蓄電池の
変換ロスの量が増加しシステム効率が低下する。蓄電池
の容量は、1年のうち、太陽電池の出力が最も大きい日
にあわせて決定されるため、曇りがちな日など蓄電池の
利用率は非常に低いものとなる。そのため、無駄が多
い。本発明は、これらの問題を解決することができる水
電解システム用電力変換装置を提供することを目的とす
る。According to the conventional technique, as shown in FIG.
The voltage is controlled by the DC-DC converter 103 arranged between the solar cell 1 and the water electrolysis device 6 as shown in FIG. 5, but the voltage applied to the water electrolysis device 6 as shown in the characteristic diagram of the water electrolysis device of FIG. Since the current of the water electrolysis device has a characteristic that it greatly fluctuates with respect to the above fluctuation, it is very difficult to suppress the fluctuation of the current flowing through the water electrolysis device 6 by the voltage control of the DC-DC converter 103. For example, rated point 2V-50A
At point A in FIG. 5, if the voltage fluctuation is ± 0.01 V, the current fluctuation is ± 2.5 A. In other words, the voltage fluctuation rate is 1%, whereas the current fluctuation rate is 10%. Therefore, the fluctuation of the current flowing through the water electrolysis device is likely to be large, and this fluctuation of the current may shorten the life of the water electrolysis cell in the water electrolysis device. In order to utilize more solar cell output for water electrolysis,
It is necessary to store much of the solar cell output in a large-capacity storage battery, as shown in, which leads to an increase in system size and cost. Furthermore, as the amount of electric power stored in the storage battery increases, the amount of conversion loss of the storage battery increases and the system efficiency decreases. Since the capacity of the storage battery is determined according to the day when the output of the solar cell is the largest in one year, the usage rate of the storage battery is extremely low on a cloudy day. Therefore, there is much waste. An object of the present invention is to provide a power conversion device for a water electrolysis system that can solve these problems.
【0004】[0004]
【課題を解決するための手段】本発明に係る水電解シス
テム用電力変換装置は太陽電池1及び蓄電池2からDC
−DCコンバータ3を介して水電解装置6に電流を供給
する電解水素発生装置において、前記DC−DCコンバ
ータ3は、DC−DCコンバータの主回路4とDC−D
Cコンバータの制御回路5を具備し、前記DC−DCコ
ンバータの主回路4は、太陽電池1及び蓄電池2から電
圧7を入力するとともに水電解装置6に電流11を出力
し、前記DC−DCコンバータの制御回路5は、蓄電池
電圧の検出信号8を検知する手段Pと、水電解装置を流
れる電流の検出信号9を検知する手段Qと、前記両信号
8,9を比較し、前記蓄電池電圧の検出信号8の値によ
り、水電解装置を流れる電流の目標値を決定する手段R
を有し、前記水電解装置を流れる電流の目標値を決定す
る手段Rからの主回路制御信号10をDC−DCコンバ
ータの主回路4へ出力し、太陽電池1及び蓄電池2から
の出力電圧に応じて水電解装置6への入力電流11を段
階的に切り換えることを特徴とする。A power converter for a water electrolysis system according to the present invention comprises a solar cell 1 and a storage battery 2 and a DC.
-In the electrolytic hydrogen generation device that supplies current to the water electrolysis device 6 via the DC converter 3, the DC-DC converter 3 includes a main circuit 4 of the DC-DC converter and a DC-D.
The main circuit 4 of the DC-DC converter comprises a control circuit 5 of the C converter, inputs the voltage 7 from the solar cell 1 and the storage battery 2 and outputs the current 11 to the water electrolysis device 6, and the DC-DC converter. The control circuit 5 of 1 compares the means 8 for detecting the detection signal 8 of the storage battery voltage, the means Q for detecting the detection signal 9 of the current flowing through the water electrolysis device, and the both signals 8 and 9 to determine the storage battery voltage Means R for determining the target value of the current flowing through the water electrolysis device based on the value of the detection signal 8
And outputs the main circuit control signal 10 from the means R for determining the target value of the current flowing through the water electrolysis device to the main circuit 4 of the DC-DC converter to output the output voltage from the solar cell 1 and the storage battery 2. It is characterized in that the input current 11 to the water electrolysis device 6 is switched in a stepwise manner in accordance therewith.
【0005】[0005]
【作用】本発明の太陽電池利用水電解システム用DC−
DCコンバータ3を用いることにより、水電解装置6に
流れる電流の変動を小さくすることができるため電流変
動により水電解セルが劣化することにより生じる水電解
装置6の電流効率低下を抑制することができる。それと
ともに水電解に利用する電力を、そのてきの太陽電池出
力に応じて切換えるため、蓄電池に蓄える電力が少なく
てすみ、必要な蓄電池容量の小容量化ができる。そのた
めシステムの小形化、低コストが図ることができる。同
時に水電解装置の低電流密度領域における運転をさける
ことができるため、システム効率を上昇させることが可
能となる。[Operation] DC for water electrolysis system using solar cell of the present invention
By using the DC converter 3, it is possible to reduce the fluctuation of the current flowing through the water electrolysis device 6, so that it is possible to suppress a decrease in the current efficiency of the water electrolysis device 6 caused by the deterioration of the water electrolysis cell due to the current fluctuation. . At the same time, the electric power used for water electrolysis is switched according to the output of the solar cell, so that less electric power can be stored in the storage battery and the required storage battery capacity can be reduced. Therefore, the system can be downsized and the cost can be reduced. At the same time, the operation of the water electrolysis device in the low current density region can be avoided, so that the system efficiency can be increased.
【0006】[0006]
【実施例】本発明の第1実施例としての太陽電池利用水
電解システム用DC−DCコンバータ100W機につい
て図1〜図6に基づき説明する。図1は第1実施例のシ
ステム構成図を、図6は蓄電池2の充電特性を、図3は
太陽電池出力に対する蓄電池の充放電及び水電解装置利
用電力の特性を示す。使用する蓄電池2の放電終止電圧
は、5.3Vであり、DC−DCコンバータ3の動作開
始電圧は放電終止電圧よりも高い6.4Vに設定する。DESCRIPTION OF THE PREFERRED EMBODIMENTS A DC-DC converter 100W machine for a solar cell utilizing water electrolysis system as a first embodiment of the present invention will be described with reference to FIGS. FIG. 1 shows the system configuration of the first embodiment, FIG. 6 shows the charging characteristics of the storage battery 2, and FIG. 3 shows the characteristics of the charging / discharging of the storage battery and the power used by the water electrolysis device with respect to the solar cell output. The discharge end voltage of the storage battery 2 used is 5.3V, and the operation start voltage of the DC-DC converter 3 is set to 6.4V, which is higher than the discharge end voltage.
【0007】図1に示すシステムにおいて、太陽電池1
が出力を開始すると、蓄電池2の電圧(すなわちDC−
DCコンバータ入力電圧)が上昇を始め、その電圧が
6.4Vに達した時点(すなわち図6の点A)でDC−
DCコンバータ3が水電解装置6に電流11を流し始め
る。水電解装置6で使用されている電力よりも太陽電池
1の発生電力の方が上回り始めると、蓄電池の電圧はさ
らに上昇を始め、予め設定した電流値切換え電圧(すな
わち図6の点B)に達した段階で、DC−DCコンバー
タ3は水電解装置6に流す電流を増加させる。これらの
動作を太陽電池出力、蓄電池電圧、水電解装置を流れる
電流により時間に対応させて示したのが図4である。こ
のように本発明のDC−DCコンバータ3では、入力側
に取付けた蓄電池2の電圧によって水電解装置6に流す
べき電流11を切換えていく手段Rを有する。また電流
切換え直後等に生じる一時的な入力電圧値の上昇あるい
は下降に過剰反応(ただちに元の電流値に戻ること)す
ることを避けるために、蓄電池電圧の検出信号を検知す
る手段Pと、水電解装置を流れる電流の検出信号を検知
する手段Rを有し、図2に示すように、電流切換え電圧
にヒステリシス特性を持たせている。In the system shown in FIG. 1, the solar cell 1
Starts output, the voltage of the storage battery 2 (that is, DC-
When the DC converter input voltage) starts to rise and reaches 6.4V (that is, point A in FIG. 6), DC-
The DC converter 3 starts flowing the current 11 through the water electrolysis device 6. When the generated electric power of the solar cell 1 starts to exceed the electric power used in the water electrolysis device 6, the voltage of the storage battery starts to further increase and reaches a preset current value switching voltage (that is, point B in FIG. 6). When reaching, the DC-DC converter 3 increases the current flowing through the water electrolysis device 6. FIG. 4 shows these operations in correspondence with time according to the solar cell output, the storage battery voltage, and the current flowing through the water electrolysis device. As described above, the DC-DC converter 3 of the present invention has the means R for switching the current 11 to be supplied to the water electrolysis device 6 according to the voltage of the storage battery 2 attached to the input side. Further, in order to avoid excessive reaction (immediately returning to the original current value) to a temporary increase or decrease in the input voltage value that occurs immediately after switching the current, a means P for detecting the detection signal of the storage battery voltage and a water It has means R for detecting the detection signal of the current flowing through the electrolysis device, and as shown in FIG. 2, the current switching voltage has a hysteresis characteristic.
【0008】以上のような制御動作により、太陽電池の
出力と水電解装置の利用電力、蓄電池の充放電電力の関
係は図3のように表わせる。前述のように本発明装置
は、図1に示すようにDC−DCコンバータ3の出力電
流11(すなわち水電解装置6を流れる電流)を制御回
路5に取込み、定電流制御を行うことで水電解装置6に
一定の電流を供給する。さらにDC−DCコンバータ3
の入力電圧7(すなわち蓄電池2の電圧)を検出し、そ
の電圧値によって制御回路5内の出力電流目標値を切換
えることで水電解装置6に流れる電流を切換えるという
制御を行う。By the above control operation, the relationship between the output of the solar cell, the power used by the water electrolysis device, and the charge / discharge power of the storage battery can be expressed as shown in FIG. As described above, the device of the present invention takes in the output current 11 of the DC-DC converter 3 (that is, the current flowing through the water electrolysis device 6) into the control circuit 5 as shown in FIG. A constant current is supplied to the device 6. Furthermore, DC-DC converter 3
The input voltage 7 (that is, the voltage of the storage battery 2) is detected, and the output current target value in the control circuit 5 is switched according to the voltage value to control the current flowing through the water electrolysis device 6.
【0009】[0009]
【発明の効果】本発明は前述のように構成されているの
で以下に記載するような効果を生ずる。 (1)本発明の採用により、太陽電池出力の変動が原因
で生じる水電解装置の劣化を防止できるため、電流効率
の低下を抑制することが可能となる。Since the present invention is constructed as described above, the following effects are produced. (1) By adopting the present invention, it is possible to prevent the deterioration of the water electrolysis device caused by the fluctuation of the output of the solar cell, and thus it is possible to suppress the decrease of the current efficiency.
【0010】(2)また、水電解に利用する電力をその
ときの太陽電池出力に応じて切換えるため、従来方式に
比べ蓄電池に蓄える電力が少なくてすみ、蓄電池の小容
量化によるシステムの小形化・低コスト化、蓄電流の変
換ロス減少に伴うシステム効率の上昇が期待できる。(2) Further, since the electric power used for water electrolysis is switched according to the solar cell output at that time, less electric power can be stored in the storage battery as compared with the conventional method, and the system can be downsized by reducing the capacity of the storage battery. -It is expected that the system efficiency will increase as the cost is reduced and the conversion loss of the stored current is reduced.
【0011】(3)さらにシステムが稼動する最低電圧
を蓄電池の放電終止電圧より高めの電圧に設定すること
により、蓄電池の長寿命化が図れると同時に、水電解装
置の低電流密度領域(電流効率が低い領域)における運
転を避けることができるため、システム効率をさらに上
昇させることができる。(3) Further, by setting the minimum voltage at which the system operates to a voltage higher than the discharge end voltage of the storage battery, the life of the storage battery can be extended, and at the same time, the low current density region (current efficiency) of the water electrolysis device (current efficiency). Since it is possible to avoid operation in a low region), the system efficiency can be further increased.
【図1】本発明の第1実施例に係るシステムの構成図。FIG. 1 is a configuration diagram of a system according to a first embodiment of the present invention.
【図2】第1実施例に係る電流切換えの特性図。FIG. 2 is a characteristic diagram of current switching according to the first embodiment.
【図3】第1実施例に係る太陽電池の出力に対する蓄電
池の充放電及び水電解装置利用電力の特性図。FIG. 3 is a characteristic diagram of charge / discharge of a storage battery and electric power used by a water electrolysis device with respect to output of the solar cell according to the first embodiment.
【図4】第1実施例に係るシステム各部の特性図。FIG. 4 is a characteristic diagram of each part of the system according to the first embodiment.
【図5】水電解装置の特性図。FIG. 5 is a characteristic diagram of a water electrolysis device.
【図6】第1の実施例に係る蓄電池の充電特性図。FIG. 6 is a charging characteristic diagram of the storage battery according to the first embodiment.
【図7】従来装置のシステム構成図。FIG. 7 is a system configuration diagram of a conventional device.
【図8】従来装置における、太陽電池出力に対する蓄電
池の充放電及び水電解装置利用電力の特性図。FIG. 8 is a characteristic diagram of charge / discharge of a storage battery and electric power used by a water electrolysis device with respect to a solar cell output in a conventional device.
1…太陽電池 2…蓄電池 3…DC−DCコンバータ 4…DC−DCコンバータ3の主回路 5…DC−DCコンバータ3の制御回路 6…水電解装置 7…DC−DCコンバータ3の入力電圧 (太陽電池及び蓄電池の出力電圧) 8…蓄電池電圧の検出信号 (太陽電池及び蓄電池の出力電圧の検出信号) 9…水電解装置を流れる電流の検出信号 10…DC−DCコンバータ3の主回路制御信号 11…DC−DCコンバータ3の出力電流 (水電解装置の入力電流) 103…DC−DCコンバータ 104…DC−DCコンバータ103の主回路 105…DC−DCコンバータ103の制御回路 109…水電解装置に加わる電圧の検出信号 110…DC−DCコンバータ103の主回路制御信号 DESCRIPTION OF SYMBOLS 1 ... Solar cell 2 ... Storage battery 3 ... DC-DC converter 4 ... Main circuit of DC-DC converter 3 5 ... Control circuit of DC-DC converter 3 6 ... Water electrolysis device 7 ... Input voltage of DC-DC converter 3 Output voltage of battery and storage battery 8 ... Detection signal of storage battery voltage (detection signal of output voltage of solar cell and storage battery) 9 ... Detection signal of current flowing through water electrolysis device 10 ... Main circuit control signal of DC-DC converter 3 11 Output current of DC-DC converter 3 (input current of water electrolysis device) 103 ... DC-DC converter 104 ... Main circuit of DC-DC converter 103 ... Control circuit of DC-DC converter 103 109 ... Addition to water electrolysis device Voltage detection signal 110 ... Main circuit control signal of DC-DC converter 103
───────────────────────────────────────────────────── フロントページの続き (72)発明者 加幡 達雄 長崎県長崎市飽の浦町1番1号 三菱重工 業株式会社長崎造船所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tatsuo Kabata 1-1 1-1 Atsunoura-machi, Nagasaki-shi, Nagasaki Mitsubishi Heavy Industries Ltd. Nagasaki Shipyard
Claims (1)
C−DCコンバータ(3)を介して水電解装置(6)に
電流を供給する電解水素発生装置において、前記DC−
DCコンバータ(3)は、DC−DCコンバータの主回
路(4)とDC−DCコンバータの制御回路(5)を具
備し、前記DC−DCコンバータの主回路(4)は、太
陽電池(1)及び蓄電池(2)から電圧(7)を入力す
るとともに水電解装置(6)に電流(11)を出力し、
前記DC−DCコンバータの制御回路(5)は、蓄電池
電圧の検出信号(8)を検知する手段(P)と、水電解
装置を流れる電流の検出信号(9)を検知する手段
(Q)と、前記両信号(8,9)を比較し前記蓄電池電
圧の検出信号(8)の値により水電解装置を流れる電流
の目標値を決定する手段(R)を有し、前記水電解装置
を流れる電流の目標値を決定する手段(R)からの主回
路制御信号(10)をDC−DCコンバータの主回路
(4)へ出力し、太陽電池(1)及び蓄電池(2)から
の出力電圧に応じて水電解装置(6)への入力電流(1
1)を段階的に切り換えることを特徴とする水電解シス
テム用電力変換装置。1. A solar cell (1) and a storage battery (2) to D
In the electrolytic hydrogen generation device for supplying current to the water electrolysis device (6) via the C-DC converter (3), the DC-
The DC converter (3) comprises a DC-DC converter main circuit (4) and a DC-DC converter control circuit (5), and the DC-DC converter main circuit (4) comprises a solar cell (1). And a voltage (7) is input from the storage battery (2) and a current (11) is output to the water electrolysis device (6),
The control circuit (5) of the DC-DC converter includes means (P) for detecting the detection signal (8) of the storage battery voltage, and means (Q) for detecting the detection signal (9) of the current flowing through the water electrolysis device. , A means (R) for comparing the two signals (8, 9) and determining a target value of a current flowing through the water electrolysis device according to the value of the detection signal (8) of the storage battery voltage, and flowing through the water electrolysis device. The main circuit control signal (10) from the means (R) that determines the target value of the current is output to the main circuit (4) of the DC-DC converter, and the output voltage from the solar cell (1) and the storage battery (2) is output. In response to the input current (1
A power conversion device for a water electrolysis system, characterized in that 1) is switched stepwise.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6024283A JPH07233493A (en) | 1994-02-22 | 1994-02-22 | Electric power converter for water electrolyzing system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6024283A JPH07233493A (en) | 1994-02-22 | 1994-02-22 | Electric power converter for water electrolyzing system |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH07233493A true JPH07233493A (en) | 1995-09-05 |
Family
ID=12133864
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6024283A Withdrawn JPH07233493A (en) | 1994-02-22 | 1994-02-22 | Electric power converter for water electrolyzing system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07233493A (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001335982A (en) * | 2000-05-25 | 2001-12-07 | Honda Motor Co Ltd | Method for operating water electrolytic system |
JP2006161123A (en) * | 2004-12-09 | 2006-06-22 | Hitachi Zosen Corp | Water-electrolysis hydrogen producing apparatus utilizing wind power generation |
JP2007249341A (en) * | 2006-03-14 | 2007-09-27 | Hitachi Ltd | Hydrogen production system |
JP2009203555A (en) * | 2008-02-27 | 2009-09-10 | Kuo-Fong Huang | System for supplying fuel of hydrogen energy source |
US7596002B2 (en) | 2004-06-25 | 2009-09-29 | General Electric Company | Power conversion system and method |
WO2009155545A2 (en) * | 2008-06-19 | 2009-12-23 | Tennant Company | Hand-held spray bottle electrolysis cell and dc-dc converter |
US20100114395A1 (en) * | 2008-10-30 | 2010-05-06 | Next Hydrogen Corporation | Power dispatch system for electrolytic production of hydrogen from wind power |
JP4711492B2 (en) * | 2000-07-05 | 2011-06-29 | 株式会社神鋼環境ソリューション | Method for raising water temperature in water electrolysis system |
US9133553B2 (en) | 2012-09-13 | 2015-09-15 | Next Hydrogen Corporation | Externally-reinforced water electrolyzer module |
US9187833B2 (en) | 2012-09-13 | 2015-11-17 | Next Hydrogen Corporation | Internally-reinforced water electrolyser module |
JP2016037643A (en) * | 2014-08-08 | 2016-03-22 | 株式会社東芝 | Hydrogen production system and hydrogen production method |
JP2019026857A (en) * | 2017-07-25 | 2019-02-21 | 東京瓦斯株式会社 | Electrolysis system, and electric power control method of electrolysis system |
WO2021117097A1 (en) * | 2019-12-09 | 2021-06-17 | 富士通株式会社 | Water electrolysis system and water electrolysis device |
WO2021229652A1 (en) * | 2020-05-11 | 2021-11-18 | 富士通株式会社 | Water electrolysis system and electric current control device |
-
1994
- 1994-02-22 JP JP6024283A patent/JPH07233493A/en not_active Withdrawn
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001335982A (en) * | 2000-05-25 | 2001-12-07 | Honda Motor Co Ltd | Method for operating water electrolytic system |
JP4711492B2 (en) * | 2000-07-05 | 2011-06-29 | 株式会社神鋼環境ソリューション | Method for raising water temperature in water electrolysis system |
US7596002B2 (en) | 2004-06-25 | 2009-09-29 | General Electric Company | Power conversion system and method |
JP2006161123A (en) * | 2004-12-09 | 2006-06-22 | Hitachi Zosen Corp | Water-electrolysis hydrogen producing apparatus utilizing wind power generation |
JP2007249341A (en) * | 2006-03-14 | 2007-09-27 | Hitachi Ltd | Hydrogen production system |
JP2009203555A (en) * | 2008-02-27 | 2009-09-10 | Kuo-Fong Huang | System for supplying fuel of hydrogen energy source |
WO2009155545A2 (en) * | 2008-06-19 | 2009-12-23 | Tennant Company | Hand-held spray bottle electrolysis cell and dc-dc converter |
WO2009155545A3 (en) * | 2008-06-19 | 2010-03-04 | Tennant Company | Hand-held spray bottle electrolysis cell and dc-dc converter |
US9249518B2 (en) | 2008-10-30 | 2016-02-02 | Next Hydrogen Corporation | Power dispatch system for electrolytic production of hydrogen from wind power |
US20100114395A1 (en) * | 2008-10-30 | 2010-05-06 | Next Hydrogen Corporation | Power dispatch system for electrolytic production of hydrogen from wind power |
US8288888B2 (en) * | 2008-10-30 | 2012-10-16 | Next Hydrogen Corporation | Power dispatch system for electrolytic production of hydrogen from wind power |
US9303325B2 (en) | 2008-10-30 | 2016-04-05 | Next Hydrogen Corporation | Power dispatch system for electrolytic production of hydrogen from wind power |
US9187833B2 (en) | 2012-09-13 | 2015-11-17 | Next Hydrogen Corporation | Internally-reinforced water electrolyser module |
US9133553B2 (en) | 2012-09-13 | 2015-09-15 | Next Hydrogen Corporation | Externally-reinforced water electrolyzer module |
JP2016037643A (en) * | 2014-08-08 | 2016-03-22 | 株式会社東芝 | Hydrogen production system and hydrogen production method |
JP2019026857A (en) * | 2017-07-25 | 2019-02-21 | 東京瓦斯株式会社 | Electrolysis system, and electric power control method of electrolysis system |
WO2021117097A1 (en) * | 2019-12-09 | 2021-06-17 | 富士通株式会社 | Water electrolysis system and water electrolysis device |
WO2021229652A1 (en) * | 2020-05-11 | 2021-11-18 | 富士通株式会社 | Water electrolysis system and electric current control device |
JPWO2021229652A1 (en) * | 2020-05-11 | 2021-11-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH07233493A (en) | Electric power converter for water electrolyzing system | |
KR20120008353A (en) | Fuel cell system and power management method in the same | |
JP2000173636A (en) | Fuel cell system | |
JP2004194408A (en) | Uninterruptible power source | |
EP1933442A2 (en) | Fuel cell system | |
JP2008131736A (en) | Distributed power system and step-up/step-down chopper device | |
JPWO2009008229A1 (en) | Power supply | |
JP5131805B2 (en) | Fuel cell system | |
JP2002218654A (en) | Photovoltaic power generation system | |
JP2001095179A (en) | Electricity storing system and electric power feeding system | |
JP6142024B1 (en) | Power storage system and power storage method | |
EP2755294A1 (en) | Charge storage system, charging/discharging circuit, and utility interconnection device | |
JP2021027749A (en) | Charge/discharge control device, battery including the same, and dc power supply system | |
KR101233504B1 (en) | Method and System for selection controlling of Fuel cell or Battery | |
JP5336791B2 (en) | Power supply | |
US20050045225A1 (en) | Apparatus for supplying standby power | |
US11233403B2 (en) | Grid interconnection system | |
Harrison | Batteries and AC phenomena in UPS systems: the battery point of view | |
JP7384281B2 (en) | Water electrolysis system and current control device | |
JP7416088B2 (en) | water electrolysis system | |
JPH06266455A (en) | Photovoltaic power generating equipment capable of jointly using battery | |
JP2004244653A (en) | Water electrolysis system | |
JP2011211812A (en) | Power unit | |
JPH04308431A (en) | Control method for photovoltaic power generation linking system | |
CN217956775U (en) | Mode switching circuit and uninterrupted power supply |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Application deemed to be withdrawn because no request for examination was validly filed |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20010508 |