JP2011211812A - Power unit - Google Patents

Power unit Download PDF

Info

Publication number
JP2011211812A
JP2011211812A JP2010076374A JP2010076374A JP2011211812A JP 2011211812 A JP2011211812 A JP 2011211812A JP 2010076374 A JP2010076374 A JP 2010076374A JP 2010076374 A JP2010076374 A JP 2010076374A JP 2011211812 A JP2011211812 A JP 2011211812A
Authority
JP
Japan
Prior art keywords
power supply
load
supply path
power
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010076374A
Other languages
Japanese (ja)
Inventor
Takamasa Yanase
考応 柳▲瀬▼
Noboru Ishizone
昇 石曽根
Toru Ozaki
徹 尾崎
Kazutaka Yuzurihara
一貴 譲原
Fumiharu Iwasaki
文晴 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2010076374A priority Critical patent/JP2011211812A/en
Publication of JP2011211812A publication Critical patent/JP2011211812A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Dc-Dc Converters (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a power unit which has a generator, a voltage conversion unit for stepping up or down an input voltage, and a power storage unit, and is free from a decrease in energy efficiency of the power unit even if an output of the power unit is low.SOLUTION: The power unit has: a first power supply path for supplying output from the generator to a load via the voltage conversion unit; a second power supply path for supplying an output from the energy storage unit to the load without going through the voltage conversion unit; a current detection unit for detecting a consumption current of the load; and a control unit for switching between the first power supply path and the second power supply path. The control unit switches to the first power supply path when the current detection unit detects a consumption current where the conversion efficiency is not less than an intermediate value between the minimum and maximum values, and switches to a second power supply path when the current detection unit detects a consumption current where desired conversion efficiency is lower than the intermediate value.

Description

本発明は、発電機と入力電圧を昇圧または降圧して出力する電圧変換部と蓄電部を有する電源装置に関し、特に電源装置のエネルギー効率の向上に関する。   The present invention relates to a power supply device having a generator, a voltage conversion unit that boosts or lowers an input voltage and outputs the same, and more particularly to improvement of energy efficiency of the power supply device.

携帯電話などの携帯機器の電源として、現在リチウムイオン二次電池などの二次電池が用いられているが、容量が少なく使用可能な時間が短かったり、充電しなければならなかったりといった煩わしさがある。そこで、充電池からの入力出力電圧がその許容範囲を超えて出力される場合は、負荷を駆動できなかったり、負荷を破損させてしまったりする恐れがある。そこで、燃料電池の出力を電圧変換部を介して負荷へ電力を供給する電源システムが知られている。(例えば、特許文献1参照)     Secondary batteries such as lithium-ion secondary batteries are currently used as power sources for mobile devices such as mobile phones, but there is an inconvenience that the capacity is short and the usable time is short or the battery must be charged. is there. Therefore, when the input / output voltage from the rechargeable battery is output exceeding the allowable range, the load may not be driven or the load may be damaged. Therefore, a power supply system that supplies power from a fuel cell output to a load via a voltage converter is known. (For example, see Patent Document 1)

また、携帯機器用の電源は小型であることが求められるため、電圧変換部は小型で高効率なスイッチングコンバータが用いられることが多い。発電機から供給される入力電圧を所定の出力電圧となるように昇圧または降圧するスイッチングコンバータである電圧変換部の概略図を図2に示す。   In addition, since the power source for portable devices is required to be small, a small and highly efficient switching converter is often used for the voltage converter. FIG. 2 shows a schematic diagram of a voltage converter that is a switching converter that steps up or steps down an input voltage supplied from a generator to a predetermined output voltage.

電圧変換部103において設定された出力電圧Voよりも発電機100からの入力電圧Viの方が高い場合には、制御回路208は、MOS−FETである第2切替スイッチ204を非導通状態とする。また、制御回路208は、MOS−FETである第1切替スイッチ201を所定の周期内で導通状態と非導通状態になるようにスイッチング動作をさせることによって入力電圧を降圧して出力する。   When the input voltage Vi from the generator 100 is higher than the output voltage Vo set in the voltage converter 103, the control circuit 208 sets the second changeover switch 204, which is a MOS-FET, in a non-conductive state. . Further, the control circuit 208 steps down and outputs the input voltage by causing the first changeover switch 201, which is a MOS-FET, to perform a switching operation so as to be in a conductive state and a non-conductive state within a predetermined period.

電圧変換部103において設定された出力電圧Voよりも発電機100からの入力電圧Viの方が低い場合には、制御回路208は、第1切替スイッチ201を導通状態とする。また、制御回路208は、第2切替スイッチ204を所定の周期内で導通状態と非導通状態になるようにスイッチング動作をさせることによって入力電圧を昇圧して出力する。   When the input voltage Vi from the generator 100 is lower than the output voltage Vo set in the voltage conversion unit 103, the control circuit 208 sets the first changeover switch 201 in a conductive state. Further, the control circuit 208 boosts and outputs the input voltage by causing the second changeover switch 204 to perform a switching operation so as to be in a conductive state and a non-conductive state within a predetermined period.

電圧変換部103が昇圧する際も降圧する際も、第1切替スイッチ201及び第2切替スイッチ204の導通状態の切り替え時に、第1切替スイッチ201及び第2切替スイッチ204及びダイオード202及びダイオード205においてオン/オフ状態の遷移に電力が消費されるスイッチング損失が生じる。そのため、電圧変換部の動作周波数を高くすると単位時間あたりのスイッチングの回数が増加するためスイッチング損失も増加する。また、周波数が固定で負荷の消費電流が小さい場合、すなわち電圧変換部の出力が小さいときは、電圧変換部の出力が大きい場合に比べて、電圧変換部の出力に対するスイッチング損失の割合が高くなるため、電圧変換部の変換効率が低くなるという問題が生じる。   Whether the voltage conversion unit 103 steps up or down, the first changeover switch 201, the second changeover switch 204, the diode 202, and the diode 205 are switched when the conduction state of the first changeover switch 201 and the second changeover switch 204 is changed. A switching loss in which power is consumed occurs in the transition of the on / off state. Therefore, if the operating frequency of the voltage converter is increased, the number of times of switching per unit time increases, so that switching loss also increases. In addition, when the frequency is fixed and the current consumption of the load is small, that is, when the output of the voltage converter is small, the ratio of the switching loss to the output of the voltage converter is higher than when the output of the voltage converter is large. Therefore, the problem that the conversion efficiency of a voltage conversion part becomes low arises.

そこで、電圧変換部の出力が小さいときはスイッチング周波数を低くし、1周期あたりのスイッチング損失の割合を低くすることで変換効率を高める方法が知られている。(例えば、特許文献2参照)   Therefore, a method is known in which when the output of the voltage converter is small, the switching frequency is lowered and the ratio of switching loss per cycle is lowered to increase the conversion efficiency. (For example, see Patent Document 2)

特開2005−123110号公報JP-A-2005-123110 特開平10−215569号公報JP-A-10-215569

しかしながら、従来の技術では、電圧変換部の設計時に、低いスイッチング動作時においても安定的に電力を供給することができるようにインダクタやコンデンサの係数を設定する必要があり、回路が大型化してしまうという問題がある。   However, in the conventional technology, when designing the voltage conversion unit, it is necessary to set the coefficients of the inductor and the capacitor so that the power can be stably supplied even in a low switching operation, which increases the size of the circuit. There is a problem.

そこで、本発明は上記点に鑑みてなされたものであり、発電機の入力電圧を昇圧または降圧して出力する電圧変換部と蓄電部とを有する電源装置において、負荷の消費電流が小さい場合でも電源装置のエネルギー効率の低下を排除した小型な電源装置を提供することを目的とする。   Therefore, the present invention has been made in view of the above points, and in a power supply device having a voltage conversion unit and a power storage unit that boosts or steps down an input voltage of a generator and outputs it, even when the current consumption of the load is small It is an object of the present invention to provide a small power supply device that eliminates a decrease in energy efficiency of the power supply device.

上記課題を解決するために、本発明の第1の特徴は、発電機からの出力を電圧変換部を介して負荷に供給する第1の電力供給経路と、蓄電部からの出力を電圧変換部を介さずに負荷に供給する第2の電力供給経路と、負荷の消費電流を検出する電流検出部と、第1の電力供給経路と第2の電力供給経路とを切り替える制御部とを有し、電圧変換部は、消費電流に応じて変換効率が変化するものであり、制御部は、電流検出部が変換効率が最低値と最高値の中間値以上となるときの消費電流を検出したときに第1の電力供給経路に切り替え、前記電流検出部が前記変換効率が前記最低値と前記最高値の前記中間値より低くなるとき消費電流を検出したときに第2の電力供給経路に切り替えることを要旨とする。   In order to solve the above problems, a first feature of the present invention is that a first power supply path for supplying an output from a generator to a load via a voltage converter, and an output from the power storage unit as a voltage converter. A second power supply path that supplies power to the load without going through the power supply, a current detection unit that detects current consumption of the load, and a control unit that switches between the first power supply path and the second power supply path. The voltage conversion unit changes the conversion efficiency according to the current consumption, and the control unit detects the current consumption when the current detection unit is equal to or higher than the intermediate value between the minimum value and the maximum value. Switching to the first power supply path, and switching to the second power supply path when the current detection unit detects current consumption when the conversion efficiency is lower than the intermediate value between the lowest value and the highest value. Is the gist.

かかる特徴によれば、負荷の消費電流、すなわち電圧変換部の出力電流に対する変換効率特性を事前に求めておき、その変換効率の最大値と最小値の中間の効率に相当する負荷電流以下の電流を電流検出部が検出したときは、負荷への電力供給経路を電圧変換部を介さない第2の電力供給経路にすることで、電圧変換部の変換効率が低い電力供給を回避することができる。なお、中間値とは変換効率の最低値と最高値の中間値付近も含み20〜80%の間で設定して良い。この電力供給路を切り替える際の変換効率は、電源装置を適用する負荷の種類や電源装置に用いた蓄電部の電源容量の大きさや発電機と蓄電部の出力配分に応じて、十分な変換効率を適宜設定することが望ましい。また、電力供給経路を切り換える際の変換効率の設定には、ヒステリシスを持たせておくことが望ましい。切り替え時のヒステリシスを持たせることで、負荷変動が微動だった場合等の電力供給経路の切り替えのばたつきを抑え、安定した電力を供給することができる。   According to such characteristics, the current consumption of the load, that is, the conversion efficiency characteristic with respect to the output current of the voltage converter is obtained in advance, and the current equal to or lower than the load current corresponding to the intermediate efficiency between the maximum value and the minimum value of the conversion efficiency When the current detection unit detects the power supply path, the power supply path to the load is the second power supply path that does not go through the voltage conversion section, so that power supply with low conversion efficiency of the voltage conversion section can be avoided. . The intermediate value may be set between 20% and 80% including the vicinity of the intermediate value between the lowest value and the highest value of the conversion efficiency. The conversion efficiency when switching the power supply path depends on the type of load to which the power supply is applied, the power capacity of the power storage unit used in the power supply, and the output distribution between the generator and the power storage unit. It is desirable to set as appropriate. In addition, it is desirable to provide hysteresis for setting the conversion efficiency when switching the power supply path. By providing the hysteresis at the time of switching, it is possible to suppress fluctuation of switching of the power supply path when the load fluctuation is fine movement and to supply stable power.

本発明の第2の特徴は、電圧変換部は、発電機の電圧を昇圧または降圧して負荷へ供給するものであり、電圧変換部は、発電機からの出力をエネルギーとしてチャージあるいは放出するインダクタと、インダクタにエネルギーをチャージするチャージ状態とエネルギーを負荷に放出する放出状態とに切り替えるスイッチング素子とを有し、スイッチング素子は、エネルギーの放出状態を切り替えるときにエネルギーの損失であるスイッチング損失が生じるものであり、変換効率は、スイッチング損失値と消費電流とに影響されるものであり、制御部は、スイッチング損失値を下回る消費電力に等価な消費電流を電流検出部が検出したときに第2の電力供給経路に切り替えることを要旨とする。   The second feature of the present invention is that the voltage conversion unit boosts or decreases the voltage of the generator and supplies it to the load. The voltage conversion unit is an inductor that charges or discharges the output from the generator as energy. And a switching element that switches between a charge state in which energy is charged to the inductor and a discharge state in which energy is released to the load, and the switching element generates a switching loss that is a loss of energy when the energy release state is switched. The conversion efficiency is influenced by the switching loss value and the current consumption, and the control unit detects the second current when the current detection unit detects a current consumption equivalent to the power consumption below the switching loss value. The main point is to switch to the power supply path.

かかる特徴によれば、予め電圧変換部のスイッチング損失を求めておき、電圧変換部の出力電圧の設定が固定であり既知の場合は、負荷の消費電流、すなわち電圧変換部の出力電流を電流検出部により検出し、負荷の消費電流よりもスイッチング損失の方が大きい場合は、電力供給経路を電圧変換部を介さない第2の電力供給経路とすることで、電圧変換部の変換効率が低い電力供給を回避することができる。また、電圧変換部の出力電圧が可変である様な場合には、電圧検出部などを用い、負荷に供給される電圧と電流を検出することで負荷の消費電力を求めてもよい。また、負荷への電力供給経路を切り換える際にはヒステリシスを持たせても良い。例えば、予め設定する電力供給経路を切り替える負荷の消費電流及び消費電力値に幅を持たせ、その幅の間の電流を検出した際に電力供給経路を切り替えても良い。また、予め求めていたスイッチング損失より負荷の消費電力が所定の電力分大きくなってから電力供給経路を第2の電力供給経路から第1の電力供給経路に切り替え、逆に予め求めていたスイッチング損失より負荷の消費電力が所定の電力分小さくなってから電力供給経路を第1の電力供給経路から第2の電力供給経路に切り替えても良い。ここで、所定の電力分小さい負荷の消費電力とは、変換効率が十分に良い負荷の消費電流値の最小の値である。電源装置を適用する負荷の種類や電源装置に用いた蓄電部の電源容量の大きさや発電機と蓄電部の出力配分に応じて、電力供給経路を切り換える際のヒステリシスの電力値を適宜設定することが望ましい。これによって負荷変動が微動だった場合等の電力供給経路の切り替えのばたつきを抑え、安定した電力を供給することができる。   According to this feature, the switching loss of the voltage converter is obtained in advance, and when the setting of the output voltage of the voltage converter is fixed and known, the current consumption of the load, that is, the output current of the voltage converter is detected. When the switching loss is larger than the current consumption of the load detected by the power unit, the power conversion path is a second power supply path that does not go through the voltage conversion section, so that the conversion efficiency of the voltage conversion section is low. Supply can be avoided. When the output voltage of the voltage conversion unit is variable, the power consumption of the load may be obtained by detecting the voltage and current supplied to the load using a voltage detection unit or the like. Further, hysteresis may be provided when switching the power supply path to the load. For example, a range may be given to the current consumption and the power consumption value of the load for switching the preset power supply path, and the power supply path may be switched when a current between the widths is detected. Also, after the power consumption of the load becomes larger than the switching loss obtained in advance by a predetermined amount, the power supply route is switched from the second power supply route to the first power supply route, and conversely the switching loss obtained in advance. The power supply path may be switched from the first power supply path to the second power supply path after the power consumption of the load is reduced by a predetermined amount. Here, the power consumption of the load that is smaller by the predetermined power is the minimum value of the current consumption value of the load having sufficiently good conversion efficiency. Set the power value of the hysteresis when switching the power supply path appropriately according to the type of load to which the power supply is applied, the power capacity of the power storage unit used in the power supply, and the output distribution between the generator and the power storage unit Is desirable. As a result, it is possible to suppress fluctuation in switching of the power supply path when the load fluctuation is fine, and to supply stable power.

本発明の第3の特徴は、電圧変換部は、消費電流の増加に比例して導通損失が増加するものであり、変換効率は、導通損失が増加することにより低下するものであり、電流検出部が、変換効率が最大値となるときの消費電流の70%以上の消費電流を検出したときに第1の電力供給経路と第2の電力供給経路とから負荷へ電力を供給することを要旨とする。   The third feature of the present invention is that the voltage conversion unit increases the conduction loss in proportion to the increase in current consumption, and the conversion efficiency decreases as the conduction loss increases. The power supply unit supplies power to the load from the first power supply path and the second power supply path when detecting a current consumption of 70% or more of the current consumption when the conversion efficiency reaches the maximum value. And

かかる特徴によれば、電圧変換部の変換効率は、負荷の消費電力が小さいとき、すなわち電圧変換部の出力の減少とともに電圧変換部からの出力にしめるスイッチング損失の割合が高いために変換効率が低くなり、逆に、電圧変換部の出力の増加と共に電圧変換部からの出力にしめるスイッチング損失の割合が小さくなるので変換効率が高くなる。しかし、電圧変換部の出力の増加と共に電圧変換部内に流れる電流が増加し、Pl=R・I2で表される伝導損失Plが増加し、電圧変換部の変換効率は電圧変換部からの出力の増加と共に低下する。Rは電圧変換部内の電気抵抗であり、Iは電圧変換部内の電流値である。そこで、電圧変換部の変換効率の最大値をとる出力電流値の少なくとも70%以上の出力電流検出した際に、第1の電力供給経路と第2の電力供給経路の両方から負荷へ電力を供給することで、伝導損失による電力損失を低減することができる。なお、負荷への電力供給経路を切り換える際にはヒステリシスを持たせても良い。例えば、電流検出部が検出した負荷の消費電流すなわち電圧変換部の出力電流が増加し電圧変換部の変換効率の最大値をとる出力電流値の100%のときに、負荷への電力供給を第1の電力供給経路と第2の電力供給経路の両方から行い、電圧変換部の出力電流が減少し電圧変換部の変換効率の最大値をとる出力電流値の80%の電流値以下となったときに第2の電力供給経路を遮断し第1の電力供給経路に切り替えて良い。ヒステリシスを持たせて負荷への電力供給路を切り替える電流値は、電圧変換部の変換効率の最大値をとる出力電流値の70%以上の電流値で設定して良い。電源装置を適用する負荷の種類や電源装置に用いた蓄電部の電源容量の大きさや発電機と蓄電部の出力配分に応じて、電力供給経路を切り換える際のヒステリシスの電力値を適宜設定することが望ましい。これにより、負荷変動が微動だった場合等の電力供給経路の切り替えのばたつきを抑え、安定した電力を供給することができる。 According to this feature, the conversion efficiency of the voltage conversion unit is low when the power consumption of the load is small, that is, the ratio of the switching loss that is converted to the output from the voltage conversion unit with a decrease in the output of the voltage conversion unit is high. On the contrary, as the output of the voltage converter increases, the ratio of the switching loss that is converted to the output from the voltage converter decreases, so that the conversion efficiency increases. However, as the output of the voltage converter increases, the current flowing in the voltage converter increases, the conduction loss Pl expressed by Pl = R · I 2 increases, and the conversion efficiency of the voltage converter is the output from the voltage converter. Decreases with increasing. R is an electrical resistance in the voltage converter, and I is a current value in the voltage converter. Therefore, power is supplied to the load from both the first power supply path and the second power supply path when an output current of at least 70% of the output current value that takes the maximum value of the conversion efficiency of the voltage converter is detected. By doing so, power loss due to conduction loss can be reduced. Note that hysteresis may be provided when switching the power supply path to the load. For example, when the current consumption of the load detected by the current detector, that is, the output current of the voltage converter increases to 100% of the output current value that takes the maximum value of the conversion efficiency of the voltage converter, the power supply to the load is Performed from both of the first power supply path and the second power supply path, the output current of the voltage converter decreased, and the current value was 80% or less of the output current value at which the maximum value of the conversion efficiency of the voltage converter was obtained. Sometimes the second power supply path may be cut off and switched to the first power supply path. The current value for switching the power supply path to the load with hysteresis may be set to a current value of 70% or more of the output current value that takes the maximum value of the conversion efficiency of the voltage conversion unit. Set the power value of the hysteresis when switching the power supply path appropriately according to the type of load to which the power supply is applied, the power capacity of the power storage unit used in the power supply, and the output distribution between the generator and the power storage unit Is desirable. As a result, it is possible to suppress fluctuation of switching of the power supply path when the load fluctuation is fine, and to supply stable power.

本発明の第4の特徴は、発電機は、燃料電池であることを要旨とする。
かかる特徴によれば、安定した電力供給を行うことができる。
The gist of the fourth feature of the present invention is that the generator is a fuel cell.
According to this feature, stable power supply can be performed.

本発明の第5の特徴は、制御部は、発電機と蓄電部のうち電力残容量が多いいずれか一方を検出し、発電機の電力残容量が多い場合は第1の電力供給経路に切り替え、蓄電部の電力残容量が多い場合は第2の電力供給経路に切り替えることを要旨とする。   The fifth feature of the present invention is that the control unit detects one of the generator and the storage unit having a large remaining power capacity, and switches to the first power supply path when the remaining power capacity of the generator is large. The gist is to switch to the second power supply path when the remaining power of the power storage unit is large.

かかる特徴によれば、確実にかつ安定的に負荷へ電力を供給することができる。なお、発電機側の燃料等の残量が検出できなかったり、不確定であるなどの場合や、発電機と蓄電部のそれぞれの残量が共に100%であったり、残量が同等の場合は、優先経路を第2の電力供給経路として良い。   According to this feature, it is possible to reliably and stably supply power to the load. In addition, when the remaining amount of fuel, etc. on the generator side cannot be detected or is uncertain, the remaining amount of each of the generator and the storage unit is 100%, or the remaining amount is equivalent May use the priority route as the second power supply route.

本発明によれば、発電機と入力電圧を昇圧または降圧して出力する電圧変換部と蓄電部とを有する電源装置において、負荷の消費電流が小さい場合でも電源装置のエネルギー効率の低下を排除した小型な電源装置を提供することができる。   According to the present invention, in the power supply device having the generator and the voltage conversion unit that outputs the voltage by stepping up or down the input voltage and the power storage unit, the reduction in the energy efficiency of the power supply device is eliminated even when the current consumption of the load is small. A small power supply device can be provided.

本発明に係る電圧変換装置の概略構成図である。It is a schematic block diagram of the voltage converter which concerns on this invention. 電源装置に用いられる電圧変換部の概略構成図である。It is a schematic block diagram of the voltage converter used for a power supply device. 電圧変換部の電流変化と電圧変化における変換効率変化の概念図である。It is a conceptual diagram of the conversion efficiency change in the current change and voltage change of a voltage converter. 第1の電力供給経路と第2の電力供給経路の切替ヒステリシスの概念図である。It is a conceptual diagram of the switching hysteresis of a 1st electric power supply path | route and a 2nd electric power supply path | route. 本発明に係る電圧変換装置の変更例の概略構成図である。It is a schematic block diagram of the example of a change of the voltage converter which concerns on this invention.

次に、図面に示す実施の形態に基づいて、本発明を詳細に説明する。
(第1実施形態)
図1は、本発明の第1の実施の形態における電源装置の例を示す。
Next, the present invention will be described in detail based on the embodiments shown in the drawings.
(First embodiment)
FIG. 1 shows an example of a power supply device according to the first embodiment of the present invention.

図1は、電力を発生する発電機100、発電機100から入力された電圧を所定の定電圧に変換する電圧変換部103、電圧変換部103から電力を供給される負荷112、充放電が可能な蓄電部106、電圧変換部103の出力電圧を検出する電圧検出部104、発電機100から電圧変換部103を介して負荷112へ電力を供給する経路を第1の電力供給経路とし、蓄電部106から負荷112へ電力を供給する経路を第2の電力供給経路とし、第1の電力供給経路の電気的導通状態を切り替える第1の切替部102、第2の電力供給経路の電気的導通状態を切り替える第2の切替部109、負荷112へ供給される電流を検出する電流検出部105、発電機100の電力を用いて蓄電部106の充電制御を行う充電制御部111、電圧検出部104及び電流検出部105の検出値を基に、第1の切替部102及び第2の切替部109及び充電制御部111の制御を行う制御部110から構成される電源装置10を示す。   FIG. 1 shows a generator 100 that generates electric power, a voltage converter 103 that converts a voltage input from the generator 100 into a predetermined constant voltage, a load 112 that is supplied with electric power from the voltage converter 103, and charging and discharging are possible. A power storage unit 106, a voltage detection unit 104 that detects an output voltage of the voltage conversion unit 103, and a path that supplies power from the generator 100 to the load 112 via the voltage conversion unit 103 is defined as a first power supply path. A path for supplying power from 106 to the load 112 is a second power supply path, and the first switching unit 102 switches the electrical continuity state of the first power supply path, and the electrical continuity state of the second power supply path A second switching unit 109 for switching the current, a current detection unit 105 for detecting the current supplied to the load 112, a charge control unit 111 for controlling the charging of the power storage unit 106 using the power of the generator 100, Based on the detection value of the detecting section 104 and the current detecting section 105, indicating the configured power supply device 10 from the control unit 110 for controlling the first switching unit 102 and the second switching unit 109 and charge control unit 111.

(A)負荷変動が小さい場合の電圧変換部の変換効率と電流供給経路の切替
図1〜4を用いて、負荷変動が小さい場合の電圧変換部の変換効率と電流供給経路の切替の動作について具体的に説明する。
(A) Switching efficiency and switching of current supply path of voltage converter when load fluctuation is small Using FIGS. 1 to 4, the switching efficiency of voltage converter and switching operation of current supply path when load fluctuation is small This will be specifically described.

始めに、負荷112の消費電流、すなわち電圧変換部103の出力電流に対する変換効率特性を求めておく。その変換効率の最大値と最小値の中間の効率に相当する負荷電流以下の電流を電流検出部105が検出したときは、制御部110は第1の切替部102を遮断し、第2の切替部109を導通状態とする。これにより、負荷112への電力供給経路を電圧変換部103を介さず、蓄電部106から電力の供給を行う、第2の電力供給経路にする。   First, the conversion efficiency characteristic with respect to the consumption current of the load 112, that is, the output current of the voltage conversion unit 103 is obtained. When the current detection unit 105 detects a current equal to or lower than the load current corresponding to the intermediate efficiency between the maximum value and the minimum conversion efficiency, the control unit 110 shuts off the first switching unit 102 and performs the second switching. The unit 109 is turned on. As a result, the power supply path to the load 112 is changed to the second power supply path in which power is supplied from the power storage unit 106 without passing through the voltage conversion unit 103.

また、その変換効率の最大値と最小値の中間の効率に相当する負荷電流よりも大きい電流を電流検出部105が検出したときは、制御部110は第2の切替部109を遮断し、第1の切替部102を導通状態とする。これにより、負荷112への電力供給経路を電圧変換部103を介す、発電機100から電力の供給を行う、第1の電力供給経路にする。   In addition, when the current detection unit 105 detects a current larger than the load current corresponding to the intermediate efficiency between the maximum value and the minimum value of the conversion efficiency, the control unit 110 blocks the second switching unit 109, and One switching unit 102 is turned on. Thus, the power supply path to the load 112 is changed to the first power supply path for supplying power from the generator 100 via the voltage conversion unit 103.

図4には、第1の電力供給経路と第2の電力供給経路の切替ヒステリシスを示している。例えば、電流検出部105が電流の増加を検出して、第2の電力供給経路から第1の供給経路に切り替えるタイミングは、変換効率が50%に設定するとする。次に、第1の電力供給経路から第2の電力供給経路へ切り換える際の変換効率を40%に設定する。この、2つの切替方法の切替タイミングの違いは、電力の供給源である発電機100と蓄電部106との余分な切替のばたつきを軽減することを目的としている。このとき、変換効率40%とは、十分な変換効率であるとする。もしも、2つの切替方法の切替タイミングである変換効率の設定を同じにした場合、電流検出部105が検出した電変換部105の出力が、切替タイミングである変換効率に相当する電流付近で変動したときに、制御部110は第1の電力供給経と第2の電力供給経路を小刻みに切り替えることになる。このときに、発電機100と蓄電部106の電圧値が異なっていると、負荷112に対してダメージを与える恐れがある。この点を回避するために、2つの切替方法のタイミングを異ならせ、余分な電力供給経路の切替を低減させる。   FIG. 4 shows the switching hysteresis between the first power supply path and the second power supply path. For example, when the current detection unit 105 detects an increase in current and switches from the second power supply path to the first supply path, the conversion efficiency is set to 50%. Next, the conversion efficiency when switching from the first power supply path to the second power supply path is set to 40%. The difference between the switching timings of the two switching methods is intended to reduce the flutter of excessive switching between the generator 100 that is the power supply source and the power storage unit 106. At this time, the conversion efficiency of 40% is assumed to be sufficient conversion efficiency. If the conversion efficiency setting that is the switching timing of the two switching methods is the same, the output of the electric conversion unit 105 detected by the current detection unit 105 fluctuates in the vicinity of the current corresponding to the conversion efficiency that is the switching timing. In some cases, the control unit 110 switches the first power supply path and the second power supply path in small increments. At this time, if the voltage values of the generator 100 and the power storage unit 106 are different, the load 112 may be damaged. In order to avoid this point, the timings of the two switching methods are made different to reduce the switching of extra power supply paths.

なお、中間値とは変換効率の最低値と最高値の中間値付近も含み20〜80%の間で設定して良い。この電力供給路を切り替える際の変換効率は、電源装置を適用する負荷の種類や電源装置に用いた蓄電部の電源容量の大きさや発電機と蓄電部の出力配分に応じて、十分な変換効率を得られる範囲で適宜設定することが望ましい。   The intermediate value may be set between 20% and 80% including the vicinity of the intermediate value between the lowest value and the highest value of the conversion efficiency. The conversion efficiency when switching the power supply path depends on the type of load to which the power supply is applied, the power capacity of the power storage unit used in the power supply, and the output distribution between the generator and the power storage unit. It is desirable to set as appropriate within the range that can be obtained.

また、切替タイミングである変換効率のヒステリシスも、十分な変換効率が得られる範囲で適宜設定することが望ましい。
また、切替タイミングは発電機100と蓄電部106との電圧値が近接していることが望ましい。
Further, it is desirable that the hysteresis of the conversion efficiency as the switching timing is appropriately set within a range where sufficient conversion efficiency can be obtained.
In addition, it is desirable that the voltage values of the generator 100 and the power storage unit 106 are close to each other at the switching timing.

以下に、図1、2を用いて、電圧変換部の変換効率と電流供給経路の切替の一例を説明する。   Hereinafter, an example of the conversion efficiency of the voltage converter and switching of the current supply path will be described with reference to FIGS.

平均消費電力が24W(12V・2A)でありパルス負荷が42W(約3.5msec)の負荷112に対して、発電機100としてPEFCタイプの燃料電池を用意した。燃料電池は12直列の定格出力27W(8.4V・3.2A)である。燃料タンクの容量は電力量換算で48Whである。なお、PEFCのほかにメタノール−酸素を燃料とするDMFC(ダイレクトメタノール形燃料電池)の他に、SOFC(固体酸化物形燃料電池)、MCFC(溶融炭酸塩形燃料電池)、PAFC(リン酸形燃料電池)等を用いることができる。また、燃料電池の他に太陽電池等の物理電池等の発電機100を使用することができる。また、インバータを介すことで交流発電機100を発電機100として用いることも可能である。   A PEFC type fuel cell was prepared as the generator 100 for the load 112 having an average power consumption of 24 W (12 V · 2 A) and a pulse load of 42 W (about 3.5 msec). The fuel cell has a 12-series rated output of 27 W (8.4 V · 3.2 A). The capacity of the fuel tank is 48 Wh in terms of electric energy. In addition to PEFC, DMFC (direct methanol fuel cell) using methanol-oxygen as fuel, SOFC (solid oxide fuel cell), MCFC (molten carbonate fuel cell), PAFC (phosphoric acid type) A fuel cell) or the like. In addition to the fuel cell, a generator 100 such as a physical battery such as a solar battery can be used. In addition, the AC generator 100 can be used as the generator 100 through an inverter.

蓄電部106として、容量が300mAh、公称電圧3.7Vのリチウムイオン二次電池を3直列接続したものを用意した。この蓄電部106の容量は、満充電状態の電力量として約3.7Whである。蓄電部106は、鉛蓄電池やニッケル水素二次電池やリチウムイオン二次電池等に代表される繰り返し充放電が可能な二次電池や、コンデンサやキャパシタや電気二重層コンデンサ等の電圧の印加によって電荷・静電エネルギーを蓄え電気容量を得る蓄電部を用いることが可能である。負荷112の動作電圧や最低動作電圧や負荷特性等によって、適切な二次電池あるいは蓄電部の種類を選択し、必要に応じて二次電池あるいは蓄電部を直列接続し負荷112へ供給する電圧を調整することができる。   A power storage unit 106 was prepared by connecting three lithium ion secondary batteries having a capacity of 300 mAh and a nominal voltage of 3.7 V in series. The capacity of power storage unit 106 is about 3.7 Wh as the amount of power in a fully charged state. The power storage unit 106 is charged by application of a voltage such as a rechargeable battery such as a lead storage battery, a nickel metal hydride secondary battery, or a lithium ion secondary battery, or a capacitor, a capacitor, or an electric double layer capacitor. A power storage unit that stores electrostatic energy and obtains electric capacity can be used. Depending on the operating voltage, minimum operating voltage, load characteristics, etc. of the load 112, an appropriate type of secondary battery or power storage unit is selected, and if necessary, the voltage supplied to the load 112 by connecting the secondary battery or power storage unit in series is selected. Can be adjusted.

電圧変換部103として市販されている昇圧タイプのスイッチングレギュレータICを用いて昇圧回路を作製した。
電力供給経路の切り替えは、制御部110によって制御し、本実施の形態では制御部110に8ビットマイコンを用いた。
A step-up circuit was manufactured using a step-up type switching regulator IC commercially available as the voltage conversion unit 103.
The switching of the power supply path is controlled by the control unit 110, and an 8-bit microcomputer is used for the control unit 110 in the present embodiment.

制御部110によって制御される第1の切替部102及び第2の切替部109は、P型のMOS−FETを用い、MOS−FETのソース端子を負荷112側に来るように接続し、制御部110との接続は図示しないがドライブ回路を介してMOS−FETのゲート端子に接続した。なお、切替部は、MOS−FETのボディーダイオードを介してそれぞれの切替部を意図せず電流が通らないようにするために、2個のMOS−FETのソース・ゲート端子を共通にした直列接続で構成しても良い。   The first switching unit 102 and the second switching unit 109 controlled by the control unit 110 use a P-type MOS-FET and connect the source terminal of the MOS-FET so as to come to the load 112 side. The connection with 110 is connected to the gate terminal of the MOS-FET through a drive circuit (not shown). Note that the switching unit is connected in series with the source and gate terminals of the two MOS-FETs in common so that current does not pass through each switching unit via the body diode of the MOS-FET. You may comprise.

図1〜4を用いて、本発明の第1の実施の形態における電源装置の動作の一例を説明する。   An example of the operation of the power supply device according to the first embodiment of the present invention will be described with reference to FIGS.

負荷112の消費電流の変動が小さく、負荷112が動作時の電圧変換部103の変換効率が60〜90%の間で変動していた。また、電圧変換部103の変換効率の最大値は負荷112の消費電流が約2Aのときに効率が約90%であった。負荷112の消費電流の変動が小さく、負荷112が動作時の電圧変換部103の変換効率が60〜90%の間で変動していたので、負荷112への電力供給を第2の電力供給経路を用い、容量の少ない蓄電部106の出力に頼りすぎると蓄電部106の容量がすぐに無くなってしまうため、第2の電力供給経路から第1の電力供給経路へ切り替えるときの効率を50%とした。このときの負荷112の消費電流は約20mAであった。   The variation in the current consumption of the load 112 was small, and the conversion efficiency of the voltage conversion unit 103 when the load 112 was operating varied between 60% and 90%. The maximum value of the conversion efficiency of the voltage conversion unit 103 was about 90% when the current consumption of the load 112 was about 2A. Since the fluctuation of the consumption current of the load 112 is small and the conversion efficiency of the voltage conversion unit 103 during the operation of the load 112 fluctuates between 60% and 90%, the power supply to the load 112 is changed to the second power supply path. If the power of the power storage unit 106 with a small capacity is relied too much, the capacity of the power storage unit 106 will be lost immediately. Therefore, the efficiency when switching from the second power supply path to the first power supply path is 50%. did. At this time, the current consumption of the load 112 was about 20 mA.

また、第1の電力供給経路から第2の電力供給経路へ切り換える際の変換効率は、40%とした。   The conversion efficiency when switching from the first power supply path to the second power supply path was 40%.

図3は、電圧変換部の電流変化と電圧変化における変換効率変化を示している。電圧変換部103の変換効率は、出力電流が2Aのときに変換効率90%を境に出力電流が増加すると伝導損失が増加するために変換効率が低下する。そこで、電流検出部105による電流検出値が2.2Aを超えたとき、すなわち電流検出部105が検出した負荷112の消費電流すなわち電圧変換部103の出力電流が電圧変換部103の変換効率の最大値のときの電流値2Aの110%のときに負荷112への電力供給を第1の電力供給経路と第2の電力供給経路となるように切替部の制御を行う。反対に、電流検出部105による電流検出値が2.0A以下となったとき、すなわち電流検出部105が検出した負荷112の消費電流すなわち電圧変換部103の出力電流が電圧変換部103の変換効率の最大値のときの電流値2Aの100%のときに負荷112への電力供給を第1の電力供給経路に切り替える。   FIG. 3 shows a change in current in the voltage converter and a change in conversion efficiency due to a change in voltage. Regarding the conversion efficiency of the voltage conversion unit 103, when the output current is 2A, if the output current increases with a conversion efficiency of 90% as a boundary, the conduction loss increases, so the conversion efficiency decreases. Therefore, when the current detection value by the current detection unit 105 exceeds 2.2 A, that is, the consumption current of the load 112 detected by the current detection unit 105, that is, the output current of the voltage conversion unit 103 is the maximum conversion efficiency of the voltage conversion unit 103. When the value is 110% of the current value 2A, the switching unit is controlled so that the power supply to the load 112 becomes the first power supply path and the second power supply path. Conversely, when the current detection value by the current detection unit 105 is 2.0 A or less, that is, the current consumption of the load 112 detected by the current detection unit 105, that is, the output current of the voltage conversion unit 103 is the conversion efficiency of the voltage conversion unit 103. When the current value is 2% at the maximum value of 100%, the power supply to the load 112 is switched to the first power supply path.

パルス状の負荷等があった場合に出力の切り替えによるばたつきを抑えるために、一時的な負荷変動に対しては電力供給経路の切り替えを行わないようにするために、変換効率や負荷電流の電力供給経路の切り替えのしきい値を超えて所定の時間しきい値を超えた状態が認められてから電力供給経路の切り替えを行うようにする。本実施の形態では、パルス負荷の発生時間に対して十分な余裕を持たせるために350msec以上変換効率や負荷電流の電力供給経路の切り替えのしきい値を超えた状態を維持しなければ切り替えを行わないようにした。変換効率や負荷電流の電力供給経路の切り替えのしきい値を超えてから電力供給経路の切り替えを行うまでの保持時間は、パルス負荷のパルス幅やパルス負荷の大きさ、パルス負荷の発生頻度なに応じて適宜設定を行うことが望ましい。
上述の通りの制御を行うようにプログラムを作成しそのプログラムをマイコンに書き込んだ。
In order to prevent fluctuations due to output switching when there is a pulse-like load, etc., in order not to switch the power supply path for temporary load fluctuations, conversion efficiency and load current power The power supply path is switched after a state that exceeds the threshold for switching the supply path and exceeds a predetermined time threshold is recognized. In this embodiment, in order to have a sufficient margin for the generation time of the pulse load, the switching is performed unless the state exceeding the conversion efficiency of 350 msec or more and the threshold value for switching the power supply path of the load current is maintained. I didn't do it. The holding time from when the conversion efficiency or load current power supply path switching threshold is exceeded to when the power supply path is switched depends on the pulse width of the pulse load, the size of the pulse load, and the frequency of occurrence of the pulse load. It is desirable to set appropriately according to the situation.
A program was created to perform the control as described above, and the program was written to the microcomputer.

(B)スイッチング損失と電流供給経路の切替
図1を用いて、スイッチング損失と電流供給経路の切替の動作について具体的に説明する。
(B) Switching loss and switching of current supply path The switching loss and switching operation of the current supply path will be specifically described with reference to FIG.

始めに、電圧変換部103のスイッチング損失を求めておき、負荷112の消費電流、すなわち電圧変換部103の出力電流を電流検出部105により検出すると同時に、負荷112の消費電圧、すなわち電圧変換部の出力電圧を電圧検出部104により検出し、消費電流と消費電圧とから負荷112の消費電力を求め、負荷112の消費電力よりスイッチング損失の方が大きい場合は、電力供給経路を電圧変換部103を介さない第2の電力供給経路とすることで、電圧変換部103の変換効率が低い電力供給を回避することができる。また、負荷112の消費電流、または消費電力よりスイッチング損失電流またはスイッチング損失の方が小さい場合は、制御部110は第2の切替部109を遮断し、第1の切替部102を導通状態とする。これにより、負荷112への電力供給経路を電圧変換部103を介す、発電機100から電力の供給を行う、第1の電力供給経路にする。   First, the switching loss of the voltage conversion unit 103 is obtained, and the current consumption of the load 112, that is, the output current of the voltage conversion unit 103 is detected by the current detection unit 105. The output voltage is detected by the voltage detection unit 104, and the power consumption of the load 112 is obtained from the current consumption and the voltage consumption. When the switching loss is larger than the power consumption of the load 112, the voltage conversion unit 103 is connected to the power supply path. By setting the second power supply path not to be interposed, power supply with low conversion efficiency of the voltage conversion unit 103 can be avoided. In addition, when the switching loss current or the switching loss is smaller than the consumption current or the power consumption of the load 112, the control unit 110 blocks the second switching unit 109 and puts the first switching unit 102 into a conductive state. . Thus, the power supply path to the load 112 is changed to the first power supply path for supplying power from the generator 100 via the voltage conversion unit 103.

また、負荷への電力供給経路を切り換える際にはヒステリシスを持たせても良い。例えば、予め求めていたスイッチング損失より負荷の消費電力が所定の電力分大きくなってから電力供給経路を第2の電力供給経路から第1の電力供給経路に切り替え、逆に予め求めていたスイッチング損失より負荷の消費電力が所定の電力分小さくなってから電力供給経路を第1の電力供給経路から第2の電力供給経路に切り替えても良い。ここで、所定の電力分小さい負荷の消費電力とは、変換効率が十分に良い負荷の消費電流値の最小の値である。電源装置を適用する負荷の種類や電源装置に用いた蓄電部の電源容量の大きさや発電機と蓄電部の出力配分に応じて、電力供給経路を切り換える際のヒステリシスの電力値を適宜設定することが望ましい。これによって負荷変動が微動だった場合等の電力供給経路の切り替えのばたつきを抑え、安定した電力を供給することができる。   Further, hysteresis may be provided when switching the power supply path to the load. For example, the power supply path is switched from the second power supply path to the first power supply path after the power consumption of the load becomes larger than the previously determined switching loss by a predetermined amount of power. The power supply path may be switched from the first power supply path to the second power supply path after the power consumption of the load is reduced by a predetermined amount. Here, the power consumption of the load that is smaller by the predetermined power is the minimum value of the current consumption value of the load having sufficiently good conversion efficiency. Set the power value of the hysteresis when switching the power supply path appropriately according to the type of load to which the power supply is applied, the power capacity of the power storage unit used in the power supply, and the output distribution between the generator and the power storage unit Is desirable. As a result, it is possible to suppress fluctuation in switching of the power supply path when the load fluctuation is fine, and to supply stable power.

電圧変換部103のスイッチング損失は、MOS−FETなどのスイッチング素子のターンオン/オフ時の状態遷移中の電力損失である。   The switching loss of the voltage conversion unit 103 is a power loss during a state transition when a switching element such as a MOS-FET is turned on / off.

ターンオン時は、Pr=(Vin×I×Fsw×Trise)/2の損失、ターンオフ時は、Pf=(Vin×I×Fsw×Tfall)/2の損失が生じ、スイッチング損失は、PrとPfを加算したものである。ここで、Vinは入力電圧、Iはスイッチング素子に流れる電流、Fswはスイッチング周波数、Triseはターンオン時のスイッチング遷移時間、Tfallはターンオフ時のスイッチング遷移時間である。TriseやTfallはスイッチング素子のデータシートに記載の値を用いても良いし、オシロスコープなどを用い実測値を用いても良い。   At the time of turn-on, a loss of Pr = (Vin × I × Fsw × Trise) / 2 occurs, and at the time of turn-off, a loss of Pf = (Vin × I × Fsw × Tfall) / 2 occurs. It is an addition. Here, Vin is an input voltage, I is a current flowing through the switching element, Fsw is a switching frequency, Trise is a switching transition time at turn-on, and Tfall is a switching transition time at turn-off. For Trise and Tfall, values described in the data sheet of the switching element may be used, or measured values using an oscilloscope or the like may be used.

また、事前にスイッチング損失を求めておいても良いし、それぞれのパラメータを電圧変換部103の動作時に都度検出しスイッチング損失を求めても良い。   Further, the switching loss may be obtained in advance, or each parameter may be detected every time the voltage conversion unit 103 is operated to obtain the switching loss.

以下に、図1、2を用いて、スイッチング損失と電流供給経路の切替の一例を説明する。なお、負荷の平均消費電力、パルス負荷が42W、発電機100、蓄電部106の具体的な構成は(A)の記載と同じである。   Hereinafter, an example of switching of the switching loss and the current supply path will be described with reference to FIGS. Note that the average power consumption of the load, the pulse load is 42 W, and the specific configurations of the generator 100 and the power storage unit 106 are the same as described in (A).

本実施の形態では、負荷の変動はあるが、平均のVinおよびIを設定し、予めスイッチング損失を求めた。なお、Vinは8.4V、Iは3.2A、スイッチング周波数は500kHzであり、Triseはデータシートより15nsec、Tfallはデータシートより40nsecだったので、スイッチング損失値を制御部110に記憶させた。このスイッチング損失値と電圧検出部104の検出値および電流検出部105の検出値より求められる負荷112へ供給する電力よりスイッチング損失の方が大きい場合は、制御部110が負荷112へ供給する電力経路を第2の電力供給経路とするよう第1の切替部102及び第2の切替部109の導通状態を制御す様にした。   In this embodiment, although there are load fluctuations, average Vin and I are set and the switching loss is obtained in advance. Since Vin was 8.4 V, I was 3.2 A, the switching frequency was 500 kHz, Trise was 15 nsec from the data sheet, and Tfall was 40 nsec from the data sheet, the switching loss value was stored in the control unit 110. When the switching loss is larger than the power supplied to the load 112 obtained from the switching loss value, the detection value of the voltage detection unit 104, and the detection value of the current detection unit 105, the power path that the control unit 110 supplies to the load 112 Is set to be the second power supply path, the conduction state of the first switching unit 102 and the second switching unit 109 is controlled.

制御部110は、負荷112への供給電力がスイッチング損失の150%以下となったとき、第1の電力供給経路から第2の電力供給経路に切り替え、反対に負荷112への供給電力がスイッチング損失の70%以上となったとき、第2の電力供給経路から第1の電力供給経路に切り替えるように、プログラムを作成し、制御部110に書き込んだ。   When the power supplied to the load 112 becomes 150% or less of the switching loss, the control unit 110 switches from the first power supply path to the second power supply path, and conversely, the power supplied to the load 112 is switched to the switching loss. A program was created and written to the control unit 110 so that the second power supply path was switched to the first power supply path when 70% or higher.

(C)電力供給経路の優先経路の決定
図1を用いて、電力供給経路の優先経路の設定の動作について具体的に説明する。
(C) Determination of priority route of power supply route The operation of setting the priority route of the power supply route will be specifically described with reference to FIG.

制御部110は、発電機100の残容量と蓄電部106の充電状態とを比較して、エネルギーの残量の多い方、或いはエネルギーの残量率の高いいずれか一方と接続している、第1の電力供給経路または第2の電力供給経路のいずれか一方を、電源装置の起動初期において負荷へ電力を供給する優先経路として決定する。なお、電源装置10の起動初期とは、負荷が電力を消費しだしたとき、あるいは発電機が発電しだしたとき、いずれの場合も含む。   The control unit 110 compares the remaining capacity of the generator 100 and the state of charge of the power storage unit 106, and is connected to the one with the higher remaining amount of energy or the higher remaining rate of energy. One of the first power supply path and the second power supply path is determined as a priority path for supplying power to the load at the initial startup of the power supply apparatus. It should be noted that the initial startup of the power supply device 10 includes both cases when the load starts to consume power or when the generator starts generating power.

以下に、図1を用いて、電力供給経路の優先経路の決定の一例を説明する。なお、負荷の平均消費電力、パルス負荷が42W、発電機100、蓄電部106の具体的な構成は(A)の記載と同じである。   Hereinafter, an example of determining the priority route of the power supply route will be described with reference to FIG. Note that the average power consumption of the load, the pulse load is 42 W, and the specific configurations of the generator 100 and the power storage unit 106 are the same as described in (A).

本実施例では、発電機100として燃料電池を用いた。燃料電池には燃料を燃料タンクの約半分しか用意しなかったため、約24Wh分の容量で、残量率は50%である。蓄電部106はほぼ満充電状態とし、3.7Whの容量があり、残量率(SOC:state of charge)はほぼ100%であった。本実施例では、エネルギーの残量率の高い方を起動時など最初に負荷112へ電力供給を行う優先経路として設定したため、ここでは第2の電力供給経路が優先経路となった。   In this embodiment, a fuel cell is used as the generator 100. Since only about half of the fuel tank is prepared for the fuel cell, the capacity is about 24 Wh and the remaining rate is 50%. The power storage unit 106 was almost fully charged, had a capacity of 3.7 Wh, and the remaining rate (SOC: state of charge) was almost 100%. In the present embodiment, the higher energy remaining rate is set as the priority route for first supplying power to the load 112 such as at the time of start-up, so the second power supply route is the priority route here.

なお、燃料電池の燃料の残容量や蓄電部106の充電状態が不明確な場合や、燃料の残容量と充電状態が同等であると制御部110が判断した場合は、電源装置10の起動時に制御部110は、負荷112へ電力供給を最初に行う優先経路を第2の電力供給路としてよい。電源装置10の起動初期に第2の電力供給路から負荷112へ電力が供給された後に、電力供給路の切り替えを行う変換効率のしきい値やスイッチング損失のしきい値を超えた場合は、制御部110は上述の通りの切り替え制御を行う。   When the remaining capacity of the fuel in the fuel cell and the state of charge of the power storage unit 106 are unclear, or when the control unit 110 determines that the remaining capacity of the fuel and the state of charge are equivalent, The control unit 110 may set a priority path for first supplying power to the load 112 as the second power supply path. After power is supplied from the second power supply path to the load 112 at the start of the power supply device 10, if the threshold value of the conversion efficiency for switching the power supply path or the threshold value of switching loss is exceeded, The control unit 110 performs switching control as described above.

また、制御部110が燃料電池に燃料が継ぎ足され燃料タンクが満杯になったことを検知したり、燃料が満杯である新しい燃料カートリッジに交換されたことを検知して、電源装置10が起動されるときは、負荷112へ電力を供給する優先経路を第1の優先経路としてよい。   In addition, the control unit 110 detects that the fuel has been added to the fuel cell and the fuel tank has become full, or has detected that the fuel has been replaced with a new fuel cartridge, and the power supply device 10 is activated. The priority route for supplying power to the load 112 may be the first priority route.

なお、図5に示したように、第1の電力供給路を介して負荷112へ電力を供給している際に燃料電池の出力が定格出力に満たない場合には、制御部110は充電制御部111に燃料電池の出力が定格を超えない範囲で、燃料電池の出力を充電制御部111を介して蓄電部106の充電を行う制御を行っても良い。だたし、電力供給路の切り替えを行う変換効率のしきい値やスイッチング損失のしきい値を超え、電力供給経路の切り替えを行うような場合には、制御部110は充電制御部111の動作を停止させ、蓄電部106の充電を中止させる。   In addition, as shown in FIG. 5, when the output of the fuel cell is less than the rated output when power is supplied to the load 112 via the first power supply path, the control unit 110 performs charge control. As long as the output of the fuel cell does not exceed the rating, the unit 111 may be controlled to charge the power storage unit 106 with the output of the fuel cell via the charge control unit 111. However, when the conversion efficiency threshold for switching the power supply path or the threshold for switching loss is exceeded and the power supply path is switched, the control unit 110 operates the charge control unit 111. Is stopped and charging of the power storage unit 106 is stopped.

このようにして、発電機100と入力電圧を昇圧または降圧して出力する電圧変換部103103と蓄電部106を有する電源装置10において、電源装置10の出力が低い場合でも電源装置のエネルギー効率の低下を排除し、安定的に電力が得られる電源装置10を提供することが可能となる。   In this way, in the power supply device 10 having the generator 100 and the voltage conversion unit 103103 that outputs the voltage by stepping up or down the input voltage and the power storage unit 106, the energy efficiency of the power supply device is reduced even when the output of the power supply device 10 is low. Thus, it is possible to provide the power supply apparatus 10 that can stably obtain power.

(D)負荷変動が大きい場合の電圧変換部の変換効率と電流供給経路の切替
図1を用いて、負荷変動が大きい場合の電圧変換部の変換効率と電流供給経路の切替の動作について具体的に説明する。
(D) Switching efficiency and switching of current supply path of voltage converter when load fluctuation is large Using FIG. 1, the switching efficiency of voltage converter and switching operation of current supply path when load fluctuation is large are concretely described. Explained.

負荷112の平均消費電力が2.2W(7.4V・0.3A)、パルス負荷が18.5W(約2.0msec)の負荷112に対して、発電機100としてPEFCタイプの燃料電池を用意した。燃料電池は5直列の定格出力2.5W(3.5V・0.72A)である。   A PEFC-type fuel cell is prepared as the generator 100 for the load 112 with an average power consumption of the load 112 of 2.2 W (7.4 V, 0.3 A) and a pulse load of 18.5 W (about 2.0 msec). did. The fuel cell has a 5-series rated output of 2.5 W (3.5 V, 0.72 A).

蓄電部106として、容量が500mAh、公称電圧3.7Vのリチウムイオン二次電池を2直列接続したものを用意した。   A power storage unit 106 was prepared by connecting two lithium ion secondary batteries having a capacity of 500 mAh and a nominal voltage of 3.7 V in series.

電圧変換部103として市販されている昇圧タイプのスイッチングレギュレータICを用いて昇圧回路を作製した。変換効率の最大値は電圧変換部103の出力電流が約0.15Aのときに効率が約88%であった。第2の電力供給経路から第1の電力供給経路へ切り替えるときの効率を40%とした。このときの出力電流は10mA以下であった。   A step-up circuit was manufactured using a step-up type switching regulator IC commercially available as the voltage conversion unit 103. The maximum value of the conversion efficiency was about 88% when the output current of the voltage conversion unit 103 was about 0.15 A. The efficiency when switching from the second power supply path to the first power supply path was 40%. The output current at this time was 10 mA or less.

反対に、第1の電力供給経路から第2の電力供給経路へ切り換える際の変換効率は、30%とした。
電力供給経路の切り替えは、8ビットマイコンを用いた制御部110によって制御した。
Conversely, the conversion efficiency when switching from the first power supply path to the second power supply path was 30%.
The switching of the power supply path was controlled by the control unit 110 using an 8-bit microcomputer.

電圧変換部103の変換効率は、出力電流が0.15Aのときに変換効率88%を境に出力電流が増加すると伝導損失が増加する。そこで、電流検出部105による電流検出値が0.35Aを超えたとき、すなわち電流検出部105が検出した負荷112の消費電流すなわち電圧変換部103の出力電流が電圧変換部103の変換効率の最大値のときの電流値0.15Aの234%のときに負荷112への電力供給を第1の電力供給経路と第2の電力供給経路となるように切替部の制御を行う。反対に、電流検出部105による電流検出値が0.27A以下となったとき、すなわち電流検出部105が検出した負荷112の消費電流すなわち電圧変換部103の出力電流が電圧変換部103の変換効率の最大値のときの電流値0.15Aの180%のときに負荷112への電力供給を第1の電力供給経路に切り替える。   Regarding the conversion efficiency of the voltage conversion unit 103, when the output current is 0.15 A, the conduction loss increases when the output current increases at the conversion efficiency of 88%. Therefore, when the current detection value by the current detection unit 105 exceeds 0.35 A, that is, the consumption current of the load 112 detected by the current detection unit 105, that is, the output current of the voltage conversion unit 103 is the maximum conversion efficiency of the voltage conversion unit 103. When the current value is 234% of the current value of 0.15 A, the switching unit is controlled so that the power supply to the load 112 becomes the first power supply path and the second power supply path. On the contrary, when the current detection value by the current detection unit 105 becomes 0.27 A or less, that is, the consumption current of the load 112 detected by the current detection unit 105, that is, the output current of the voltage conversion unit 103 is the conversion efficiency of the voltage conversion unit 103. The power supply to the load 112 is switched to the first power supply path when the current value is 180% of the current value of 0.15 A at the maximum value.

パルス状の負荷等があった場合に変換効率や負荷電流の電力供給経路の切り替えのしきい値を一時的にまたいで往来する際、出力の切り替えによるばたつきを抑えるために、一時的な負荷変動に対して、電力供給経路の切り替えを行うが、電力供給経路の切り替えの下限値を下回り、負荷変動が納まった後も以前の状態に戻さず、電力供給経路を維持させる。本実施の形態の負荷の場合、パルス幅の時間よりも長いが連続的にパルス負荷が発生する負荷112を用いているため、パルス負荷が発生した際に、電流検出部105が検出した負荷112の消費電流が0.35Aを超えたとき、制御部110は、負荷112への電力供給を第1の電力供給経路と第2の電力供給経路となるように切替部の制御を行うが、0.35Aを超える電流を検出してから約2.0msec後には負荷112への消費電流が0.27A以下となり、制御部110は、負荷112への電力供給を第1の電力供給経路のみとするところを、負荷112への電力供給を第1の電力供給経路と第2の電力供給経路を用いる状態を維持させる。これは、最初のパルス負荷の数百msec後にまた同様のパルス負荷が発生するため、出力の切り替えによるばたつきの発生を抑える為である。負荷112への消費電流が0.27A以下の状態が1sec以上続いて初めて制御部110は、負荷112への電力供給を第1の電力供給経路第2の電力供給経路を用いる状態から第1の電力供給経路のみとする様に制御を行う。   When there is a pulse load, etc., temporary fluctuations in the load to suppress fluctuations due to output switching when temporarily crossing over the conversion efficiency and switching threshold of the load current power supply path On the other hand, although the power supply path is switched, the power supply path is maintained without returning to the previous state even after the load fluctuation is settled below the lower limit value of the power supply path switching. In the case of the load of the present embodiment, the load 112 that is longer than the pulse width time but continuously generates the pulse load is used. Therefore, when the pulse load occurs, the load 112 detected by the current detection unit 105 is detected. When the current consumption exceeds 0.35 A, the control unit 110 controls the switching unit so that the power supply to the load 112 becomes the first power supply path and the second power supply path. About 2.0 msec after detecting a current exceeding 35 A, the current consumption to the load 112 becomes 0.27 A or less, and the control unit 110 supplies power to the load 112 only in the first power supply path. However, the power supply to the load 112 is maintained using the first power supply path and the second power supply path. This is because a similar pulse load is generated again several hundred msec after the first pulse load, so that the occurrence of fluttering due to output switching is suppressed. Only after the state where the current consumption to the load 112 is 0.27 A or less continues for 1 second or longer, the control unit 110 starts the power supply to the load 112 from the state using the first power supply path and the second power supply path. Control is performed so that only the power supply path is used.

上述の通りの制御を行うようにプログラムを作成しそのプログラムをマイコンに書き込んだ。   A program was created to perform the control as described above, and the program was written to the microcomputer.

このようにして、発電機100と入力電圧を昇圧または降圧して出力する電圧変換部103と蓄電部106とを有する電源装置10において、負荷112の消費電流が小さい場合でも電源装置10のエネルギー効率の低下を排除した小型な電源装置10を提供することが可能となる。   In this way, in the power supply device 10 having the generator 100, the voltage conversion unit 103 that boosts or steps down the input voltage, and the power storage unit 106, even when the current consumption of the load 112 is small, the energy efficiency of the power supply device 10 Therefore, it is possible to provide a small power supply device 10 that eliminates the decrease in the above.

10 : 電源装置
100 : 発電機
102 : 第1の切替部
103 : 電圧変換部
104 : 電圧検出部
105 : 電流検出部
106 : 蓄電部
109 : 第2の切替部
110 : 制御部
111 : 充電制御部
112 : 負荷
201 : 第1切替スイッチ
202 : ダイオード
203 : インダクタ
204 : 第2切替スイッチ
205 : ダイオード
206 : 抵抗分圧回路
207 : コンデンサ
208 : 制御回路
DESCRIPTION OF SYMBOLS 10: Power supply device 100: Generator 102: 1st switching part 103: Voltage conversion part 104: Voltage detection part 105: Current detection part 106: Power storage part 109: 2nd switching part 110: Control part 111: Charge control part 112: Load 201: First changeover switch 202: Diode 203: Inductor 204: Second changeover switch 205: Diode 206: Resistance voltage dividing circuit 207: Capacitor 208: Control circuit

Claims (5)

発電機からの出力を電圧変換部を介して負荷に供給する第1の電力供給経路と、
蓄電部からの出力を前記電圧変換部を介さずに前記負荷に供給する第2の電力供給経路と、
前記負荷の消費電流を検出する電流検出部と、
前記第1の電力供給経路と前記第2の電力供給経路とを切り替える制御部とを有し、
前記電圧変換部は、前記消費電流に応じて変換効率が変化するものであり、
前記制御部は、前記変換効率が最低値と最高値の中間値以上となるときの前記消費電流を前記電流検出部が検出したときに前記第1の電力供給経路に切り替え、前記電流検出部が前記中間値より低くなるときの前記消費電流を検出したときに前記第2の電力供給経路に切り替えることを特徴とする電源装置。
A first power supply path for supplying an output from the generator to a load via a voltage converter;
A second power supply path for supplying an output from the power storage unit to the load without passing through the voltage conversion unit;
A current detection unit for detecting current consumption of the load;
A controller that switches between the first power supply path and the second power supply path;
The voltage conversion unit changes conversion efficiency according to the consumption current,
The control unit switches to the first power supply path when the current detection unit detects the current consumption when the conversion efficiency is equal to or higher than an intermediate value between the lowest value and the highest value, and the current detection unit A power supply apparatus that switches to the second power supply path when detecting the consumption current when the current becomes lower than the intermediate value.
前記電圧変換部は、前記発電機の電圧を昇圧または降圧して前記負荷へ供給するものであり、
前記電圧変換部は、前記発電機からの出力をエネルギーとしてチャージあるいは放出するインダクタと、前記インダクタに前記エネルギーをチャージするチャージ状態と前記エネルギーを前記負荷に放出する放出状態とに切り替えるスイッチング素子とを有し、
前記スイッチング素子は、前記エネルギーの前記放出状態を切り替えるときに前記エネルギーの損失であるスイッチング損失が生じるものであり、
前記変換効率は、前記スイッチング損失値と前記消費電流とに影響されるものであり、
前記制御部は、前記スイッチング損失値を下回る前記負荷の消費電力に等価な前記消費電流を前記電流検出部が検出したときに前記第2の電力供給経路に切り替えることを特徴とする請求項1に記載の電源装置。
The voltage conversion unit is configured to increase or decrease the voltage of the generator and supply the load to the load.
The voltage conversion unit includes: an inductor that charges or discharges the output from the generator as energy; and a switching element that switches between a charge state that charges the energy to the inductor and a discharge state that discharges the energy to the load. Have
The switching element has a switching loss that is a loss of the energy when switching the emission state of the energy.
The conversion efficiency is affected by the switching loss value and the current consumption,
2. The control unit according to claim 1, wherein the control unit switches to the second power supply path when the current detection unit detects the current consumption equivalent to the power consumption of the load that is lower than the switching loss value. The power supply described.
前記電圧変換部は、前記消費電流に比例して導通損失が増加するものであり、
前記変換効率は、前記導通損失が増大することにより低下するものであり、
前記制御部は、前記変換効率が最大値となるときの前記消費電流の70%以上の前記消費電流を前記電流検出部が検出したときに前記第1の電力供給経路と前記第2の電力供給経路から前記負荷へ電力を供給することを特徴とする請求項1または2のいずれか1項に記載の電源装置。
In the voltage conversion unit, conduction loss increases in proportion to the consumption current,
The conversion efficiency decreases as the conduction loss increases.
The control unit is configured to detect the first power supply path and the second power supply when the current detection unit detects the current consumption that is 70% or more of the current consumption when the conversion efficiency reaches a maximum value. The power supply apparatus according to claim 1, wherein electric power is supplied from a path to the load.
前記発電機は、燃料電池であることを特徴とする請求項1から3のいずれか1項に記載の電源装置。   The power generator according to any one of claims 1 to 3, wherein the generator is a fuel cell. 前記制御部は、前記発電機と前記蓄電部のうち電力残容量が多いいずれか一方を検出し、前記発電機の電力残容量が多い場合は前記第1の電力供給経路に切り替え、前記蓄電部の電力残容量が多い場合は前記第2の電力供給経路に切り替えることを特徴とする請求項1から4のいずれか1項に記載の電源装置。   The control unit detects one of the generator and the power storage unit having a large remaining power capacity, and switches to the first power supply path when the remaining power capacity of the generator is large, and the power storage unit 5. The power supply device according to claim 1, wherein when the remaining power capacity of the power supply is large, the power supply device is switched to the second power supply path.
JP2010076374A 2010-03-29 2010-03-29 Power unit Pending JP2011211812A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010076374A JP2011211812A (en) 2010-03-29 2010-03-29 Power unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010076374A JP2011211812A (en) 2010-03-29 2010-03-29 Power unit

Publications (1)

Publication Number Publication Date
JP2011211812A true JP2011211812A (en) 2011-10-20

Family

ID=44942293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010076374A Pending JP2011211812A (en) 2010-03-29 2010-03-29 Power unit

Country Status (1)

Country Link
JP (1) JP2011211812A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015190170A1 (en) * 2014-06-10 2015-12-17 矢崎総業株式会社 Switching power source
JP2018179716A (en) * 2017-04-11 2018-11-15 新電元工業株式会社 Switching loss evaluation device
CN112054678A (en) * 2020-08-28 2020-12-08 苏州浪潮智能科技有限公司 System and method for optimizing server power supply based on input voltage

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10215569A (en) * 1997-01-29 1998-08-11 Murata Mfg Co Ltd Dc-dc converter
JP2003333708A (en) * 2002-03-28 2003-11-21 Ford Global Technol Inc Hybrid energy system for electric automobile
JP2006331080A (en) * 2005-05-26 2006-12-07 Fuji Electric Device Technology Co Ltd Power circuit
JP2008005153A (en) * 2006-06-21 2008-01-10 Ricoh Co Ltd Power unit, power supply control method and program

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10215569A (en) * 1997-01-29 1998-08-11 Murata Mfg Co Ltd Dc-dc converter
JP2003333708A (en) * 2002-03-28 2003-11-21 Ford Global Technol Inc Hybrid energy system for electric automobile
JP2006331080A (en) * 2005-05-26 2006-12-07 Fuji Electric Device Technology Co Ltd Power circuit
JP2008005153A (en) * 2006-06-21 2008-01-10 Ricoh Co Ltd Power unit, power supply control method and program

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015190170A1 (en) * 2014-06-10 2015-12-17 矢崎総業株式会社 Switching power source
JP2015233379A (en) * 2014-06-10 2015-12-24 矢崎総業株式会社 Switching power supply
CN106464136A (en) * 2014-06-10 2017-02-22 矢崎总业株式会社 Switching power source
CN106464136B (en) * 2014-06-10 2019-05-31 矢崎总业株式会社 Switching Power Supply
JP2018179716A (en) * 2017-04-11 2018-11-15 新電元工業株式会社 Switching loss evaluation device
CN112054678A (en) * 2020-08-28 2020-12-08 苏州浪潮智能科技有限公司 System and method for optimizing server power supply based on input voltage

Similar Documents

Publication Publication Date Title
US7994765B2 (en) Power supply device
US7750597B2 (en) Power supply apparatus
JP2009232665A (en) Power supply device and power supply control method
JPWO2013118336A1 (en) Power converter
WO2011148908A1 (en) Solar cell system
JP2008131736A (en) Distributed power system and step-up/step-down chopper device
JP2013042627A (en) Dc power supply control device and dc power supply control method
JP2017085892A (en) Conversion device for storage battery, power supply system and power supply control method
JP4564940B2 (en) Electronic device and battery pack and load device used in the electronic device
JP5131805B2 (en) Fuel cell system
JP5799210B2 (en) Power storage system, charge / discharge circuit, and grid interconnection device
JP6142024B1 (en) Power storage system and power storage method
JP2021027749A (en) Charge/discharge control device, battery including the same, and dc power supply system
JP2011130534A (en) Power supply device for vehicle
JP5336791B2 (en) Power supply
JP2011211812A (en) Power unit
JP6795082B2 (en) DC power supply system
KR102209827B1 (en) energy storage device
KR101509323B1 (en) Second battery charging circuit using linear regulator
JP2018121468A (en) Dc power feeding system
JP2017158265A (en) Electric power supply system and electric power conversion system
JP2010178500A (en) Discharging device, method of discharging, and dc power supply system
JP2002315224A (en) Fuel battery power source system and method for charging secondary cell in the fuel battery power source system
JP2007299532A (en) Fuel cell system
JP2005341661A (en) Charger and discharger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140404

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140722