JPH07233137A - Method for producing aliphatic polyisocyanate - Google Patents

Method for producing aliphatic polyisocyanate

Info

Publication number
JPH07233137A
JPH07233137A JP31319594A JP31319594A JPH07233137A JP H07233137 A JPH07233137 A JP H07233137A JP 31319594 A JP31319594 A JP 31319594A JP 31319594 A JP31319594 A JP 31319594A JP H07233137 A JPH07233137 A JP H07233137A
Authority
JP
Japan
Prior art keywords
hydrochloride
solvent
aliphatic
phosgene
hydrochloric acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31319594A
Other languages
Japanese (ja)
Inventor
Mitsuki Okazaki
光樹 岡崎
Yoshinobu Kanemura
芳信 金村
Teruyuki Nagata
輝幸 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP31319594A priority Critical patent/JPH07233137A/en
Publication of JPH07233137A publication Critical patent/JPH07233137A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a method capable of easily and extremely stably producing an aliphatic polyisocyanate little in unreacted filtration cakes in high yield. CONSTITUTION:A method for producing an aliphatic polyisocyanate comprises simultaneously supplying an aliphatic polyamine and hydrogen chloride gas into an ester solvent and subsequently reacting the produced aliphatic polyamine hydrochloride with phosgene.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、脂肪族ポリイソシアナ
ートの製造方法に関する。本発明によって製造される脂
肪族ポリイソシアナートは化学工業、樹脂工業、塗料工
業、等の分野において、ポリウレタン系材料、ポリ尿素
系材料、ポリイソシアヌレート系材料として極めて有用
である。
FIELD OF THE INVENTION The present invention relates to a method for producing an aliphatic polyisocyanate. The aliphatic polyisocyanate produced by the present invention is extremely useful as a polyurethane-based material, a polyurea-based material, and a polyisocyanurate-based material in the fields of chemical industry, resin industry, coating industry, and the like.

【0002】[0002]

【従来の技術】有機イソシアナート化合物を製造する方
法は、既に各種の方法が提案されている。
2. Description of the Related Art Various methods have already been proposed for producing organic isocyanate compounds.

【0003】例えば、ホルムアミド化合物またはアミン
化合物からウレタン化合物を製造し、次いでそれを熱分
解する方法(特開平3−200756)、クロルメチル
基にシアン酸アルカリを反応させる方法(特開昭50−
64245)、ホルムアミド化合物を高温で酸化させる
方法(特開昭54−39018)、ニトロ化合物に一酸
化炭素を反応させる方法(Issled Obl Kh
im Vysokomol Soedine Neft
ekhim 1997,15〜16)、有機ハロゲン化
合物にニトロシアナミド銀をを反応させる方法(JCS
ParkinTrans I 1988,2137〜
2140)などが提案されているが、有機アミンをホス
ゲンと反応させるホスゲン法が代表的である。
For example, a method of producing a urethane compound from a formamide compound or an amine compound and then thermally decomposing it (JP-A-3-200756), and a method of reacting an alkali cyanate with a chloromethyl group (JP-A-50-
64245), a method of oxidizing a formamide compound at high temperature (JP-A-54-39018), and a method of reacting carbon monoxide with a nitro compound (Issled Obl Kh.
im Vysokomol Soedine Neft
ekhim 1997, 15-16), a method of reacting an organic halogen compound with silver nitrocyanamide (JCS
ParkinTrans I 1988, 2137-
2140) and the like, but a phosgene method of reacting an organic amine with phosgene is typical.

【0004】ホスゲン法は、原料アミンとホスゲンを直
接反応させる直接法と、原料アミンを一旦塩酸塩にした
後ホスゲンと反応させる塩酸塩法に大別される。
The phosgene method is roughly classified into a direct method in which a starting amine and phosgene are directly reacted and a hydrochloride method in which the starting amine is once converted into a hydrochloride and then reacted with phosgene.

【0005】直接法は、塩酸塩法よりもはるかに簡便な
方法であるが、生成したカルバモイルクロリドまたはイ
ソシアナートと原料アミンが反応してウレアを副生す
る。芳香族イソシアナートの場合、一般的に、この直接
法でも、副生したウレアがさらにホスゲンと反応してイ
ソシアナートを生成する(Ann.562,75(19
49)、Ber.17,1284(1884))為、比
較的容易に高収率で製品が得られ問題とならない。
The direct method is much simpler than the hydrochloride method, but the carbamoyl chloride or isocyanate formed reacts with the starting amine to form urea as a by-product. In the case of aromatic isocyanate, generally, also in this direct method, the by-produced urea is further reacted with phosgene to form an isocyanate (Ann. 562, 75 (19).
49), Ber. 17, 1284 (1884)), it is relatively easy to obtain a product in a high yield, which is not a problem.

【0006】ところが脂肪族ポリイソシアナートの場
合、副生したウレアはホスゲンと反応する事によって、
塩素誘導体を副生する事が知られており(Brit.1
086782)、通常で3〜10%、時には20%近く
も副生する事があり、収率低下をきたすとともに、使用
したウレタン樹脂の物性に悪影響を及ぼす為、直接法は
通常使用されない。従って脂肪族ポリイソシアナートの
場合には、ホスゲン化によって副生するウレアを抑制す
る為に、原料アミンを有機溶媒中であらかじめ塩酸塩と
した後、ホスゲンと反応させてイソシアナートを製造す
る塩酸塩法が広く用いられている。
However, in the case of aliphatic polyisocyanate, the by-product urea reacts with phosgene,
It is known to produce a chlorine derivative as a by-product (Brit. 1
086782), which is usually produced as a by-product in an amount of 3 to 10% and sometimes close to 20%, which lowers the yield and adversely affects the physical properties of the urethane resin used, and thus the direct method is not usually used. Therefore, in the case of an aliphatic polyisocyanate, in order to suppress urea by-produced by phosgenation, the starting amine is made into a hydrochloride in an organic solvent in advance, and then the hydrochloride is produced by reacting with phosgene to produce an isocyanate. The method is widely used.

【0007】本発明者らは、この塩素誘導体の生成を抑
制する方法として、反応溶媒にエステル溶媒を用いる方
法を提案した(特開平3−7253号公報、特開平3−
204851号公報)。
The present inventors have proposed a method of using an ester solvent as a reaction solvent as a method of suppressing the production of this chlorine derivative (JP-A-3-7253 and JP-A-3-3253).
No. 204851).

【0008】[0008]

【発明が解決しようとする課題】しかしながら、この方
法は、塩素誘導体を抑制する方法としては非常に優れて
いるものの、原料脂肪族ポリアミンを溶解したアミン溶
液に塩酸ガスを装入する塩酸塩法である為、塩酸ガスが
均一に分散されずに、また塩酸塩同士の凝集等によっ
て、粒径の粗い塩酸塩が多く生成し易く、大部分が微粒
子となる塩酸塩は安定的には得られず、改良の余地があ
った。
However, although this method is very excellent as a method for suppressing the chlorine derivative, it is a hydrochloric acid method in which hydrochloric acid gas is charged into an amine solution in which a raw material aliphatic polyamine is dissolved. Therefore, hydrochloric acid gas is not uniformly dispersed, and a large amount of coarse-grained hydrochloride is likely to be generated due to agglomeration of the hydrochlorides, etc., and the majority of the hydrochloride is not stable and cannot be stably obtained. , There was room for improvement.

【0009】この粗粒径の脂肪族ポリアミン塩酸塩は、
粉砕が容易ではなく、沸騰あるいは激しく攪拌する程度
ではほとんど粉砕できない。また、ホスゲンとの接触表
面積も小さくなることから、反応速度が著しく低下し、
そのまま未反応として残るため、収率が低下する事があ
り、ホスゲン化反応終了後の濾塊が多いという問題点を
有していた。収率の低下はまず問題であるが、未反応の
濾塊が多い事も、実際に実装置で生産を開始した場合か
なり問題となる。具体的には、未反応の濾塊を除く濾過
工程の時間がかなり延びたり、煩雑な濾塊の抜きだし作
業が増えたりして生産性が悪化する。これによって、脂
肪族ポリイソシアナートの生産量も低下し、コストも上
昇する。この問題点を回避する為に、長時間ホスゲン化
反応を続行しても、ほとんど未反応塩は減少せず、むし
ろ生成していた脂肪族ポリイソシアナート自身のタール
化が進み、更に収率の低下を招く。本発明は、先願(特
開平3−7253号公報、特開平3−204851号公
報)の改良発明を目的とするもので、微粒化された脂肪
族ポリアミン塩酸塩の製造方法、及びその塩酸塩にホス
ゲンを反応させる脂肪族ポリイソシアナートの製造方法
である。
The coarse-grained aliphatic polyamine hydrochloride is
Crushing is not easy, and almost no crushing is possible with boiling or vigorous stirring. Also, since the contact surface area with phosgene is also small, the reaction rate is significantly reduced,
Since it remains unreacted as it is, the yield may be lowered, and there is a problem that many filter cakes are left after the phosgenation reaction. The decrease in yield is the first problem, but the fact that there are many unreacted filter cakes also poses a serious problem when production is actually started in an actual device. Specifically, the productivity is deteriorated because the time of the filtration step for removing the unreacted filter cake is considerably extended and the complicated filter cake extraction work is increased. As a result, the production amount of aliphatic polyisocyanate is reduced and the cost is increased. In order to avoid this problem, even if the phosgenation reaction is continued for a long time, almost no unreacted salt is reduced, rather, the tar of the produced aliphatic polyisocyanate itself proceeds, and the yield is further increased. Cause decline. The present invention is intended to be an improved invention of the prior application (Japanese Patent Application Laid-Open Nos. 3-7253 and 3-204851), and a method for producing atomized aliphatic polyamine hydrochloride and its hydrochloride. It is a method for producing an aliphatic polyisocyanate in which phosgene is reacted with.

【0010】[0010]

【課題を解決するための手段】本発明者らは、上記の問
題点を改良すべく、エステル溶媒を用いた塩酸塩法によ
る脂肪族ポリイソシアナートの製造法につき鋭意検討し
た結果、500μm以下の塩酸塩を80%以上有する微
粒径の脂肪族ポリアミン塩酸塩をホスゲンと反応すれ
ば、未反応の濾塊も少なく、高収率で、目的とする脂肪
族ポリイソシアナートを容易に、極めて安定的に製造で
きる事を見い出した。また、脂肪族ポリアミン塩酸塩を
このように微粒径にする方法は、脂肪族ポリアミンと塩
酸ガスを0.2〜1.5(アミノ基/塩酸ガス)の官能
基モル比で、それぞれ同時に連続的にエステル溶媒に装
入して塩酸塩化する方法が、極めて効果的である事と、
更には、装入する脂肪族ポリアミンをエステル溶媒に混
合させれば、それ以上に効果的である事を見出し、本発
明に到達した。
Means for Solving the Problems In order to improve the above-mentioned problems, the present inventors have earnestly studied a method for producing an aliphatic polyisocyanate by a hydrochloride method using an ester solvent, and as a result, found to be 500 μm or less. If a fine particle size aliphatic polyamine hydrochloride having 80% or more of hydrochloride is reacted with phosgene, there are few unreacted filter cakes, the yield is high, and the target aliphatic polyisocyanate is easily and extremely stable. I found that it can be manufactured in a simple manner. In addition, the method for making the aliphatic polyamine hydrochloride into such a fine particle diameter is as follows. The method of charging the ester solvent and hydrochloric acid chloride is extremely effective.
Furthermore, they have found that it is more effective if the charged aliphatic polyamine is mixed with an ester solvent, and have reached the present invention.

【0011】即ち、本発明は脂肪族ポリアミンと塩酸ガ
スを、エステル溶媒中に同時に装入して、脂肪族ポリア
ミン塩酸塩を製造した後、ホスゲンと反応させることを
特徴とする、脂肪族ポリイソシアナートの製造方法であ
る。
That is, the present invention is characterized in that an aliphatic polyamine and hydrochloric acid gas are simultaneously charged in an ester solvent to produce an aliphatic polyamine hydrochloride, and then reacted with phosgene. It is a method of manufacturing nato.

【0012】本発明で脂肪族ポリイソシアナートとは、
芳香環にイソシアナート基が直結していない2官能以上
の有機イソアナートを表し、以下の化合物が挙げられ
る。例えば、ペンタメチレンジイソシアナート、ヘキサ
メチレンジイソシアナート、2,2,4−トリメチルヘ
キサメチレンジイソシアナート、2,4,4−トリメチ
ルヘキサメチレンジイソシアナート、オクタメチレンジ
イソシアナート、ノナメチレンジイソシアナート等の直
鎖状脂肪族ポリイソシアナート、m−キシリレンジイソ
シアナート、p−キシリレンジイソシアナート、o−キ
シリレンジイソシアナート、又はそれらが任意に混合さ
れたキシリレンジイソシアナート、1,3−ビス(イソ
シアナトメチル)シクロヘキサン、イソホロンジイソシ
アナート、ビス(4−イソシアナトシクロヘキシル)メ
タン、2,2−ビス(4−イソシアナトシクロヘキシ
ル)プロパン、ビス(イソシアナトメチル)ノルボルネ
ン等の環状脂肪族ポリイソシアナート等である。脂肪族
ポリアミンとしては、以下の化合物が挙げられる。例え
ば、ペンタメチレンジアミン、ヘキサメチレンジアミ
ン、2,2,4−トリメチルヘキサメチレンジアミン、
2,4,4−トリメチルヘキサメチレンジアミン、オク
タメチレンジアミン、ノナメチレンジアミン等の直鎖状
脂肪族ポリアミン、m−キシリレンジアミン、p−キシ
リレンジアミン、o−キシリレンジアミン、又はそれら
が任意に混合されたキシリレンジアミン、1,3−ビス
(アミノメチル)シクロヘキサン、イソホロンジアミ
ン、ビス(4−アミノシクロヘキシル)メタン、2,2
−ビス(4−アミノシクロヘキシル)プロパン、ビス
(アミノメチル)ノルボルネン等の環状脂肪族ポリアミ
ン等である。
In the present invention, the aliphatic polyisocyanate is
It represents a bifunctional or higher organic isocyanate in which an isocyanate group is not directly bonded to an aromatic ring, and includes the following compounds. For example, pentamethylene diisocyanate, hexamethylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, 2,4,4-trimethylhexamethylene diisocyanate, octamethylene diisocyanate, nonamethylene diisocyanate Linear aliphatic polyisocyanate such as nato, m-xylylene diisocyanate, p-xylylene diisocyanate, o-xylylene diisocyanate, or xylylene diisocyanate in which these are arbitrarily mixed, 1,3- Cyclic aliphatic polyimides such as bis (isocyanatomethyl) cyclohexane, isophorone diisocyanate, bis (4-isocyanatocyclohexyl) methane, 2,2-bis (4-isocyanatocyclohexyl) propane, bis (isocyanatomethyl) norbornene It is a cyanate and the like. Examples of the aliphatic polyamine include the following compounds. For example, pentamethylenediamine, hexamethylenediamine, 2,2,4-trimethylhexamethylenediamine,
Linear aliphatic polyamines such as 2,4,4-trimethylhexamethylenediamine, octamethylenediamine, nonamethylenediamine, m-xylylenediamine, p-xylylenediamine, o-xylylenediamine, or any of them. Mixed xylylenediamine, 1,3-bis (aminomethyl) cyclohexane, isophoronediamine, bis (4-aminocyclohexyl) methane, 2,2
-Cyclic aliphatic polyamines such as bis (4-aminocyclohexyl) propane and bis (aminomethyl) norbornene.

【0013】反応溶媒は、副生物である塩素誘導体を抑
制する意味から、エステル系溶媒を用いる。中でも脂肪
酸エステル類、芳香族カルボン酸エステル類が好適であ
る。
As the reaction solvent, an ester solvent is used in order to suppress the chlorine derivative which is a by-product. Of these, fatty acid esters and aromatic carboxylic acid esters are preferable.

【0014】脂肪酸エステル類としては、例えば、ギ酸
アミル、酢酸−n−アミル、酢酸イソアミル、酢酸メチ
ルイソアミル、酢酸−n−ブチル、酢酸イソブチル、酢
酸−2−エチルブチル、酢酸メトキシブチル、酢酸エト
キシエチル、酢酸メトキシエチル、酢酸エチル、酢酸第
2ヘキシル、酢酸−2−エチルヘキシル、酢酸シクロヘ
キシル、酢酸メチルシクロヘキシル、酢酸ベンジル、酢
酸フェニル、酢酸メチルカルビトール、エチレングリコ
ールジアセテート、プロピオン酸エチル、プロピオン酸
−n−ブチル、プロピオン酸イソアミル、酪酸エチル、
酪酸ブチル、酪酸イソアミル、ステアリン酸ブチル、乳
酸ブチル、乳酸アミル等が挙げられる。芳香族カルボン
酸エステル類としては、例えば、フタル酸ジメチル、安
息香酸メチル、安息香酸エチル等が挙げられる。更に好
ましくは、沸点が120〜180℃のエステル類であ
り、これらを使用すれば、過加熱による脂肪族ポリイソ
シアナート自身のタール化が抑制でき、蒸留による脂肪
族ポリイソシアナートとの分離も容易である。用いる溶
媒の種類については、それぞれの単独でも2種類以上混
合しても良いが、回収の面からは単独使用が好ましい。
Examples of the fatty acid esters include amyl formate, -n-amyl acetate, isoamyl acetate, methyl isoamyl acetate, -n-butyl acetate, isobutyl acetate, 2-ethylbutyl acetate, methoxybutyl acetate, ethoxyethyl acetate. Methoxyethyl acetate, ethyl acetate, secondary hexyl acetate, 2-ethylhexyl acetate, cyclohexyl acetate, methylcyclohexyl acetate, benzyl acetate, phenyl acetate, methyl carbitol acetate, ethylene glycol diacetate, ethyl propionate, propionate-n- Butyl, isoamyl propionate, ethyl butyrate,
Examples include butyl butyrate, isoamyl butyrate, butyl stearate, butyl lactate, amyl lactate and the like. Examples of aromatic carboxylic acid esters include dimethyl phthalate, methyl benzoate, ethyl benzoate and the like. More preferably, the esters having a boiling point of 120 to 180 ° C. can be used to suppress tarring of the aliphatic polyisocyanate itself due to overheating, and can be easily separated from the aliphatic polyisocyanate by distillation. Is. Regarding the type of the solvent used, each may be used alone or two or more types may be mixed, but from the viewpoint of recovery, the single use is preferable.

【0015】本発明の方法では、脂肪族ポリアミン塩酸
塩化反応時の脂肪族ポリアミンと溶媒の混合比は、攪拌
状態、温度等の条件によって異なるが、一般的には溶媒
に対する脂肪族ポリアミンの重量%で3〜25%、更に
は5〜20%が好ましい。25%を超えると分散効果の
低下により造塩粒子径は大きくなる傾向があり、3%未
満では容積効率が悪化し、工業的に有利とはならない。
In the method of the present invention, the mixing ratio of the aliphatic polyamine and the solvent during the hydrochloric acid salification reaction of the aliphatic polyamine varies depending on the conditions such as the stirring state and the temperature, but generally the weight ratio of the aliphatic polyamine to the solvent is% by weight. Is preferably 3 to 25%, more preferably 5 to 20%. If it exceeds 25%, the salt-forming particle size tends to increase due to a reduction in the dispersion effect, and if it is less than 3%, the volume efficiency deteriorates, which is not industrially advantageous.

【0016】脂肪族ポリアミン塩酸塩化反応時の脂肪族
ポリアミンと塩酸ガスの装入速度比は、官能基モル比
(アミノ基/塩酸ガス)で0.2〜1.5、更には0.
5〜1.2(アミノ基/塩酸ガス)が好ましい。1.5
を超えると、造塩粒子径は大きくなる傾向があり、0.
2未満では塩酸ガスの使用量が多くなり、工業的に有利
とはならない。
Aliphatic polyamine During the hydrochloric acid-chlorination reaction, the charging rate ratio of the aliphatic polyamine and the hydrochloric acid gas is 0.2 to 1.5 in terms of functional group molar ratio (amino group / hydrochloric acid gas), and more preferably 0.
5 to 1.2 (amino group / hydrochloric acid gas) is preferable. 1.5
If it exceeds, the salt-forming particle size tends to be large, and
If it is less than 2, the amount of hydrochloric acid gas used increases, which is not industrially advantageous.

【0017】反応温度は、塩酸塩化反応では、10〜3
0℃以下が好ましい。10℃以下では、冷凍機が必要
で、設備費増となり、30℃以上では、理由は不明だ
が、造塩粒子径が大きくなる傾向があり好ましくない。
ホスゲン化の反応は、120〜180℃、さらには13
0〜160℃が好ましい。120℃以下では反応しなく
もないが、反応速度が遅く実用的ではなく、180℃以
上では脂肪族ポリイソシアナート自身の熱安定性が無
く、タール分の増加により収率低下をきたす。
The reaction temperature is 10 to 3 in the hydrochloric acid salification reaction.
It is preferably 0 ° C or lower. If the temperature is 10 ° C. or lower, a refrigerator is required and the equipment cost increases, and if the temperature is 30 ° C. or higher, the salt-forming particle size tends to increase, which is not preferable.
The reaction for phosgenation is 120 to 180 ° C., and further 13
0-160 degreeC is preferable. Although it does not react at 120 ° C. or lower, the reaction rate is slow and not practical, and at 180 ° C. or higher, the aliphatic polyisocyanate itself has no thermal stability, and the yield decreases due to an increase in tar content.

【0018】本発明は、減圧下、大気圧下、もしくは、
更に反応速度を増やすために、大気圧以上の加圧下で反
応を行う事も出来る。
The present invention is under reduced pressure, atmospheric pressure, or
In order to further increase the reaction rate, the reaction can be performed under a pressure higher than atmospheric pressure.

【0019】本発明の好ましい形態は次のようになる。
還流冷却器、温度計、ホスゲン吹き込み管、塩酸吹き込
み管、原料滴下器、溶媒滴下器、及び攪拌翼を備えた反
応機中に、溶媒を、原料滴下器に脂肪族ポリアミンを、
溶媒滴下器にも同一の溶媒を仕込む。次に塩酸吹き込み
管から塩酸ガスを吹き込みながら、脂肪族ポリアミンと
溶媒を同時にうちあわせながら連続的に装入して塩酸塩
化を行う。次に、この造塩マスを所定の温度まで昇温し
て、ホスゲン吹き込み管からホスゲンを吹き込み反応を
行う。反応終了後、窒素により未反応ホスゲン及び塩酸
をパージし、脱溶媒をした後蒸留精製して、目的の脂肪
族ポリイソシアナートを得る。
A preferred embodiment of the present invention is as follows.
In a reactor equipped with a reflux condenser, a thermometer, a phosgene blowing tube, a hydrochloric acid blowing tube, a raw material dropping device, a solvent dropping device, and a stirring blade, a solvent, an aliphatic polyamine in the raw material dropping device,
Charge the same solvent into the solvent dropping device. Next, while the hydrochloric acid gas is being blown from the hydrochloric acid blowing pipe, the aliphatic polyamine and the solvent are simultaneously charged and continuously charged to perform hydrochloric acid chlorination. Next, the salt-making mass is heated to a predetermined temperature, and phosgene is blown from the phosgene blowing tube to carry out a reaction. After completion of the reaction, unreacted phosgene and hydrochloric acid are purged with nitrogen, the solvent is removed, and the residue is purified by distillation to obtain the desired aliphatic polyisocyanate.

【0020】[0020]

【実施例】以下、本発明を実施例及び比較例により具体
的に説明するが、本発明はこれら実施例に限定されるも
のではない。 実施例1 還流冷却器、温度計、ホスゲン吹き込み管、塩酸吹き込
み管、原料滴下器、溶媒滴下器、及び攪拌翼を備えた内
容積2l反応フラスコに溶媒酢酸アミル1000gと、
原料滴下器にビス(アミノメチル)ノルボルネン(以下
NBDAと略す)150.0g(0.961モル)を、
溶媒滴下器に残りの溶媒酢酸アミル350gを仕込んだ
(NBDA濃度=11.1重量%(対溶媒))。次に攪
拌下冷却しながら、塩酸ガスは塩酸吹き込み管から3
5.4g/Hの速度で、滴下器のNBDAと溶媒酢酸ア
ミルは同時に1:2.3の一定の重量比でうちあわせな
がら250.0g/Hの速度で、塩酸ガス装入と同時に
滴下を開始して2時間かけて終了した。更に塩酸ガスを
そのまま装入しながら0.5時間熟成を行った。また、
これら一連の造塩反応は、内温は20〜30℃で行っ
た。ここで、NBDA塩酸塩の粒子径を日本鉱業(株)
プロセス用粒度分布計TSUBUTEC−100で測定
したところ、500μm以下の粒子が99.5%で、5
00μmを超える粒子はわずか0.5%であった。次
に、この造塩マスを135℃まで昇温した後、ホスゲン
吹き込み管からホスゲンを 100g/H(1.0モル
/H)の速度で吹き込み、内温を130〜140℃に保
ちながら、8時間反応を続けた。反応終了後、窒素によ
り未反応ホスゲン及び塩酸をパージし、未反応NBDA
塩酸塩1.3g(as dry)を濾別除去後、濾液を
脱溶媒をし、減圧蒸留(1〜2mmHg)して、塩素置
換体であるクロルメチルノルボニルメチルイソシアナー
トを0.1重量%含有するビス(イソシアナトメチル)
ノルボルネン(以下NBDiと略す)184.6g(純
度換算収率=93.0%)を得た。結果を表1に示す。
EXAMPLES The present invention will be specifically described below with reference to examples and comparative examples, but the present invention is not limited to these examples. Example 1 A reaction flask equipped with a reflux condenser, a thermometer, a phosgene blowing tube, a hydrochloric acid blowing tube, a raw material dropping device, a solvent dropping device, and a stirring blade, and a solvent flask having an internal volume of 2 l and 1000 g of solvent amyl acetate,
Into the raw material dropping device, 150.0 g (0.961 mol) of bis (aminomethyl) norbornene (hereinafter abbreviated as NBDA),
The remaining solvent, amyl acetate (350 g) was charged into the solvent dropping device (NBDA concentration = 11.1 wt% (to solvent)). Next, while cooling with stirring, the hydrochloric acid gas was removed from the hydrochloric acid blowing tube by 3
At a rate of 5.4 g / H, NBDA and amyl acetate as a solvent in the dropping device were added together at a constant weight ratio of 1: 2.3 at a rate of 250.0 g / H while adding hydrochloric acid gas at the same time. It started and ended in 2 hours. Further, the solution was aged for 0.5 hours while charging hydrochloric acid gas as it was. Also,
These series of salt formation reactions were carried out at an internal temperature of 20 to 30 ° C. Here, the particle size of NBDA hydrochloride is determined by Japan Mining Co., Ltd.
When measured with a process particle size distribution analyzer TSUBUTEC-100, 99.5% of particles of 500 μm or less are 5
Only 0.5% of the particles exceeded 00 μm. Next, after heating the salt-making mass to 135 ° C., phosgene was blown from the phosgene blowing tube at a rate of 100 g / H (1.0 mol / H) to maintain the internal temperature at 130 to 140 ° C. The reaction continued for an hour. After completion of the reaction, unreacted phosgene and hydrochloric acid were purged with nitrogen to remove unreacted NBDA.
After removing 1.3 g (as dry) of hydrochloride by filtration, the filtrate was desolvated and distilled under reduced pressure (1 to 2 mmHg) to obtain 0.1% by weight of chlorine-substituted chloromethylnorbornylmethylisocyanate. Contains bis (isocyanatomethyl)
184.6 g (purity conversion yield = 93.0%) of norbornene (hereinafter abbreviated as NBDi) was obtained. The results are shown in Table 1.

【0021】実施例2 NBDAの仕込み量を、実施例1の2倍の300.0g
(1.92モル)にして、実施例1と同様に試験を行っ
た。NBDA塩酸塩は、500μm以下の粒子が98.
3%で、500μmを超える粒子は1.7%であった。
濾塊は、3.2g(as dry)で、塩素置換体0.
1重量%含有するNBDi365.5g(純度換算収率
=92.1%)を得た。結果を表1に示す。
Example 2 The amount of NBDA charged was twice that of Example 1, 300.0 g.
(1.92 mol), and the test was conducted in the same manner as in Example 1. NBDA hydrochloride has a particle size of 98.
At 3%, 1.7% of the particles have a size of more than 500 μm.
The filter cake weighed 3.2 g (as dry) and had a chlorine substitution product of 0.
365.5 g of NBDi containing 1% by weight (purity conversion yield = 92.1%) was obtained. The results are shown in Table 1.

【0022】実施例3 NBDAの仕込み量を、実施例1の半分の75.0g
(0.480モル)にして、実施例1と同様に試験を行
った。NBDA塩酸塩は、500μm以下の粒子が9
9.9%で、500μmを超える粒子は僅か0.1%で
あった。濾塊は、0.2g(as dry)で、塩素置
換体0.1重量%含有するNBDi94.0g(純度換
算収率=94.9%)を得た。結果を表1に示す。
Example 3 The amount of NBDA charged was 75.0 g, which is half of that in Example 1.
(0.480 mol) and tested in the same manner as in Example 1. NBDA hydrochloride has particles of 500 μm or less
At 9.9%, there was only 0.1% of particles above 500 μm. The filter cake was 0.2 g (as dry), and 94.0 g (purity conversion yield = 94.9%) of NBDi containing 0.1% by weight of a chlorine-substituted compound was obtained. The results are shown in Table 1.

【0023】実施例4 溶媒酢酸アミル1350gを全量反応フラスコの仕込
み、NBDAを直接滴下した以外は、実施例1と同様に
試験を行った。NBDA塩酸塩は、500μm以下の粒
子が82.0%で、500μmを超える粒子は18.0
%であった。濾塊は2.9g(as dry)で、塩素
置換体を0.1重量%含有するNBDi183.2g
(純度換算収率=92.3%)を得た。結果を表1に示
す。
Example 4 A test was conducted in the same manner as in Example 1 except that 1350 g of the solvent amyl acetate was charged into a reaction flask and NBDA was directly added dropwise. NBDA hydrochloride has 82.0% of particles of 500 μm or less, and 18.0 particles of 500 μm or more.
%Met. The filter cake weighed 2.9 g (as dry) and contained NBDi183.2 g containing 0.1% by weight of a chlorine-substituted compound.
(Purity conversion yield = 92.3%) was obtained. The results are shown in Table 1.

【0024】比較例1 溶媒酢酸アミル1350gとNBDA150.0(0.
961モル)を最初から反応フラスコに仕込んだ以外
は、実施例1と同様に試験を行った。NBDA塩酸塩
は、500μm以下の粒子が31.2%であった。濾塊
は85.8g(as dry)もあり、塩素置換体を
0.1重量%含有するNBDiは、僅か117.7g
(純度換算収率=59.3%)であった。結果を表1に
示す。
Comparative Example 1 Solvent amyl acetate 1350 g and NBDA 150.0 (0.
The same test as in Example 1 was conducted except that 961 mol) was initially charged in the reaction flask. In NBDA hydrochloride, 31.2% of particles were 500 μm or less. The filter cake was 85.8 g (as dry), and the NBDi containing 0.1% by weight of the chlorine-substituted product was only 117.7 g.
(Purity conversion yield = 59.3%). The results are shown in Table 1.

【0025】比較例2 原料NBDAと溶媒を同時滴下する0.5時間前から塩
酸ガスの装入を行った以外は実施例1と同様に実施し
た。NBDA塩酸塩は500μm以下の粒子が71.2
%であった。濾塊は18.3g(as dry)で、塩
素置換体を0.1重量%含有するNBDiは、僅か16
7.3g(純度換算収率=84.6%)を得た。
Comparative Example 2 The procedure of Example 1 was repeated, except that the hydrochloric acid gas was charged from 0.5 hour before the simultaneous addition of the raw material NBDA and the solvent. NBDA hydrochloride has particles of 500 μm or less of 71.2
%Met. The filter cake weighed 18.3 g (as dry), and the NBDi containing 0.1% by weight of the chlorine substitution product was only 16
7.3 g (purity conversion yield = 84.6%) was obtained.

【0026】[0026]

【表1】 [Table 1]

【0027】比較例3 比較例1のホスゲン化反応時間を8時間から20時間に
のばした試験を行った。NBDA塩酸塩は、500μm
以下の粒子が33.4%であった。濾塊は70.0g
(as dry)もあり、塩素置換体を0.1重量%含
有するNBDiは、僅か132.9g(純度換算収率=
67.0%)しか得られなかった。ホスゲン化時間を延
長しても、濾塊量は大幅には改善されず、収率もわずか
に上昇しただけであった。
Comparative Example 3 A test was conducted in which the phosgenation reaction time of Comparative Example 1 was extended from 8 hours to 20 hours. NBDA hydrochloride is 500 μm
The following particles were 33.4%. 70.0g of filter cake
There is also (as dry), and NBDi containing a chlorine-substituted compound in an amount of 0.1% by weight is only 132.9 g (purity conversion yield =
Only 67.0%) was obtained. Even if the phosgenation time was extended, the amount of filter cake was not significantly improved, and the yield was only slightly increased.

【0028】実施例5 実施例1と同様にm−キシリレンジアミン(以下m−X
DAと略す)136.2g(1.0モル)と、溶媒滴下
器に溶媒酢酸アミル400g、反応フラスコに残りの溶
媒酢酸アミル800gを仕込み(m−XDA濃度=1
1.4重量%(対溶媒))、実施例1と同様な試験を行
った。m−XDA塩酸塩は500μm以下の粒子が9
9.6%であった。未反応m−XDA塩酸塩である濾塊
は1.5g(as dry)で、m−クロルメチルベン
ジルイソシアナート(以下m−CBiと略す)を0.4
重量%含有するm−キシリレンジイソシアナート(以下
m−XDiと略す)176.5g(純度換算収率=9
3.0%)を得た。結果を表2にしめす。
Example 5 As in Example 1, m-xylylenediamine (hereinafter referred to as m-X
(Abbreviated as DA) 136.2 g (1.0 mol), 400 g of solvent amyl acetate in a solvent dropping device, and 800 g of remaining solvent amyl acetate in a reaction flask (m-XDA concentration = 1)
The same test as in Example 1 was carried out. m-XDA hydrochloride has particles of 500 μm or less.
It was 9.6%. The amount of the unreacted m-XDA hydrochloride as a filter cake was 1.5 g (as dry), and m-chloromethylbenzyl isocyanate (hereinafter abbreviated as m-CBi) was 0.4 g.
176.5 g of m-xylylene diisocyanate (hereinafter abbreviated as m-XDi) contained in weight% (purity conversion yield = 9)
3.0%) was obtained. The results are shown in Table 2.

【0029】実施例6 実施例5と同様に、反応フラスコに溶媒酢酸アミル50
0gと、滴下器にm−XDA136.2g(1.0モ
ル)と残りの溶媒170gを仕込み(m−XDA濃度=
20.3重量%(対溶媒))、実施例5と同様な試験を
行った。m−XDA塩酸塩は、500μm以下の粒子が
98.4%であった。未反応m−XDA塩酸塩である濾
塊は1.6g(as dry)で、m−CBiを0.8
重量%含有するm−XDi174.5g(純度換算収率
=92.1%)を得た。結果を表2にしめす。
Example 6 As in Example 5, the reaction flask was charged with the solvent amyl acetate 50.
0 g, and 136.2 g (1.0 mol) of m-XDA and 170 g of the remaining solvent were charged into the dropping device (m-XDA concentration =
20.3% by weight (relative to solvent), and the same test as in Example 5 was performed. The m-XDA hydrochloride had 98.4% of particles of 500 μm or less. The amount of unreacted m-XDA hydrochloride as a filter cake was 1.6 g (as dry), and m-CBi was 0.8.
174.5 g (yield in terms of purity = 92.1%) of m-XDi containing wt% was obtained. The results are shown in Table 2.

【0030】実施例7 実施例5と同様に、3l反応フラスコに溶媒酢酸アミル
700gと、滴下器にm−XDA136.2g(1.0
モル)と、溶媒酢酸アミル1300gを仕込み(m−X
DA濃度=6.8重量%(対溶媒))、実施例5と同様
な試験を行った。m−XDA塩酸塩は、500μm以下
の粒子が99.8%であった。未反応m−XDA塩酸塩
である濾塊は0.3g(as dry)で、m−CBi
を0.4重量%含有するm−XDi179.2g(純度
換算収率=94.5%)を得た。結果を表2にもしめ
す。
Example 7 As in Example 5, 700 g of the solvent amyl acetate was placed in a 3 l reaction flask, and 136.2 g (1.0 g) of m-XDA was added to the dropping device.
And 1300 g of amyl acetate as a solvent (m-X
The same test as in Example 5 was performed with DA concentration = 6.8 wt% (vs. solvent). The m-XDA hydrochloride had 99.8% of particles of 500 μm or less. The amount of unreacted m-XDA hydrochloride as a filter cake was 0.3 g (as dry), and m-CBi
Was obtained to obtain 179.2 g of m-XDi containing 0.4% by weight (purity conversion yield = 94.5%). The results are also shown in Table 2.

【0031】実施例8 溶媒酢酸アミル1200gを全量反応フラスコの仕込
み、m−XDAを直接滴下した以外は、実施例7と同様
に試験を行った。m−XDA塩酸塩は、500μm以下
の粒子が83.0%であった。未反応m−XDA塩酸塩
である濾塊は2.8g(as dry)で、m−CBi
を0.4重量%含有するm−XDi174.8g(純度
換算収率=92.3%)を得た。結果を表2にしめす。
Example 8 A test was conducted in the same manner as in Example 7 except that 1200 g of amyl acetate as a solvent was charged in a reaction flask and m-XDA was directly added dropwise. In the m-XDA hydrochloride, 83.0% of particles were 500 μm or less. The amount of unreacted m-XDA hydrochloride as a filter cake was 2.8 g (as dry), and m-CBi
Was obtained to obtain 174.8 g of m-XDi containing 0.4% by weight (purity conversion yield = 92.3%). The results are shown in Table 2.

【0032】比較例4 溶媒酢酸アミル1200gとm−XDA136.2
(1.00モル)を最初から反応フラスコに仕込んだ以
外は、実施例5と同様に試験を行った。m−XDA塩酸
塩は、500μm以下の粒子が75.7%であった。m
−CBiを0.4重量%含有するm−XDi173.3
g(純度換算収率=91.7%)が得られたが、未反応
m−XDA塩酸塩は11.5g(as dry)と多か
った。結果を表2に示す。
Comparative Example 4 1200 g of the solvent amyl acetate and m-XDA136.2
The test was performed in the same manner as in Example 5 except that (1.00 mol) was charged into the reaction flask from the beginning. The m-XDA hydrochloride had 75.7% of particles having a size of 500 μm or less. m
-M-XDi 173.3 containing 0.4% by weight of CBi
Although g (purity conversion yield = 91.7%) was obtained, the amount of unreacted m-XDA hydrochloride was as large as 11.5 g (as dry). The results are shown in Table 2.

【0033】[0033]

【表2】 [Table 2]

【0034】比較例5 比較例4の反応時間を8時間から12時間にのばして試
験を行った。m−XDA塩酸塩は、500μm以下の粒
子が69.8%であった。未反応m−XDA塩酸塩であ
る濾塊は9.6g(as dry)と多く、m−CBi
0.5重量%含有するm−XDi167.2g(純度換
算収率=88.2%)が得られた。ホスゲン化時間を延
長しても、濾塊量は大幅には改善されず、収率もわずか
に低下した。
Comparative Example 5 A test was conducted by extending the reaction time of Comparative Example 4 from 8 hours to 12 hours. The m-XDA hydrochloride had 69.8% of particles of 500 μm or less. The amount of unreacted m-XDA hydrochloride as a filter cake was as large as 9.6 g (as dry), and m-CBi
167.2 g of m-XDi containing 0.5% by weight (purity conversion yield = 88.2%) was obtained. Even if the phosgenation time was extended, the amount of filter cake was not significantly improved, and the yield was slightly decreased.

【0035】比較例6 m−XDAを11.4重量%から実施例8と同じ20.
3重量%に変更して、比較例4と同様な試験を行った。
結果、m−XDA塩酸塩の平均粒子径は、500μm以
下の粒子が48.7%しかなく、未反応m−XDA塩酸
塩である濾塊は16.9g(as dry)と非常に多
かった。また得られたm−XDi量は、CBiを0.4
重量%含有する168.5g(純度換算収率=88.9
%)であった。
COMPARATIVE EXAMPLE 6 From 11.4% by weight of m-XDA, the same amount as 20.
The same test as in Comparative Example 4 was conducted by changing to 3% by weight.
As a result, the average particle size of m-XDA hydrochloride was 48.7% of particles having a particle size of 500 μm or less, and the amount of unreacted m-XDA hydrochloride filter cake was 16.9 g (as dry), which was very large. In addition, the obtained m-XDi amount is 0.4 for CBi.
168.5 g contained in weight% (purity conversion yield = 88.9)
%)Met.

【0036】実施例9〜12 溶媒を変更した以外は実施例5と同様に行った。結果を
表3に示す。
Examples 9 to 12 The procedure of Example 5 was repeated except that the solvent was changed. The results are shown in Table 3.

【0037】[0037]

【表3】 [Table 3]

【0038】実施例13〜14、比較例7〜8 脂肪族アミンをヘキサメチレンジアミン(HDAと略す
る)、ビスアミノシクメヘキシルメタン(HMDAと略
する)に変更した以外は、実施例1及び比較例1と同様
に行った。結果を表4に示す。
Examples 13 to 14 and Comparative Examples 7 to 8 Example 1 and Comparative Example 7 except that the aliphatic amine was changed to hexamethylenediamine (abbreviated as HDA) and bisaminosimexhexylmethane (abbreviated as HMDA). The same procedure as in Comparative Example 1 was performed. The results are shown in Table 4.

【0039】[0039]

【表4】 [Table 4]

【0040】[0040]

【発明の効果】本発明によれば、高収率で、未反応の濾
塊も少なく、目的とする脂肪族ポリイソシアナートを容
易に、極めて安定的に製造できる為、工業的製造方法と
して非常に価値が高い。
EFFECTS OF THE INVENTION According to the present invention, the objective aliphatic polyisocyanate can be easily and extremely stably produced with a high yield and a small amount of unreacted filter cake. Highly valuable to.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 脂肪族ポリアミンと塩酸ガスを、エステ
ル溶媒中に同時に装入して、脂肪族ポリアミン塩酸塩を
製造した後、ホスゲンと反応させることを特徴とする、
脂肪族ポリイソシアナートの製造方法。
1. An aliphatic polyamine and hydrochloric acid gas are simultaneously charged into an ester solvent to produce an aliphatic polyamine hydrochloride, and then reacted with phosgene.
Method for producing aliphatic polyisocyanate.
【請求項2】 脂肪族ポリアミンがビス(アミノメチ
ル)ノルボルネン、キシリレンジアミン、ビス(アミノ
シクロヘキシル)メタン及びヘキサメチレンジアミンか
ら選ばれる請求項1記載の製造方法。
2. The method according to claim 1, wherein the aliphatic polyamine is selected from bis (aminomethyl) norbornene, xylylenediamine, bis (aminocyclohexyl) methane and hexamethylenediamine.
JP31319594A 1993-12-27 1994-12-16 Method for producing aliphatic polyisocyanate Pending JPH07233137A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31319594A JPH07233137A (en) 1993-12-27 1994-12-16 Method for producing aliphatic polyisocyanate

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP5-331980 1993-12-27
JP33198093 1993-12-27
JP31319594A JPH07233137A (en) 1993-12-27 1994-12-16 Method for producing aliphatic polyisocyanate

Publications (1)

Publication Number Publication Date
JPH07233137A true JPH07233137A (en) 1995-09-05

Family

ID=26567476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31319594A Pending JPH07233137A (en) 1993-12-27 1994-12-16 Method for producing aliphatic polyisocyanate

Country Status (1)

Country Link
JP (1) JPH07233137A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007010996A1 (en) * 2005-07-22 2007-01-25 Mitsui Chemicals, Inc. Process for production of isocyanate, isocyanate produced by the process, and use of the isocyanate
WO2007020777A1 (en) * 2005-08-18 2007-02-22 Nippon Polyurethane Industry Co., Ltd. Process for producing aliphatic isocyanate having oxyalkylene group
JP2007223997A (en) * 2006-02-27 2007-09-06 Nippon Polyurethane Ind Co Ltd Method for producing aliphatic isocyanate containing oxyalkylene group
JP2018087167A (en) * 2016-11-29 2018-06-07 三井化学株式会社 Method for producing pentamethylene diisocyanate
CN108658809A (en) * 2018-07-13 2018-10-16 江苏快达农化股份有限公司 A method of preparing high-content isophthalic diformazan subunit isocyanates
US10640605B2 (en) 2017-04-10 2020-05-05 Mitsui Chemicals, Inc. Xylylenediisocyanate composition, xylylenediisocyanate-modified composition, two-component resin material, and resin
US11254783B2 (en) 2017-04-10 2022-02-22 Mitsui Chemicals, Inc. Xylylenediisocyanate composition, xylylenediisocyanate-modified composition, two-component resin material, and resin

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007010996A1 (en) * 2005-07-22 2007-01-25 Mitsui Chemicals, Inc. Process for production of isocyanate, isocyanate produced by the process, and use of the isocyanate
JP4861322B2 (en) * 2005-07-22 2012-01-25 三井化学株式会社 Method for producing isocyanate and method for producing amine hydrochloride
US8183407B2 (en) 2005-07-22 2012-05-22 Mitsui Chemicals, Inc. Process for production of isocyanate, isocyanate produced by the process, and use of the isocyanate
WO2007020777A1 (en) * 2005-08-18 2007-02-22 Nippon Polyurethane Industry Co., Ltd. Process for producing aliphatic isocyanate having oxyalkylene group
JP2007051092A (en) * 2005-08-18 2007-03-01 Nippon Polyurethane Ind Co Ltd Method for producing aliphatic isocyanate containing oxyalkylene group
JP2007223997A (en) * 2006-02-27 2007-09-06 Nippon Polyurethane Ind Co Ltd Method for producing aliphatic isocyanate containing oxyalkylene group
JP2018087167A (en) * 2016-11-29 2018-06-07 三井化学株式会社 Method for producing pentamethylene diisocyanate
US10640605B2 (en) 2017-04-10 2020-05-05 Mitsui Chemicals, Inc. Xylylenediisocyanate composition, xylylenediisocyanate-modified composition, two-component resin material, and resin
US11254783B2 (en) 2017-04-10 2022-02-22 Mitsui Chemicals, Inc. Xylylenediisocyanate composition, xylylenediisocyanate-modified composition, two-component resin material, and resin
CN108658809A (en) * 2018-07-13 2018-10-16 江苏快达农化股份有限公司 A method of preparing high-content isophthalic diformazan subunit isocyanates

Similar Documents

Publication Publication Date Title
CN110114339B (en) Process for preparing aliphatic isocyanates
JP2790513B2 (en) Method for producing xylylene diisocyanate
EP3683205B1 (en) Method for preparing aliphatic isocyanate
JPH0439456B2 (en)
JP3201921B2 (en) Method for producing aliphatic polyisocyanate
JPH07233137A (en) Method for producing aliphatic polyisocyanate
KR20030057466A (en) Method for producing carbamates and method for producing isocyanates
JPWO2009151005A1 (en) Method for producing isocyanate compound
JP2986888B2 (en) Method for producing aliphatic isocyanate
EP1721893A1 (en) Method for producing isocyanate compound
JP2764081B2 (en) Method for producing alicyclic-aliphatic diisocyanate
JPS61280462A (en) Manufacture of carbamate ester
WO2007020777A1 (en) Process for producing aliphatic isocyanate having oxyalkylene group
JPH11310567A (en) Production of aliphatic isocyanate compound
JP2804132B2 (en) Purification method of carbamate
JPH01102086A (en) Manufacture of isocyanate and use thereof for manufacturing ester group-containing polyisocyanate
JPH11310566A (en) Production of isocyanate compound
JP2880803B2 (en) Aromatic diisocyanate indane derivative and method for producing the same
JP2875847B2 (en) Method for producing isocyanatostyrene
JPS61134367A (en) Improved production of phenyl n-(2-biphenilylsulfonyl) carbamate
JPH04235954A (en) Production of urethane compound
JP2003286241A (en) Method for producing bicyclo[2.2.1]hept-2-ene-5-methyl isocyanate
JPH0687814A (en) Production of alpha-@(3754/24)3-isocyanatophenyl)ethyl isocyanate
JPS60116658A (en) Manufacture of organic isocyanic acid ester
JPH02270854A (en) Novel diisocyanate and production thereof