JPH02270854A - Novel diisocyanate and production thereof - Google Patents

Novel diisocyanate and production thereof

Info

Publication number
JPH02270854A
JPH02270854A JP1090676A JP9067689A JPH02270854A JP H02270854 A JPH02270854 A JP H02270854A JP 1090676 A JP1090676 A JP 1090676A JP 9067689 A JP9067689 A JP 9067689A JP H02270854 A JPH02270854 A JP H02270854A
Authority
JP
Japan
Prior art keywords
formula
phosgene
reaction
expressed
phosgenation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1090676A
Other languages
Japanese (ja)
Other versions
JP2784445B2 (en
Inventor
Kiyoshi Shikai
四海 潔
Ryuji Haseyama
龍二 長谷山
Kozo Hayashi
林 耕造
Katsuyoshi Sasagawa
勝好 笹川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP1090676A priority Critical patent/JP2784445B2/en
Publication of JPH02270854A publication Critical patent/JPH02270854A/en
Application granted granted Critical
Publication of JP2784445B2 publication Critical patent/JP2784445B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7614Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring
    • C08G18/7628Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring containing at least one isocyanate or isothiocyanate group linked to the aromatic ring by means of an aliphatic group

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

NEW MATERIAL:alpha-(3-Isocyanatophenyl)ethyl isocyanate expressed by formula I. USE:Usable as a raw material for polyurethane resins and polyurea resins in foams, elastomers, synthetic leathers, coatings, adhesives, films, etc. PREPARATION:alpha-(3-Aminophenyl)ethylamine expressed by formula II subjected to a cold heat two-stage phosgenation method for direct reaction thereof with phosgene to afford the compound expressed by formula I. Alternatively, the compound expressed by formula I is obtained using a method for phosgenating an amide hydrochloride by previously synthesizing a salt, such as hydrochloride, of the diamine expressed by formula II, suspending the resultant salt in an inert solvent and reacting the salt with phosgene.

Description

【発明の詳細な説明】 (産業上の利用分野〕 本発明は、新規ジイソシアナートおよびその製造法に関
する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a novel diisocyanate and a method for producing the same.

本発明のイソシアナートは新規な構造のジイソシアナー
トであり、ポリウレタン樹脂やポリウレア樹脂の原料と
して、気泡体、弾性体、合成皮革、塗料、接着剤、フィ
ルム等多方面に使用することができる。
The isocyanate of the present invention is a diisocyanate with a novel structure, and can be used in a wide variety of applications, including as a raw material for polyurethane resins and polyurea resins, foams, elastic bodies, synthetic leathers, paints, adhesives, and films.

〔従来の技術〕[Conventional technology]

従来、芳香族ジイソシアナートとしては、トルイレンジ
イソシアナート(以下TDIと略す)、ジフェニルメタ
ンジイソシアナートが工業的に大量生産され、ポリウレ
タン樹脂、ポリウレア樹脂の原料として多方面に使用さ
れている他、ナフタレンジイソシアナート、トリジンジ
イソンアナート等も工業的に使用されている。
Conventionally, as aromatic diisocyanates, toluylene diisocyanate (hereinafter abbreviated as TDI) and diphenylmethane diisocyanate have been industrially mass-produced and are used in a wide range of fields as raw materials for polyurethane resins and polyurea resins. Naphthalene diisocyanate, tolidine diisonanate, etc. are also used industrially.

また、脂肪族ジイソシアナートとしては、ヘキサメチレ
ンジイソンアナート、キシリレンジイソシアナートがそ
れぞれ無黄変型、無黄変型として工業的に使用されてい
る。
Furthermore, as aliphatic diisocyanates, hexamethylene diisonanate and xylylene diisocyanate are industrially used as non-yellowing and non-yellowing types, respectively.

脂環族イソシアナートには、イソホロンジイソシアナー
ト(以下IPDIと略す)、ジ(イソシアナトシクロへ
キシル)メタン(以下H,2−MDI々略す)があり、
いずれも無黄変型ジイソシアナ−l−aして工業的に使
用されている。
Alicyclic isocyanates include isophorone diisocyanate (hereinafter abbreviated as IPDI) and di(isocyanatocyclohexyl)methane (hereinafter abbreviated as H,2-MDI),
All of them are used industrially as non-yellowing diisocyanates.

これらのうち、IPDIはその構造トニ、っのイソシア
ナ−IJ5のポリオール等活性水素化合物との反応性が
異なる特徴を有しており、この特徴を利用し、ナネ1、
コーティング剤その他に用いられている。
Among these, IPDI has different characteristics in its reactivity with active hydrogen compounds such as polyols with the structure ni, isocyanana-IJ5.
Used in coating agents and other applications.

また、T D l 4:は2.4−T I) lの二つ
のイソソアナ−1・基の活性水素化合物との反応性の差
を利用した用途がある。
In addition, there are uses that utilize the difference in reactivity between the two isosoana-1 groups of T D l 4: is 2.4-T I) l with active hydrogen compounds.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は、上記の先行技術のいずれにも属さない構造の
全く異なる新規なジイソシアナ−1・化合物を提供する
こ々を目的としている。
The object of the present invention is to provide a novel diisocyanate-1 compound having a completely different structure that does not belong to any of the above-mentioned prior art.

[課題を解決するだめの手段] 本発明の目的は、下記の9■き構造式を有する新規なイ
ソノアナーj・化合物であるα−(3−イソソアナトフ
ェニル)エチルイソシアナート(以下l E B lと
略す)により達成される。
[Means for Solving the Problems] The object of the present invention is to obtain α-(3-isosoanatophenyl)ethyl isocyanate (hereinafter referred to as l E B (abbreviated as l).

C1(。C1(.

NcOH 本発明のI E B Iは、従来のジイソンアナー1−
化合物と比較すると以下に述べる優れた特徴を有する。
NcOH The IEB I of the present invention is similar to the conventional Jison Anner 1-
Compared to other compounds, it has the following excellent characteristics.

即ち、IEBIは、(1)に示されるように、芳香環に
直結したイソシアチー1〜基と脂肪族炭素に結合したイ
ソシアナート基を併せ持つ。
That is, as shown in (1), IEBI has both an isocyanate group directly bonded to an aromatic ring and an isocyanate group bonded to an aliphatic carbon.

芳香環に直結したイソシアナート基の活性水素化合物と
の反応性は、脂肪族炭素に結合したイソシアナート基の
活性水素化合物との反応性に比較してはるかに大きいた
め、ごれを利用した多くの用途が期待される。例えば芳
香環に直結したイソシアナート基をまず活性水素化合物
と反応さ、■、末端に脂肪属炭素に結合したイソシアナ
ート基を有するプレポリマーあるいは(=J加体をつく
ることにより、安定なかつ脂肪族イソシアナートの特徴
である難黄変性又は無黄変性を有する有用なプレポリマ
ーあるいはイ・1加体を得ることが期待される。
The reactivity of isocyanate groups directly bonded to aromatic rings with active hydrogen compounds is much greater than the reactivity of isocyanate groups bonded to aliphatic carbons with active hydrogen compounds. expected to be used for. For example, by first reacting an isocyanate group directly bonded to an aromatic ring with an active hydrogen compound, It is expected that useful prepolymers or i-1 adducts having the retardant or non-yellowing characteristic of isocyanates can be obtained.

又、芳香環のメタの位置に置換基を有するため、本発明
のl E +31を原ネ)とするウレタン樹脂は、適度
の機械的強度、耐熱性、耐t、+ V性を有することが
期待される。しかも、本発明のIEBIの合成は、前記
式(n)のジアミン又はその塩とホスゲンを後述する方
法により反応させることで、二り業的にも有利な方法で
行われるごとを見出し、本発明を完成した。
In addition, since it has a substituent at the meta position of the aromatic ring, the urethane resin of the present invention (based on l E +31) can have appropriate mechanical strength, heat resistance, t resistance, and +V properties. Be expected. Moreover, it has been found that the synthesis of IEBI of the present invention can be carried out in a commercially advantageous method by reacting the diamine of formula (n) or its salt with phosgene by the method described below, and the present invention completed.

即ち、本発明のIEBIは、前記の弐(Il)で表わさ
れるジアミンを直接ホスゲンと反応さ一ロる方法又は、
式(Il)で表わされるジアミンの塩酸塩等の塩をrめ
合成し、これを不活性溶媒中に懸濁させてホスゲンと反
応させる方法によって製造される。
That is, the IEBI of the present invention can be obtained by directly reacting the diamine represented by Il with phosgene, or
It is produced by a method of synthesizing a salt such as a hydrochloride of a diamine represented by formula (Il), suspending it in an inert solvent, and reacting it with phosgene.

前著は“冷熱2段ホスゲン化゛と呼ばれる方法で、反応
の実施態様に特に限定はないが、IEBIを合成する反
応は、第2段ホスゲン化の反応温度を比較的低い温度を
用いても、比較的短い反応時間で所望の品質のイソシア
ナー[が高い収率で得られるこ々を見出したことにより
、反応に用いる不活性溶媒の選択範囲が極めて広く、ま
た反応温度の保持に必要な熱媒体の選択範囲も広くなっ
たのである。
The previous book describes a method called "cold-thermal two-stage phosgenation," and although there are no particular limitations on the reaction method, the reaction for synthesizing IEBI can be carried out even if the reaction temperature of the second stage phosgenation is relatively low. By discovering that isocyaners of the desired quality can be obtained in high yields in a relatively short reaction time, the selection range of inert solvents used in the reaction is extremely wide, and the heat required to maintain the reaction temperature is The range of media selection has also expanded.

即ち、ホスゲンガスを不活性溶媒に0〜20°C1好ま
しくは0〜5’Cで溶解し、その後所定量のホスゲンを
導入しながら、不活性溶媒に溶解した代(n)のジアミ
ンを添加する。この間反応液の温度を20°C以下に保
ち、発生ずる塩化水素と過剰ホスゲンは還流冷却器を通
して放出する。ジアミン溶液の添加後所定時間反応を続
ける。次に反応液を加熱し、約1時間から3時間で第2
段反応温度まで昇温する。第2段反応温度は50〜14
0 ’C1好ましくは70〜100 ’Cであり、所定
の温度まで昇温後ホスゲンの導入を続けながら、所定時
間反応を続ける。反応液のスラリーが完全に溶解すれば
反応終了とする。このように第2段反応温度が従来の冷
熱2段ホスゲン化に比較して、低い温度でも目的を達す
ることができるので、反応に用いる不活性溶媒の種類と
して従来用いらるモノクロルヘンゼン、オルトージクロ
ルヘンゼン等の塩素化炭化水素類、キシレン、トルエン
のような芳香族炭化水素類の他、酢酸エチル、酢酸ブチ
ル、酢酸アミルのようなエステル類、ベンゼンのような
低沸点の芳香族炭化水素類でも、とくに加圧化で反応を
行わせる必要なく、ホスゲン化反応を完結させることが
できる。このことは、不活性溶媒の選択を広い範囲で行
うことを可能とすると同時に、沸点の低い不活性溶媒を
選択すれば、ホスゲン化反応後の脱溶媒を極めて容易に
行うことを可能にするものである。
That is, phosgene gas is dissolved in an inert solvent at 0 to 20°C, preferably 0 to 5'C, and then, while introducing a predetermined amount of phosgene, the amount (n) of diamine dissolved in the inert solvent is added. During this time, the temperature of the reaction solution is kept below 20°C, and the generated hydrogen chloride and excess phosgene are discharged through a reflux condenser. After addition of the diamine solution, the reaction is continued for a predetermined time. Next, the reaction solution is heated, and the second
Raise the temperature to the stage reaction temperature. The second stage reaction temperature is 50-14
0'C1 is preferably 70 to 100'C, and after raising the temperature to a predetermined temperature, the reaction is continued for a predetermined time while continuing to introduce phosgene. The reaction is complete when the reaction solution slurry is completely dissolved. In this way, the objective can be achieved even when the second stage reaction temperature is lower than that of the conventional two-stage cold and hot phosgenation. In addition to chlorinated hydrocarbons such as dichlorhenzene, aromatic hydrocarbons such as xylene and toluene, esters such as ethyl acetate, butyl acetate, and amyl acetate, and low-boiling aromatic carbons such as benzene. Even with hydrogen, the phosgenation reaction can be completed without the need to carry out the reaction under particular pressure. This makes it possible to select inert solvents within a wide range, and at the same time, if an inert solvent with a low boiling point is selected, it is possible to perform desolvation after the phosgenation reaction extremely easily. It is.

後者の方法は、“アミン塩酸塩のホスゲン化法”と呼ば
れるもので、予め上記式(II)のジアミンの塩酸塩を
合成する。塩酸塩の合成は周知の方法で式([1)のジ
アミンを塩化水素又は濃塩酸と処理することにより容易
に得られる。この場合ホスゲン化反応の溶媒として、上
記のように広範囲の不活性溶媒を選択することができる
ため、ジアミンの塩酸塩製造において塩化水素の溶解度
が比較的高い溶媒を用いると比較的容品にジアミンを完
全に塩酸塩とすることができる。塩酸塩のホスゲン化に
おいては、反応器内で、塩酸塩を不活性溶媒中で強い撹
拌によってできるだけ分散させ、反応温度を70〜16
0°C1好ましくは90〜120°Cに維持しホスゲン
を導入する。反応の進行は発生する塩化水素ガスの量と
不活性溶媒に不溶のジアミン塩酸塩が消失し、反応液が
澄明均一になることにより推測できる。発生する塩化水
素と過剰のホスゲンガスは還流冷却器を通して放出する
The latter method is called "amine hydrochloride phosgenation method", and the diamine hydrochloride of the above formula (II) is synthesized in advance. The hydrochloride salt can be easily synthesized by treating the diamine of formula (1) with hydrogen chloride or concentrated hydrochloric acid in a well-known manner. In this case, as the solvent for the phosgenation reaction, a wide range of inert solvents can be selected as mentioned above, so if a solvent with a relatively high solubility of hydrogen chloride is used in the production of diamine hydrochloride, the diamine will be relatively clean. can be completely converted into hydrochloride. In the phosgenation of hydrochloride, the hydrochloride is dispersed as much as possible in an inert solvent by strong stirring in the reactor, and the reaction temperature is maintained at 70-16°C.
The temperature is maintained at 0°C, preferably 90 to 120°C, and phosgene is introduced. The progress of the reaction can be estimated from the amount of hydrogen chloride gas generated and the disappearance of diamine hydrochloride insoluble in the inert solvent, and the fact that the reaction solution becomes clear and homogeneous. The hydrogen chloride and excess phosgene gas generated are discharged through a reflux condenser.

°°冷冷熱2ホホスゲン化°゛゛アミン塩酸塩のホスゲ
ン化゛のいずれの方法においても、反応終了後Gこ反応
溶媒中に窒素ガスを導入し、溶存しているホスゲンを除
き冷却、濾過した後、不活性溶媒を減圧上留去し、更に
生成しているジイソシアナートを減圧蒸留等により精製
して目的とするジイソシアナート(1)を得ることがで
きる。
In both cold and hot 2-phosgenation methods and phosgenation of amine hydrochloride, after the reaction is complete, nitrogen gas is introduced into the reaction solvent, the dissolved phosgene is removed, and the mixture is cooled and filtered. , the inert solvent is distilled off under reduced pressure, and the diisocyanate produced is purified by distillation under reduced pressure or the like to obtain the desired diisocyanate (1).

〔実施例〕〔Example〕

以下実施例により本発明を具体的に説明する。 The present invention will be specifically explained below using Examples.

実施例1 式(It)で示されるα−(3−アミノフェニル)エチ
ルアミンを原料として冷熱2段法でホスゲン化を行った
。攪拌機、温度計、ホスゲンガス導入管、冷却管、滴下
ロートを装備した21反応フラスコにオルトジクロルヘ
ンゼン800gを装入し、攪拌上反応フラスコを氷水浴
につけ、内温を約2°Cに保ち、ホスゲンガスを75 
g / hの割合で1時間フラスコ内に導入した。次い
でオルトジクロルヘンゼン307gに溶解した上記ジア
ミン(II)40 g (0,294mol )を1時
間で滴下した。アミン滴下時にはホスゲンガスを75 
g / hの割合で導入しながら、2〜7°Cで冷ホス
ゲン化を行い、滴下後火に7〜16°Cで30分間ホス
ゲンを508 / hの割合で導入した。アミン滴下後
、フラスコ内は淡黄白色スラリー状液となった。
Example 1 Using α-(3-aminophenyl)ethylamine represented by formula (It) as a raw material, phosgenation was carried out by a cold and hot two-stage method. 800 g of ortho-dichlorohenzene was charged into a 21 reaction flask equipped with a stirrer, a thermometer, a phosgene gas introduction tube, a cooling tube, and a dropping funnel, and after stirring, the reaction flask was placed in an ice water bath to maintain the internal temperature at approximately 2°C. , 75 phosgene gas
g/h into the flask for 1 hour. Next, 40 g (0,294 mol) of the above diamine (II) dissolved in 307 g of ortho-dichlorohenzene was added dropwise over 1 hour. When dropping amine, add 75% phosgene gas.
Cold phosgenation was carried out at 2-7 °C while introducing at a rate of 508 g / h, and after the dropwise addition phosgene was introduced at a rate of 508 / h into the fire at 7-16 °C for 30 minutes. After dropping the amine, the inside of the flask became a pale yellowish white slurry liquid.

次いでホスゲンを50 g / hの割合で導入しなが
ら反応フラスコ内液を2.5時間で74°Cに昇温した
Next, while introducing phosgene at a rate of 50 g/h, the temperature of the reaction flask was raised to 74°C over 2.5 hours.

昇温後火にホスゲンの導入を続けながら、反応温度74
〜100°Cで2時間熱ホスゲン化を行った。熱ホスゲ
ン化の過程でフラスコ内液は淡褐色透明溶液となった。
While continuing to introduce phosgene into the flame after raising the temperature, the reaction temperature was increased to 74.
Thermal phosgenation was carried out at ~100°C for 2 hours. During the thermal phosgenation process, the liquid in the flask became a light brown transparent solution.

冷熱2段ホスゲン化で合計210gのホスゲンガスを導
入した。これは理論量の約3.6倍であった。熱ホスゲ
ン化終了後、90°Cで窒素ガスを2時間導入し脱ガス
を行った。冷却後濾過した後、減圧下で溶媒のオルトジ
クロルヘンゼンの留去を行い、褐色の反応液約55gを
得た。更に減圧蒸留により、若干量副生ずるα−(3−
イソシアナトフェニル)エチルクロリドを除去すること
によって、約44.7 gの沸点136°C/10mm
11gの留分を得た(無色透明液体、NC0%44.6
1)。この留分の元素分析値は下記の通りであった。
A total of 210 g of phosgene gas was introduced through cold and hot two-stage phosgenation. This was about 3.6 times the theoretical amount. After the thermal phosgenation was completed, nitrogen gas was introduced at 90°C for 2 hours to perform degassing. After cooling and filtration, the solvent, orthodichlorohenzene, was distilled off under reduced pressure to obtain about 55 g of a brown reaction liquid. Further, by vacuum distillation, a small amount of α-(3-
By removing isocyanatophenyl)ethyl chloride, the boiling point of approximately 44.7 g 136 °C/10 mm
11 g of fraction was obtained (colorless transparent liquid, NC0% 44.6
1). The elemental analysis values of this fraction were as follows.

元素分析値(%)   (C1o11nNzOz とし
て)CHN 計算値  63.76   4.25   14.88
分析値  63.86   4.22   14.91
また、第1図に示すIRスペクトル、第2図の’H−N
MRスペクトルが得られた。更に、GC−MSスペクト
ルでは(M” ) −188が観測され、式(1)で表
される化合物の分子量188.2と一致した。以上より
この留分は目的物であるα−(3−イソシアナトフェニ
ル)エチルイソンアづ−1と同定した。
Elemental analysis value (%) (as C1o11nNzOz) CHN Calculated value 63.76 4.25 14.88
Analysis value 63.86 4.22 14.91
In addition, the IR spectrum shown in Figure 1, 'H-N in Figure 2
An MR spectrum was obtained. Furthermore, in the GC-MS spectrum, (M") -188 was observed, which coincided with the molecular weight of the compound represented by formula (1), 188.2. From the above, this fraction has the target product α-(3- It was identified as isocyanatophenyl)ethylisona-1.

実施例2 弐(jl)で示されるジアミンを原ねとして、塩酸塩法
でホスゲン化を行った。溶媒にはオル1−ジクロルヘン
ゼンを用いた。実施例1と同様な反応フラスコに式(1
1)で示されるシアミン54.3g(0,4モル)を1
.555gのオル1ジクロルヘンゼンに7容解したン容
液を入れ、攪拌しながら145〜167“C;Eで昇温
したのち、窒素ガスを300mj!/分の割合で】、5
時間溶液内にバブリングしながら通気し系内の水分を除
去した。次いで)容液の温度19°Cまで冷却したのち
、撹拌しながら塩化水素を溶液中ζこバブリングし、塩
酸塩を生成させた。塩酸塩が生成するにつれ、液温は上
昇するが、冷却して35°C以下に維持した。15時間
後塩化水素の導入をやめ、什成した塩酸塩スラリーにホ
スゲンガスを50 g / hの割合で吹き込みながら
昇温し、2時間かけて120’Cまで昇温した。更に1
20’cで2時間7Iクスゲン吹込みを続けた。反応液
がほぼ澄明となったので、ホスゲン吹き込みをやめ、1
20°Cで2時間窒素ガスを300mff/分の割合で
通気し脱ガスを行った。ホスゲン導入量は合計200 
gであった。
Example 2 Phosgenation was performed using the diamine represented by 2 (jl) as a raw material by the hydrochloride method. Ol-1-dichlorohenzene was used as a solvent. A reaction flask similar to that in Example 1 was prepared with formula (1
54.3 g (0.4 mol) of cyamine shown in 1) was added to 1
.. Pour 7 mL of solution into 555 g of ol-1-dichlorohenzene, raise the temperature to 145-167 "C; E while stirring, and then add nitrogen gas at a rate of 300 mj!/min], 5
The water in the system was removed by bubbling the solution for a period of time to aerate the solution. Then, after the solution was cooled to a temperature of 19° C., hydrogen chloride was bubbled through the solution while stirring to generate hydrochloride. As the hydrochloride was formed, the temperature of the liquid rose, but it was cooled and maintained below 35°C. After 15 hours, the introduction of hydrogen chloride was stopped, and the resulting hydrochloride slurry was heated to 120'C over 2 hours while blowing phosgene gas at a rate of 50 g/h. 1 more
7I Kusugen injection was continued for 2 hours at 20'c. Since the reaction solution became almost clear, the phosgene injection was stopped and 1
Degassing was performed by blowing nitrogen gas at a rate of 300 mff/min at 20°C for 2 hours. The total amount of phosgene introduced is 200
It was g.

これは、理論量の約2.5倍となる。脱ガス後の反応液
を冷却後濾過したのち、減圧下で溶媒のオル1ジクロル
ヘンゼンの留去を行ない、1色の反応液約65gを得た
。更に減圧朶留により、副生しているα−(3−イソシ
アノートフェニル)エチルクロライドを除去することに
よって約46.4 gの−1:留分を得た。ごの留分は
無色透明の液体でNC0%44.60であった。また元
素分析値は次の通りであった。
This is about 2.5 times the theoretical amount. After the degassed reaction liquid was cooled and filtered, the solvent ol-1-dichlorohenzene was distilled off under reduced pressure to obtain about 65 g of a one-color reaction liquid. Further, by-product α-(3-isocyanophenyl)ethyl chloride was removed by distillation under reduced pressure to obtain about 46.4 g of -1: fraction. The second fraction was a colorless and transparent liquid with an NC of 0% and 44.60. The elemental analysis values were as follows.

元素分析値(%)   (C+oLIIzOz として
)Cl−(N 計34[イ直     63.76    4.25 
   14.88分析値  63.51.  4゜08
  14.7811’?スペクトル、 l H−N M
 Rスペクトルも実施例1と同様なものが得られた。
Elemental analysis value (%) (as C+oLIIzOz) Cl-(N Total 34 [I direct 63.76 4.25
14.88 Analysis value 63.51. 4゜08
14.7811'? Spectrum, lH-NM
The same R spectrum as in Example 1 was also obtained.

実施例3 ホスゲン化の溶媒に酢酸ノルマルブチルを用いた。実施
例1と同様の2p、反応フラスコに酢酸ノルマルブチル
を1000g装入し、撹拌上反応フラスコを氷水浴につ
け、内温を3〜5 ’C保ち、トスゲンガスtloOg
/hの割合で1時間フラスコ内に導入した。次いで、酢
酸ノルマルブチル500gに溶解した前記ジアミン(n
 ) 5C3g (0,40mol)を1時間で滴下し
た。アミン滴下時にはホスゲンガスを75g/hの割合
で導入しながら、5〜10°Cで冷ポスゲン化を行い、
滴トー後火に5〜8°C:で30分間ホスゲンを75g
/hの割合で導入した。
Example 3 Normal butyl acetate was used as a solvent for phosgenation. 2P same as Example 1, 1000g of n-butyl acetate was charged into the reaction flask, and after stirring, the reaction flask was placed in an ice water bath, the internal temperature was maintained at 3-5'C, and the tosogen gas tloOg was added.
/h into the flask for 1 hour. Next, the diamine (n
) 3 g (0.40 mol) of 5C was added dropwise over 1 hour. When dropping the amine, cold posgenization was performed at 5 to 10°C while introducing phosgene gas at a rate of 75 g/h.
Add 75g of phosgene for 30 minutes at 5-8°C.
/h.

アミン滴−ト後は、フラスコ内は白色スラリー状液J−
なった。次いで、ホスゲンを12.5g/hの割合1′
導入しながら、反応、フラスコ内液を30分間で80’
Cに4温した。昇/′M後ホスゲンを75g/hの割合
で導入しながら、反応温度80±2゛〔:で1時間、9
[] −+l 2°(:で2時間熱ポスゲン化を行った
。熱ホスゲン化の過程でフラスコ内液は淡黄色透明78
液とイrっな。冷熱2段ホスゲン化で合計22.5gの
ホスゲンを導入した。これは理論量の約28倍であった
。熱ホスゲン化終了後、85±2“Cで窒素ガスを約2
50d/分の割合で2時間導入し、脱ガスを行った。冷
却後濾過し、減圧下で溶媒の酢酸ノルマルブチルを留去
し、褐色の反応液約75gを得た。
After dropping the amine, the inside of the flask is a white slurry liquid.
became. Then phosgene was added at a rate of 12.5 g/h 1'
While introducing the reaction, the liquid in the flask was heated to 80' for 30 minutes.
Warmed to 4 degrees C. After increasing/'M, phosgene was introduced at a rate of 75 g/h and the reaction temperature was 80 ± 2゛ for 1 hour at 9
[] -+l 2° (:) Thermal phosgenation was carried out for 2 hours. During the thermal phosgenation process, the liquid in the flask turned pale yellow and transparent.
Don't touch the liquid. A total of 22.5 g of phosgene was introduced by cold and hot two-stage phosgenation. This was about 28 times the theoretical amount. After the completion of thermal phosgenation, nitrogen gas was added at 85±2"C for about 2
The gas was introduced at a rate of 50 d/min for 2 hours to perform degassing. After cooling, the mixture was filtered, and the solvent n-butyl acetate was distilled off under reduced pressure to obtain about 75 g of a brown reaction liquid.

更に減圧蒸留により精製し゛ζ約56.2gの主留分を
得た。この1−留分は無色透明液体でN00%44.5
であり、元素分析、IRスベクl−ル、ガスクロマトグ
ラフ、’ HN M Rスペクトルは実施例1と同様な
ものであった。
It was further purified by vacuum distillation to obtain about 56.2 g of main fraction. This 1-distillate is a colorless transparent liquid with N00%44.5
The elemental analysis, IR spectrum, gas chromatography, and 'HNMR spectrum were the same as in Example 1.

尚、原料の式(n)で表わされるジアミンは以ドの参考
例ムこ記載の方法で合成した。
The diamine represented by the formula (n) as a raw material was synthesized by the method described in Reference Example below.

(参考例〕 内容積500m2の攪拌機付SO53161,製オート
クレーブにm−二トロアセトフェノン33.0 g (
0,2モル)、メタノール200mff及びう不一ニノ
う゛ル4.6gにノケル分として)を仕込んだ後、窒素
で置換してしばらく撹拌する。
(Reference example) 33.0 g of m-nitroacetophenone (
0.2 mol), 200 mff of methanol, and 4.6 g of nitric acid) were added, and the mixture was purged with nitrogen and stirred for a while.

オートクl/−ブを氷水で冷却しながらアンモニアを約
40g、導入した。引き続き、水素をl1太し、40k
g/cイGとした後、昇温して70’Cε5−シた。イ
ーの温度で55分間反応ざ−U、水素を16.5Nf!
吸収したところで吸収が停止したので反応を終了した。
Approximately 40 g of ammonia was introduced into the autoclave while cooling it with ice water. Continue to increase the hydrogen by l1 and make it 40k.
After setting the temperature to g/c-G, the temperature was raised to 70'Cε5-. React for 55 minutes at a temperature of E, and add 16.5 Nf of hydrogen!
The reaction was terminated because the absorption stopped at the point where it was absorbed.

室温まで放冷した後反応液を取り出して′a過し、濾液
を5〜6 mm)Igの圧力で真空蒸留して留出温度1
20〜122°Cの留分23.9g (収率88.0%
)を得た。
After cooling to room temperature, the reaction solution was taken out and filtered, and the filtrate was vacuum distilled at a pressure of 5 to 6 mm) Ig to a distillate temperature of 1.
23.9g of fraction from 20 to 122°C (Yield 88.0%
) was obtained.

この液体は無色透明であり、元素分析値、GC−MSス
ペクトル、IR−スペクトル、 ’H−NMRスペクト
ルの分析値を調べたところ下記のデータが得られたこと
からα−(3−アミノフェニル)エチルアミンであると
同定した。
This liquid is colorless and transparent, and when the analysis values of elemental analysis, GC-MS spectrum, IR-spectrum, and 'H-NMR spectrum were investigated, the following data were obtained, indicating that α-(3-aminophenyl) It was identified as ethylamine.

ガスクロマトグラフィーによる純度は99.3%であっ
た。
Purity by gas chromatography was 99.3%.

(1)  ’l(−NMRスペクトル(100MHz 
、、DMSO−66)δppm : 1.0〜1.5 ニーCH3プロトン   3H4,2
〜5.3  : −C−N11□       211
6.1〜7.2:ヘンゼン環プロトン411(2)IR
スペクトル(岩塩板、液膜法)波数 cm−’:  3
400.3340.3190.2940.1600.1
485.1455.1360.1310.1160(3
)GC−MSスペクトル El−MSスペクトル:  (M”) =136(注、
APEAの分子量Ce1l+□N2=136.2)(4
)元素分析値 (CIIH,□N2)CHN 計算値(χ)  70.48   B、81  20.
56実測値(χ)70.45  8.91  20.3
(1) 'l(-NMR spectrum (100MHz
,,DMSO-66) δppm: 1.0-1.5 Ni CH3 proton 3H4,2
~5.3: -C-N11□ 211
6.1-7.2: Hensen ring proton 411(2) IR
Spectrum (rock salt plate, liquid film method) wave number cm-': 3
400.3340.3190.2940.1600.1
485.1455.1360.1310.1160 (3
) GC-MS spectrum El-MS spectrum: (M”) = 136 (Note,
Molecular weight of APEA Ce1l+□N2=136.2)(4
) Elemental analysis value (CIIH, □N2) CHN Calculated value (χ) 70.48 B, 81 20.
56 Actual value (χ) 70.45 8.91 20.3
8

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図はそれぞれα−(3−イソシアナト
フェニル)エチルイソシアナートの赤外線吸収スペクト
ル及び’H−NMRスペクトルを示す図である。 特許出願人  三井東圧化学株式会社 手続補正書(凧) 平成1年8月10日 特許庁長官 吉 1)文 毅 殿 1、事件の表示 平成1年特許願第 90676号 2、発明の名称 新規ジイソシアナ−1・およびその製造方法3、補正を
する者 事件との関係  特許出願人 住所 東京都丁代田区霞が関三丁目2番5号4補正命令
の1旧=1 (発送8 ) 平成1年7月2511 5、補正の対象 図面
FIG. 1 and FIG. 2 are diagrams showing an infrared absorption spectrum and an 'H-NMR spectrum of α-(3-isocyanatophenyl)ethyl isocyanate, respectively. Patent Applicant Mitsui Toatsu Chemical Co., Ltd. Procedural Amendment (Kite) August 10, 1999 Commissioner of the Japan Patent Office Yoshi 1) Moon Takeshi 1, Indication of the case 1999 Patent Application No. 90676 2, New title of the invention Diisocyanate 1 and its manufacturing method 3, and its relationship to the case of the person making the amendment Patent applicant address 3-2-5 Kasumigaseki, Choyoda-ku, Tokyo 4 Amendment order 1 Old = 1 (Delivery 8) July 1999 Month 2511 5, drawings subject to amendment

Claims (1)

【特許請求の範囲】 1)式( I )で示されるα−(3−イソシアナトフェ
ニル)エチルイソシアナート。 ▲数式、化学式、表等があります▼( I ) 2)式(II)で表わされるα−(3−アミノフェニル)
エチルアミンまたはその塩をホスゲンと反応させること
を特徴とするα−(3−イソシアナトフェニル)エチル
イソシアナートの製造方法。 ▲数式、化学式、表等があります▼(II)
[Claims] 1) α-(3-isocyanatophenyl)ethyl isocyanate represented by formula (I). ▲There are mathematical formulas, chemical formulas, tables, etc.▼(I) 2) α-(3-aminophenyl) represented by formula (II)
A method for producing α-(3-isocyanatophenyl)ethyl isocyanate, which comprises reacting ethylamine or a salt thereof with phosgene. ▲There are mathematical formulas, chemical formulas, tables, etc.▼(II)
JP1090676A 1989-04-12 1989-04-12 New diisocyanate and method for producing the same Expired - Fee Related JP2784445B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1090676A JP2784445B2 (en) 1989-04-12 1989-04-12 New diisocyanate and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1090676A JP2784445B2 (en) 1989-04-12 1989-04-12 New diisocyanate and method for producing the same

Publications (2)

Publication Number Publication Date
JPH02270854A true JPH02270854A (en) 1990-11-05
JP2784445B2 JP2784445B2 (en) 1998-08-06

Family

ID=14005143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1090676A Expired - Fee Related JP2784445B2 (en) 1989-04-12 1989-04-12 New diisocyanate and method for producing the same

Country Status (1)

Country Link
JP (1) JP2784445B2 (en)

Also Published As

Publication number Publication date
JP2784445B2 (en) 1998-08-06

Similar Documents

Publication Publication Date Title
US5523467A (en) Process for the preparation of aliphatic polyisocyanates
CA2413678A1 (en) Improved process for the production of (poly)isocyanates in the gas phase
JPH03118368A (en) Preparation of polyisocyanate containing urethodione
KR20190029446A (en) Method for preparing aliphatic isocyanate
US3736350A (en) Aromatic diamines containing ester groups
JPWO2009151005A1 (en) Method for producing isocyanate compound
US3470227A (en) Process for the production of xylylene diisocyanate
US4597909A (en) Process for the production of polyisocyanates
CN1926096B (en) Method for producing isocyanate compound
JPH02270854A (en) Novel diisocyanate and production thereof
JPH08301971A (en) Low-viscosity,urea-containing (cyclic) aliphatic polyamine, its production,and pur-reaction lac and component for coating composition and adhesive composition comprising saidcompound
JP2764081B2 (en) Method for producing alicyclic-aliphatic diisocyanate
US5552507A (en) Diisocyanates and processes for their production and use
KR20180030657A (en) Method for producing cyclic isocyanate
US4107199A (en) Bis(isocyanatopropyl) arylacetonitriles
US3488374A (en) Preparation of polyisocyanate compositions
JPH0687814A (en) Production of alpha-@(3754/24)3-isocyanatophenyl)ethyl isocyanate
GB1600341A (en) Process for the prepartion of (thio) hydantoins substituted with amide groups
JP2880803B2 (en) Aromatic diisocyanate indane derivative and method for producing the same
JP4423726B2 (en) Novel aromatic diisocyanate compound and process for producing the same
JPH01287128A (en) Method for preparation of polyisocyanate
JP2708553B2 (en) Novel aliphatic triisocyanate and method for producing the same
JPS6391355A (en) Diisocyanate, manufacture and use
US5171468A (en) Aromatic polyisocyanate
SU719998A1 (en) Aromatic bis-(o-cyanoisocyanates) as monomers for polycondensation and their preparation method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees