JP3201921B2 - Method for producing aliphatic polyisocyanate - Google Patents
Method for producing aliphatic polyisocyanateInfo
- Publication number
- JP3201921B2 JP3201921B2 JP04295695A JP4295695A JP3201921B2 JP 3201921 B2 JP3201921 B2 JP 3201921B2 JP 04295695 A JP04295695 A JP 04295695A JP 4295695 A JP4295695 A JP 4295695A JP 3201921 B2 JP3201921 B2 JP 3201921B2
- Authority
- JP
- Japan
- Prior art keywords
- reaction
- phosgene
- gas
- charging
- liquid medium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、脂肪族ポリアミンもし
くはその塩酸塩又は炭酸塩とホスゲンとを反応させて脂
肪族ポリイソシアナートを製造する方法に関するもので
ある。The present invention relates to a method for producing an aliphatic polyisocyanate by reacting an aliphatic polyamine or a hydrochloride or carbonate thereof with phosgene.
【0002】脂肪族ポリイソシアナートは化学工業、樹
脂工業、塗料工業等の分野に於いて、ポリウレタン系材
料、ポリ尿素系材料、ポリイソシアヌレート系材料の原
料として、極めて有用な化合物である。[0002] Aliphatic polyisocyanates are extremely useful compounds as raw materials for polyurethane-based materials, polyurea-based materials, and polyisocyanurate-based materials in the fields of chemical industry, resin industry, paint industry and the like.
【0003】[0003]
【従来の技術】ホスゲン法による脂肪族ポリイソシアナ
ートの製造は、アミンとホスゲンを直接反応させてイソ
シアナートを得る直接法と、アミンと塩酸ガス又は炭酸
ガス等から一旦アミン塩酸塩又は炭酸塩等のアミン塩を
得、これをホスゲンと反応させる造塩法に大別される
が、何れの方法も中間体であるカルバモイルクロライド
を生成させ、これを脱塩酸する事によって脂肪族ポリイ
ソシアナートを製造する方法である。2. Description of the Related Art An aliphatic polyisocyanate is produced by a phosgene method by directly reacting an amine with phosgene to obtain an isocyanate, or by temporarily reacting an amine with hydrochloric acid gas or carbon dioxide gas to obtain an amine hydrochloride or carbonate. The method is roughly divided into the salt formation method of obtaining an amine salt of the above and reacting it with phosgene.In each case, an aliphatic polyisocyanate is produced by producing an intermediate carbamoyl chloride and dehydrochlorinating it. How to
【0004】カルバモイルクロライドを脱塩酸しイソシ
アナートにする反応は、反応速度が遅く、一般的には少
なくとも120℃以上、通常130℃以上の高温が必要
である。この反応速度が遅い理由は、そのもの自身の反
応性が低いことにもよるが、もう一方の要因としては、
この反応が平衡反応である事が挙げられる。即ち、カル
バモイルクロライドの分解によって生成した塩酸ガスが
既に生成していたイソシアナートと反応して再びカルバ
モイルクロライドを生成する為である。ホスゲン法によ
るイソシアナートの製造では上記理由により、130℃
以上の高温で極めて長時間反応しなければならず、生成
したイソシアナートが長時間熱にさらされイソシアナー
ト自身のタール化が起こり、収率が低下する。また中間
体であるカルバモイルクロライドは、イソシアナートよ
りもはるかにタール化速度が速く更に収率を低下させ、
極めて収率が悪いといった問題点があった。[0004] The reaction for dehydrochlorinating carbamoyl chloride to isocyanate requires a low reaction rate, and generally requires a high temperature of at least 120 ° C or higher, usually 130 ° C or higher. The reason for this slow reaction rate is that the reaction itself is low, but the other factor is that
This reaction is an equilibrium reaction. That is, the reason is that hydrochloric acid gas generated by the decomposition of carbamoyl chloride reacts with isocyanate that has already been generated to generate carbamoyl chloride again. In the production of isocyanate by the phosgene method, for the above-mentioned reason, 130 ° C.
The reaction must be carried out at such a high temperature for a very long time, and the produced isocyanate is exposed to heat for a long time to cause tarification of the isocyanate itself, thereby lowering the yield. In addition, carbamoyl chloride as an intermediate has a far higher taration rate than isocyanate and further reduces the yield,
There was a problem that the yield was extremely poor.
【0005】上記問題点を解決する方法として、過剰に
ホスゲンを装入することによりアミンからのカルバモイ
ルクロライドの生成速度を上げ、同時に反応系内に滞留
している塩酸も過剰のホスゲンで反応系外に除去するこ
とにより常に平衡をイソシアナート側に傾かせながら脂
肪族ポリイソシアナートを製造する方法が考案されてい
る。この方法によれば、ホスゲン化反応中のカルバモイ
ルクロライドの濃度は低下し、しかも脂肪族ポリイソシ
アナートの生成速度も向上し短時間で反応が終了する
為、タール化が抑制され比較的高収率で製品を得られ
る。[0005] As a method for solving the above-mentioned problem, the rate of carbamoyl chloride production from amine is increased by charging phosgene in excess, and at the same time, hydrochloric acid remaining in the reaction system is also removed from the reaction system by excess phosgene. A method has been devised for producing an aliphatic polyisocyanate while always shifting the equilibrium toward the isocyanate side by removing the polyisocyanate. According to this method, the concentration of carbamoyl chloride during the phosgenation reaction is reduced, and the rate of production of the aliphatic polyisocyanate is also improved, so that the reaction is completed in a short time. To get the product.
【0006】従って、ホスゲン法による脂肪族ポリイソ
シアナートの製造は、この改良法が用いられている。具
体的には、通常少なくとも120℃以上、または130
℃以上まで加熱して、過剰にホスゲンを装入しながら反
応が行われる。また、エステル溶媒を用いる事で反応副
生物を抑制し収率良くイソシアナートを得る方法(特開
平3−7253号公報、特開平3−204851号公
報)が報告されている。Therefore, this improved method is used for the production of aliphatic polyisocyanates by the phosgene method. Specifically, usually at least 120 ° C. or higher, or 130 ° C.
The reaction is carried out by heating to above ℃ and charging phosgene in excess. Further, a method has been reported in which by-products are suppressed by using an ester solvent to obtain an isocyanate with a high yield (JP-A-3-7253 and JP-A-3-204851).
【0007】ところがこれらの方法で脂肪族ポリイソシ
アナートの製造を行っても、タール化を抑制することは
困難で、通常約10%前後、場合によってはそれ以上タ
ール化が起こり、その分収率が低下する。また、過剰の
ホスゲンは全くのロスとなる上に無害化処理も必要で、
さらに大量のタールの生成はタールの処理作業及び処理
工程に多大な負担をかけ、操作性の悪化及び処理費増大
につながる。従って、まだ経済的に充分満足できる方法
であるとは言い難かった。However, even if the aliphatic polyisocyanate is produced by these methods, it is difficult to suppress tar formation, and usually tar formation occurs at about 10%, and in some cases, tar formation occurs. Decrease. In addition, excess phosgene becomes a complete loss and requires detoxification treatment,
Furthermore, the production of a large amount of tar imposes a great burden on the tar processing operation and processing step, leading to deterioration in operability and increase in processing cost. Therefore, it was hard to say that the method was still economically satisfactory.
【0008】[0008]
【問題を解決するための手段】本発明の目的は、上記問
題点を解決し、高収率で、経済的なホスゲン法による脂
肪族ポリイソシアナートの製造方法を提供する事であ
る。SUMMARY OF THE INVENTION An object of the present invention is to solve the above problems and to provide a high-yield, economical process for producing an aliphatic polyisocyanate by the phosgene method.
【0009】本発明者らは、このような状況に鑑み、ホ
スゲン法による脂肪族ポリイソシアナートの製造法につ
き鋭意検討した結果、驚くべき事に反応系内に不活性ガ
スを装入すれば、ホスゲン使用量の削減、タール化の防
止、収率の向上等の改良ができる事を見出し本発明に到
達した。In view of such a situation, the present inventors have intensively studied a method for producing an aliphatic polyisocyanate by the phosgene method. As a result, surprisingly, if an inert gas is charged into the reaction system, The present inventors have found that improvements such as reduction in the amount of phosgene used, prevention of tar formation, improvement in yield, and the like have been made, and the present invention has been achieved.
【0010】即ち本発明は、脂肪族ポリアミンもしくは
その塩酸塩又は炭酸塩とホスゲンを不活性液状媒体中で
反応させるに際し、反応系内に不活性ガスを装入しなが
ら反応を行うことを特徴とする脂肪族ポリイソシアナー
トの製造方法である。That is, the present invention is characterized in that, when an aliphatic polyamine or its hydrochloride or carbonate is reacted with phosgene in an inert liquid medium, the reaction is carried out while charging an inert gas into the reaction system. Is a method for producing an aliphatic polyisocyanate.
【0011】本発明で用いる脂肪族ポリアミンとは、ア
ミノ基が芳香環に直結していない2官能以上の有機アミ
ン化合物を含み、例えば、以下の化合物が挙げられる。
ペンタメチレンジアミン、ヘキサメチレンジアミン、
2,2,4−トリメチルヘキサメチレンジアミン、2,
4,4−トリメチルヘキサメチレンジアミン、オクタメ
チレンジアミン、ノナメチレンジアミン等の直鎖状脂肪
族ポリアミン、1,3−ビス(アミノメチル)シクロヘ
キサン、イソホロンジアミン、ビス(4−アミノシクロ
ヘキシル)メタン、2,2−ビス(4−アミノシクロヘ
キシル)プロパン、m−キシリレンジアミン、p−キシ
リレンジアミン、o−キシリレンジアミン、又はそれら
が任意に混合されたキシリレンジアミン、ビス(アミノ
メチル)ノルボルネン、等の環状脂肪族ポリアミン、リ
ジンメチルエステル、リジンアミノエチルエステル等の
アミノ酸系ポリアミン等が挙げられる。The aliphatic polyamine used in the present invention includes a bifunctional or more functional organic amine compound in which an amino group is not directly bonded to an aromatic ring, and examples thereof include the following compounds.
Pentamethylenediamine, hexamethylenediamine,
2,2,4-trimethylhexamethylenediamine, 2,
Linear aliphatic polyamines such as 4,4-trimethylhexamethylenediamine, octamethylenediamine, nonamethylenediamine, 1,3-bis (aminomethyl) cyclohexane, isophoronediamine, bis (4-aminocyclohexyl) methane, 2, 2-bis (4-aminocyclohexyl) propane, m-xylylenediamine, p-xylylenediamine, o-xylylenediamine, or a mixture thereof arbitrarily, such as xylylenediamine, bis (aminomethyl) norbornene. Examples thereof include cyclic aliphatic polyamines, amino acid polyamines such as lysine methyl ester and lysine aminoethyl ester.
【0012】これら脂肪族ポリアミンから得られるイソ
シアナートを脂肪族ポリイソシアナートと称する。The isocyanates obtained from these aliphatic polyamines are called aliphatic polyisocyanates.
【0013】本発明の方法では、これらの脂肪族ポリア
ミンは遊離の型でも、塩酸塩又は炭酸塩の型でも使用で
きる。In the process according to the invention, these aliphatic polyamines can be used in free form or in hydrochloride or carbonate form.
【0014】即ち本発明の方法は、反応液状媒体に混合
された脂肪族ポリアミンもしくはその塩に、不活性ガス
を装入しながらホスゲンを反応させる、即ち、ホスゲン
化反応系内に不活性ガスを装入しながら反応を行うとこ
ろに大きな特徴を有する。従って、遊離の脂肪族ポリア
ミンを原料として、不活性ガスを装入しながらホスゲン
と反応させることも、脂肪族ポリアミンの塩を原料とし
て、不活性ガスを装入しながらホスゲンと反応させるこ
ともできる。That is, in the method of the present invention, phosgene is reacted with an aliphatic polyamine or a salt thereof mixed in a reaction liquid medium while charging an inert gas, that is, the inert gas is introduced into the phosgenation reaction system. A major feature is that the reaction is performed while charging. Therefore, it is possible to react with phosgene while charging an inert gas, using a free aliphatic polyamine as a raw material, or to react with phosgene while charging an inert gas, using a salt of an aliphatic polyamine as a raw material. .
【0015】本発明に用いられる不活性ガスは、脂肪族
ポリイソシアナート、ホスゲン、塩酸等と反応しないガ
スであり、例えば、窒素、ヘリウム、ネオン、アルゴン
などが挙げられる。不活性ガスを用いる限り、何れのガ
スを用いても、同様に優れた効果を生むが、経済性の面
から窒素が好ましい。The inert gas used in the present invention is a gas that does not react with aliphatic polyisocyanate, phosgene, hydrochloric acid and the like, and examples thereof include nitrogen, helium, neon, and argon. As long as an inert gas is used, any of the gases produces excellent effects, but nitrogen is preferred from the viewpoint of economy.
【0016】反応系内に装入する不活性ガスの装入速度
は、反応条件及び装置条件によって左右される為限定で
きないが、あえて限定するならば、装入されるホスゲン
の装入速度に対して0.2体積倍以上が好ましく、更に
好ましくは0.5体積倍以上である。The charging rate of the inert gas charged into the reaction system cannot be limited because it depends on the reaction conditions and the equipment conditions, but if it is limited, the charging rate of the phosgene charged is limited. Is preferably at least 0.2 times by volume, more preferably at least 0.5 times by volume.
【0017】本発明に於いては、原料及び反応液等を、
スムーズに混合、攪拌、移液させて容易に脂肪族ポリイ
ソシアナートを製造する為に、反応液状媒体を用いるの
が好ましい。In the present invention, the raw materials and the reaction solution are
In order to easily produce an aliphatic polyisocyanate by smoothly mixing, stirring, and transferring a liquid, it is preferable to use a reaction liquid medium.
【0018】本発明で用いる反応液状媒体は、脂肪族ポ
リアミン、脂肪族ポリイソシアナート、ホスゲン、塩酸
等と反応しない不活性な溶媒である。具体的に例示すれ
ば、ベンゼン、トルエン、混合キシレン、o−キシレ
ン、m−キシレン、p−キシレン、クメン、2,2,5
−トリメチルヘキサン、デカン、エチルシクロヘキサン
等の炭化水素類、クロロベンゼン、o−ジクロロベンゼ
ン、m−ジクロロベンゼン、p−ジクロロベンゼン、o
−ジブロモベンゼン等のハロゲン化炭化水素類、ニトロ
ベンゼン、N,N−ジメチルホルムアミド、N,N−ジ
メチルアセトアミド、N,N’−ジメチルイミダゾリジ
ノン等の含窒素化合物類、ジブチルエーテル、エチレン
グリコールジメチルエーテル、エチレングリコールジエ
チルエーテル、ジエチレングリコールジメチルエーテ
ル、ジエチレングリコールジエチルエーテル、アニソー
ル、フェネトール、メトキシトルエン、ベンジルエーテ
ル、ジフェニエーテル等のエーテル類、ヘプタノン、ジ
イソブチルケトン等のケトン類、ギ酸アミル、酢酸−n
−アミル、酢酸イソアミル、酢酸メチルイソアミル、酢
酸−n−ブチル、酢酸イソブチル、酢酸−2−エチルブ
チル、酢酸メトキシブチル、酢酸エトキシエチル、酢酸
メトキシエチル、酢酸メトキシプロピル、酢酸エチル、
酢酸第2ヘキシル、酢酸−2−エチルヘキシル、酢酸シ
クロヘキシル、酢酸メチルシクロヘキシル、酢酸ベンジ
ル、酢酸フェニル、酢酸メチルカルビトール、エチレン
グリコールジアテート、プロピオン酸エチル、プロピオ
ン酸−n−ブチル、プロピオン酸イソアミル、酪酸エチ
ル、酪酸ブチル、酪酸イソアミル、ステアリン酸ブチ
ル、乳酸ブチル、乳酸アミル、フタル酸ジメチル、安息
香酸メチル、安息香酸エチル等のエステル類などが挙げ
られる。The reaction liquid medium used in the present invention is an inert solvent which does not react with aliphatic polyamines, aliphatic polyisocyanates, phosgene, hydrochloric acid and the like. Specific examples include benzene, toluene, mixed xylene, o-xylene, m-xylene, p-xylene, cumene, 2,2,5
Hydrocarbons such as trimethylhexane, decane, ethylcyclohexane, chlorobenzene, o-dichlorobenzene, m-dichlorobenzene, p-dichlorobenzene, o
Halogenated hydrocarbons such as dibromobenzene, nitrogen-containing compounds such as nitrobenzene, N, N-dimethylformamide, N, N-dimethylacetamide, N, N′-dimethylimidazolidinone, dibutyl ether, ethylene glycol dimethyl ether ; Ethers such as ethylene glycol diethyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, anisole, phenetole, methoxytoluene, benzyl ether, diphenyl ether, ketones such as heptanone and diisobutyl ketone, amyl formate, acetic acid-n
-Amyl, isoamyl acetate, methyl isoamyl acetate, -n-butyl acetate, isobutyl acetate, 2-ethylbutyl acetate, methoxybutyl acetate, ethoxyethyl acetate, methoxyethyl acetate, methoxypropyl acetate, ethyl acetate,
Secondary hexyl acetate, 2-ethylhexyl acetate, cyclohexyl acetate, methylcyclohexyl acetate, benzyl acetate, phenyl acetate, methyl carbitol acetate, ethylene glycol diatate, ethyl propionate, n-butyl propionate, isoamyl propionate, butyric acid Esters such as ethyl, butyl butyrate, isoamyl butyrate, butyl stearate, butyl lactate, amyl lactate, dimethyl phthalate, methyl benzoate, ethyl benzoate and the like can be mentioned.
【0019】さらに、これら不活性液状媒体の中でも、
多額の設備費を要しない常圧で満足できる反応速度を確
保するには、沸点が130℃以上の不活性液状媒体が好
ましい。又、イソシアナート基の一部又は全部が塩素原
子で置換されたクロル体と称する副生物の生成を抑制す
る効果を持つのでエステル類が好ましい。Further, among these inert liquid media,
In order to ensure a satisfactory reaction rate at normal pressure, which does not require large equipment costs, an inert liquid medium having a boiling point of 130 ° C. or higher is preferable. Esters are preferred because they have an effect of suppressing the generation of a by-product called a chloro form in which a part or all of the isocyanate group is substituted with a chlorine atom.
【0020】反応に用いる不活性液状媒体の使用量は、
原料の脂肪族ポリアミン又はその塩に対して3〜40重
量倍が好ましく、更には4〜20重量倍が好ましい。3
重量倍未満でもできなくもないが、場合によって混合攪
拌が困難になる事がある。40重量倍を越えると容積効
率が悪化し、工業的に有利とはならない。The amount of the inert liquid medium used in the reaction is as follows:
It is preferably 3 to 40 times by weight, more preferably 4 to 20 times by weight, relative to the raw material aliphatic polyamine or its salt. 3
Although it is not impossible even if the weight is less than the weight, mixing and stirring may be difficult in some cases. If it exceeds 40 times by weight, the volumetric efficiency will deteriorate, and it will not be industrially advantageous.
【0021】不活性液状媒体の種類については、それぞ
れ単独でも2種以上混合してもよいが、回収再使用の面
からは1種類が好ましい。The kind of the inert liquid medium may be used alone or as a mixture of two or more kinds, but one kind is preferable from the viewpoint of recovery and reuse.
【0022】本発明に於ける反応形態は、原料として
遊離の脂肪族ポリアミンを使用し、不活性液状媒体中で
不活性ガスを装入しながらホスゲンと反応させる方法、
原料として遊離の脂肪族ポリアミンを使用し、不活性
液状媒体中で塩酸ガスまたは炭酸ガスと反応させて、そ
の塩を生成させ、次いでこの造塩マスに不活性ガスを装
入しながらホスゲンと反応させる方法がある。The reaction mode in the present invention is a method in which a free aliphatic polyamine is used as a raw material, and the reaction is carried out with phosgene while charging an inert gas in an inert liquid medium.
Using a free aliphatic polyamine as a raw material, the salt is formed by reacting with hydrochloric acid gas or carbon dioxide gas in an inert liquid medium, and then reacting with phosgene while charging the salt-forming mass with an inert gas. There is a way to make it happen.
【0023】前記の方法では、通常、不活性液状媒体
中で以下の2段階反応で進める。1段目は、内温を0〜
100℃に保ちながらホスゲンを装入し、低温側での反
応を行う。100℃を越えると収率が低下する傾向があ
り好ましくない。100℃以下であれば充分効果は達成
されるが、0℃未満では過大な冷凍設備が必要となり工
業的にあまり有利な方法とはならない。又、この低温側
の反応は、ホスゲンの装入に合わせて、原料脂肪族ポリ
アミンも同時にホスゲンに対して、官能基(アミノ基/
COCl2)モル比で0.2〜1.5の速度比で装入し
た場合、好ましい結果を与える事が多い。2段目は、1
段目から昇温し、内温を120〜200℃、好ましくは
130〜200℃に保ちながら、既に装入されているホ
スゲンに追加して更に不活性ガスの装入も開始し、高温
側での反応を行う。120℃未満では反応速度が遅くな
る傾向にありあまり実用的では無く、200℃を越える
とタール化により収率が低下する傾向にありあまり好ま
しくない。また、低温側の反応から不活性ガスの装入を
開始しても一向に差し支えない。In the above method, the reaction is usually carried out in an inert liquid medium by the following two-step reaction. In the first stage, the internal temperature is 0 to
While maintaining the temperature at 100 ° C., phosgene is charged, and the reaction is carried out at a low temperature. If it exceeds 100 ° C., the yield tends to decrease, which is not preferable. If the temperature is lower than 100 ° C., a sufficient effect can be achieved, but if the temperature is lower than 0 ° C., an excessively large refrigeration facility is required, so that it is not an industrially advantageous method. In addition, the reaction on the low-temperature side is such that the raw material aliphatic polyamine simultaneously reacts with the functional group (amino group /
When charged at a rate ratio of 0.2 to 1.5 (COCl 2 ) molar ratio, favorable results are often obtained. The second stage is 1
The temperature is increased from the stage, and while the internal temperature is maintained at 120 to 200 ° C., preferably 130 to 200 ° C., charging of the inert gas is also started in addition to the already charged phosgene, and at the high temperature side, Is performed. If the temperature is lower than 120 ° C., the reaction rate tends to be slow, which is not very practical. If the temperature is higher than 200 ° C., the yield tends to decrease due to tarification, which is not preferable. Further, even if the charging of the inert gas is started from the reaction on the low temperature side, there is no problem.
【0024】前記の方法は、まず脂肪族ポリアミンを
不活性液状媒体中で塩酸ガス又は炭酸ガスとを反応さ
せ、脂肪族ポリアミンの塩を製造する。この造塩反応時
の内温は、0〜30℃が好ましい。これを越えると、次
のホスゲン化反応の反応時間が延びる傾向にあり好まし
くない。0℃未満では、前記同様に過大な冷凍設備が
必要となり工業的にあまり有利な方法とはならない。こ
の造塩反応も前記の低温側の反応同様に、塩酸ガスの
装入に合わせて、原料脂肪族ポリアミンも同時に塩酸ガ
スに対して、官能基(アミノ基/HCl)モル比で0.
2〜1.5の速度比で装入した場合、好ましい結果を与
える事が多い。次に、昇温後、この造塩マスに不活性ガ
スを装入しながらホスゲンを反応させる。内温は前記I
の高温側の反応同様に120〜200℃が好ましく、更
には130〜200℃が好ましい。In the above method, first, an aliphatic polyamine is reacted with hydrochloric acid gas or carbon dioxide gas in an inert liquid medium to produce a salt of the aliphatic polyamine. The internal temperature during the salt formation reaction is preferably 0 to 30C. If it exceeds this, the reaction time of the next phosgenation reaction tends to increase, which is not preferable. If the temperature is lower than 0 ° C., an excessively large refrigeration facility is required as described above, and this is not an industrially advantageous method. In this salt formation reaction, similarly to the reaction on the low temperature side, the raw material aliphatic polyamine is simultaneously added to the hydrochloric acid gas at a functional group (amino group / HCl) molar ratio of 0.
Charges at speed ratios of 2 to 1.5 often give favorable results. Next, after raising the temperature, phosgene is reacted while charging an inert gas into the salt-forming mass. The internal temperature is I
As in the reaction on the high temperature side, the temperature is preferably 120 to 200 ° C, more preferably 130 to 200 ° C.
【0025】本発明は、減圧下、大気圧下、もしくは大
気圧以上の加圧下で反応を行う事もできる。以上の各々
の方法に於いて、反応終了後、不活性ガスにより未反応
ホスゲン及び塩酸をパージし、脱溶媒した後、蒸留精製
して脂肪族ポリイソシアナートを取り出す。In the present invention, the reaction can be carried out under reduced pressure, under atmospheric pressure, or under a pressure higher than atmospheric pressure. In each of the above methods, after completion of the reaction, unreacted phosgene and hydrochloric acid are purged with an inert gas, the solvent is removed, and the product is distilled and purified to take out the aliphatic polyisocyanate.
【0026】[0026]
【実施例】以下、本発明を実施例及び比較例により具体
的に説明するが、本発明はこれら実施例に限定されるも
のではない。 実施例−1 還流冷却器、温度計、原料ガス(塩酸ガス、炭酸ガス)
吹き込み管、不活性ガス吹き込み管、液体原料滴下器、
液状媒体滴下器、及び攪拌翼を備えた3l反応フラスコ
にトリクロロベンゼン(沸点210℃)1000gと液
体原料滴下器にm−キシリレンジアミン(以下m−XD
Aと略す。)136.2g(1.0モル)を、液状媒体
滴下器に残りのトリクロロベンゼン945gを仕込ん
だ。ここで、液状媒体の総使用量は、m−XDAに対し
て14.3重量倍であった。次に攪拌冷却しながら、塩
酸ガスは原料ガス吹き込み管から36.5g/H(1モ
ル/H)の速度で、滴下器のm−XDAとトリクロロベ
ンゼンは、同時に1:6.9の一定の重量比で打ち合わ
せながら540.6g/Hの速度で、塩酸ガス装入と同
時に滴下を開始して2時間かけて終了した(m−XDA
と塩酸ガスの速度比は、アミノ基/HCl=1)。さら
に塩酸ガスをそのまま装入しながら0.5時間熟成を行
った。これら一連の造塩反応は10℃で行った。次に、
この造塩マスを160℃迄昇温した後、原料ガス吹き込
み管からはホスゲンガスを250g/H(2.52モル
/H)の速度で吹き込みながら、同時に不活性ガス吹き
込み管からは窒素ガスを23l/Hの速度で吹き込みな
がら、内温を1時間かけて190℃まで昇温し、更に1
90℃に保ちながら、反応液がほぼ透明になるまで、
3.0時間反応を続けた。次に、窒素ガスにより未反応
ホスゲン及び塩酸をパージし、未反応m−XDA塩酸塩
0.2(as dry)を濾別除去後、濾液を脱溶媒
し、減圧蒸留(1〜2mmHg)して、m−クロロベン
ジルイソシアナート(以下m−CBiと略す。)を2.
2重量%含有するm−キシリレンジイソアナート(以下
m−XDiと略す。)185.3g(純分換算収率=9
6.3%)を得た。結果を表1にも示す。EXAMPLES Hereinafter, the present invention will be described specifically with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples. Example 1 Reflux cooler, thermometer, raw material gas (hydrochloric acid gas, carbon dioxide gas)
Blow pipe, inert gas blow pipe, liquid material dropper,
1000 g of trichlorobenzene (boiling point 210 ° C.) was placed in a 3 l reaction flask equipped with a liquid medium dropper and a stirring blade, and m-xylylenediamine (hereinafter referred to as m-XD) was placed in a liquid material dropper.
Abbreviated as A. ) 136.2 g (1.0 mol) and 945 g of the remaining trichlorobenzene were charged into a liquid medium dropper. Here, the total amount of the liquid medium used was 14.3 times the weight of m-XDA. Next, while stirring and cooling, hydrochloric acid gas was supplied from the raw material gas injection pipe at a rate of 36.5 g / H (1 mol / H), and m-XDA and trichlorobenzene of the dropper were simultaneously mixed at a constant ratio of 1: 6.9. The dropping was started at the same time as the charging of hydrochloric acid gas at a rate of 540.6 g / H while negotiating at a weight ratio, and was completed over 2 hours (m-XDA).
The rate ratio between the hydrogen gas and the hydrochloric acid gas is amino group / HCl = 1). Further, aging was performed for 0.5 hour while charging hydrochloric acid gas as it was. These series of salt formation reactions were performed at 10 ° C. next,
After the salt-forming mass was heated to 160 ° C., phosgene gas was blown in at a rate of 250 g / H (2.52 mol / H) from the raw gas blowing pipe, and at the same time, 23 l of nitrogen gas was blown from the inert gas blowing pipe. / H, the internal temperature was raised to 190 ° C over 1 hour,
While maintaining at 90 ° C., until the reaction solution becomes almost transparent,
The reaction was continued for 3.0 hours. Next, unreacted phosgene and hydrochloric acid are purged with nitrogen gas, unreacted m-XDA hydrochloride 0.2 (as dry) is removed by filtration, and the filtrate is desolvated and distilled under reduced pressure (1-2 mmHg). And m-chlorobenzyl isocyanate (hereinafter abbreviated as m-CBi).
185.3 g of m-xylylene diisoananate (hereinafter abbreviated as m-XDi) containing 2% by weight (yield in terms of pure content = 9)
6.3%). The results are also shown in Table 1.
【0027】比較例−1 不活性ガスである窒素の装入を行わないで、実施例−1
と同様に、反応を実施し、取り出しは、実施例−1と同
様に行った。濾別された未反応のm−XDA塩酸塩は
0.1g(as dry)であった。その他の結果を、
表1に示す。Comparative Example 1 Example 1 was carried out without charging nitrogen as an inert gas.
The reaction was carried out in the same manner as in Example 1 and the removal was carried out in the same manner as in Example 1. The unreacted m-XDA hydrochloride filtered off was 0.1 g (as dry). Other results,
It is shown in Table 1.
【0028】[0028]
【表1】 窒素ガスの装入によって、ホスゲンの使用量が削減さ
れ、収率が向上した。[Table 1] The introduction of nitrogen gas reduced the use of phosgene and improved the yield.
【0029】実施例−2 実施例−1と同様の反応装置を用いた。2l反応フラス
コに酢酸エトキシプロピル(沸点158℃)800gと
液体原料滴下器にm−XDA136.2g(1.0モ
ル)を、液状媒体滴下器に残りの酢酸エトキシプロピル
400gを仕込んだ。液状媒体の総使用量は、m−XD
Aに対して9重量倍であった。次に攪拌冷却しながら、
塩酸ガスは原料ガス吹き込み管から36.5g/H(1
モル/H)の速度で、滴下器のm−XDAと酢酸エトキ
シプロピルは、同時に1:2.9の一定の重量比で打ち
合わせながら268.1g/Hの速度で、塩酸ガス装入
と同時に滴下を開始して2時間かけて終了した(m−X
DAと塩酸ガスの速度比は、アミノ基/HCl=1)。
さらに塩酸ガスをそのまま装入しながら0.5時間熟成
を行った。これら一連の造塩反応は20〜60℃で行っ
た。 次に、この造塩マスを135℃迄昇温した後、原
料ガス吹き込み管からはホスゲンガスを33g/H
(0.33モル/H)の速度で吹き込み、同時に不活性
ガス吹き込み管からは窒素ガスを15l/Hの速度で吹
き込み、内温を135〜140℃に保ちながら反応を続
けた。17時間後、ほぼ反応液が透明になったところで
反応を終了した。次に、窒素ガスにより未反応ホスゲン
及び塩酸をパージし、未反応m−XDA塩酸塩1.2
(as dry)を濾別除去後、濾液を脱溶媒し、減圧
蒸留(1〜2mmHg)して、m−CBiを0.7重量
%含有するm−XDi171.0g(純分換算収率=9
0.2%)を得た。Example 2 The same reaction apparatus as in Example 1 was used. 800 g of ethoxypropyl acetate (boiling point: 158 ° C.) was charged to a 2 l reaction flask, 136.2 g (1.0 mol) of m-XDA was charged to a liquid material dropper, and 400 g of the remaining ethoxypropyl acetate was charged to a liquid medium dropper. The total amount of liquid medium used is m-XD
The weight was 9 times the weight of A. Then, while stirring and cooling,
Hydrochloric acid gas was supplied at 36.5 g / H (1
Mol / H), the m-XDA and ethoxypropyl acetate of the dropper were dropped at the same time at a constant weight ratio of 1: 2.9, and simultaneously with the charging of hydrochloric acid gas at a rate of 268.1 g / H. And finished over 2 hours (mX
The rate ratio between DA and hydrochloric acid gas is amino group / HCl = 1).
Further, aging was performed for 0.5 hour while charging hydrochloric acid gas as it was. These series of salt formation reactions were performed at 20 to 60 ° C. Next, after raising the temperature of the salt-forming mass to 135 ° C., 33 g / H of phosgene gas was supplied from a raw material gas injection pipe.
(0.33 mol / H), and at the same time, nitrogen gas was blown at a rate of 15 l / H from an inert gas injection pipe, and the reaction was continued while the internal temperature was maintained at 135 to 140 ° C. After 17 hours, the reaction was completed when the reaction solution became almost transparent. Next, unreacted phosgene and hydrochloric acid were purged with nitrogen gas, and unreacted m-XDA hydrochloride 1.2
After removing (as dry) by filtration, the filtrate was desolvated and distilled under reduced pressure (1-2 mmHg) to give 171.0 g of m-XDi containing 0.7% by weight of m-CBi (yield in terms of pure content = 9).
0.2%).
【0030】実施例−3 実施例−2の反応装置を用いて、液状媒体を酢酸エトキ
シプロピルからo−ジクロロベンゼン(以下ODCBと
略す。沸点180℃)に変更し実施例−2と同様に仕込
みを行った。次に激しく攪拌冷却しながら、ホスゲンガ
スを原料ガス吹き込み管から100g/Hの速度で、滴
下器のm−XDAとODCBは、同時に1:2.9の一
定の重量比で打ち合わせながら178.7g/Hの速度
で、ホスゲンガス装入と同時に滴下を開始して3時間か
けて終了した(m−XDAとホスゲンの速度比は、アミ
ノ基/COCl2=0.65)。これら一連の反応は0
〜30℃で行った。次に、この反応マスを徐々に135
℃迄昇温した後、ホスゲンガスを20g/H(0.2モ
ル/H)の速度で吹き込み、不活性ガス吹き込み管から
は窒素ガスを23l/Hの速度で吹き込み、内温を13
5〜140℃に保ちながら反応を続けた。8時間後、反
応液がほぼ透明になったところで反応を終了した。次
に、窒素ガスにより未反応ホスゲン及び塩酸をパージ
し、不溶物0.3(as dry)を濾別除去後、濾液
を脱溶媒し、減圧蒸留(1〜2mmHg)して、m−C
Biを4.2重量%含有するm−XDi168.6g
(純分換算収率=85.8%)を得た。[0030] Using the reaction device of Example -3 Example -2 liquid medium (abbreviated as ODCB less. Boiling point 180 ° C.) from ethoxypropyl acetate o- di-chloro benzene in the same manner as in Example -2 change Preparation was performed. Next, while vigorously stirring and cooling, m-XDA and ODCB of the dropper were simultaneously mixed at a constant weight ratio of 1: 2.9 with phosgene gas at a rate of 100 g / H from the raw material gas injection pipe at a rate of 178.7 g / h. At the rate of H, the dropwise addition was started at the same time as the charging of the phosgene gas, and was completed over 3 hours (the rate ratio between m-XDA and phosgene was amino group / COCl 2 = 0.65). These series of reactions are 0
Performed at 3030 ° C. Next, the reaction mass was gradually reduced to 135.
After the temperature was raised to 200 ° C., phosgene gas was blown at a rate of 20 g / H (0.2 mol / H), nitrogen gas was blown at a rate of 23 l / H from an inert gas blowing pipe, and the internal temperature was raised to 13 ° C.
The reaction was continued while maintaining the temperature at 5 to 140 ° C. After 8 hours, the reaction was completed when the reaction solution became almost transparent. Next, unreacted phosgene and hydrochloric acid are purged with nitrogen gas, and 0.3 (as dry) of insoluble matter is removed by filtration. The filtrate is desolvated and distilled under reduced pressure (1-2 mmHg) to give m-C
168.6 g of m-XDi containing 4.2% by weight of Bi
(Yield in terms of pure content = 85.8%).
【0031】実施例−4 実施例−2の装置を用いて、液状媒体を酢酸エトキシプ
ロピルから酢酸イソアミル(沸点142℃)に変更し、
塩酸ガスから炭酸ガスに変更した以外は、実施例−2と
全く同様に造塩反応までを行った。次に、この造塩マス
を100℃迄昇温した後、原料ガス吹き込み管からはホ
スゲンガスを33g/H(0.33モル/H)の速度で
吹き込み、同時に不活性ガス吹き込み管からは窒素ガス
を実施例−2と同じ15l/Hの速度で吹き込み、内温
を100〜105℃に保ちながら8時間、引き続き13
5℃迄昇温して、内温を135〜140℃に保ちながら
更に反応を続けた。135℃に昇温してから10時間
後、ほぼ反応液が透明になったところで反応を終了し
た。次に、反応液を実施例−2と同様に処理した。濾別
された未反応m−XDA炭酸塩は0.5g(as dr
y)であった。結果を表2に示す。Example 4 Using the apparatus of Example 2, the liquid medium was changed from ethoxypropyl acetate to isoamyl acetate (boiling point 142 ° C.)
Except that the hydrochloric acid gas was changed to the carbon dioxide gas, the procedure up to the salt formation reaction was performed in exactly the same manner as in Example-2. Next, after the salt-forming mass was heated to 100 ° C., phosgene gas was blown at a rate of 33 g / H (0.33 mol / H) from the raw material gas blowing tube, and simultaneously, nitrogen gas was blown from the inert gas blowing tube. Was blown at the same rate of 15 l / H as in Example 2, and while maintaining the internal temperature at 100 to 105 ° C., 8 hours and 13
The temperature was raised to 5 ° C, and the reaction was further continued while maintaining the internal temperature at 135 to 140 ° C. Ten hours after the temperature was raised to 135 ° C., the reaction was terminated when the reaction liquid became almost transparent. Next, the reaction solution was treated in the same manner as in Example-2. 0.5 g (as dr) of unreacted m-XDA carbonate filtered off
y). Table 2 shows the results.
【0032】比較例−2 ホスゲン化反応時、不活性ガスである窒素ガスを吹き込
まなかった以外は、実施例−4の装置で、同様に反応、
処理した。濾別された未反応m−XDA炭酸塩は0.4
g(as dry)であった。結果を表2に示す。Comparative Example 2 The reaction was carried out in the same manner as in Example 4 except that nitrogen gas as an inert gas was not blown during the phosgenation reaction.
Processed. The unreacted m-XDA carbonate filtered off was 0.4
g (as dry). Table 2 shows the results.
【0033】[0033]
【表2】 窒素ガスの装入によって、炭酸塩法でも収率が向上し
た。[Table 2] The introduction of nitrogen gas also improved the yield in the carbonate method.
【0034】実施例−5〜8、比較例−3 不活性ガス装入の効果につき検討した。液状媒体を酢酸
エトキシエチル(沸点156℃)に変更し、窒素の装入
速度を変化させた以外は、実施例−2と同様に反応、処
理した。結果を表3に示す。濾塊は未反応m−XDA塩
酸塩である。Examples 5 to 8 and Comparative Example 3 The effect of charging an inert gas was examined. The reaction and treatment were carried out in the same manner as in Example 2 except that the liquid medium was changed to ethoxyethyl acetate (boiling point: 156 ° C.), and the charging rate of nitrogen was changed. Table 3 shows the results. The filter cake is unreacted m-XDA hydrochloride.
【0035】[0035]
【表3】 窒素ガスの吹き込み量にほぼ比例して収率が向上した。[Table 3] The yield improved almost in proportion to the amount of nitrogen gas blown.
【0036】実施例−9〜12、比較例−4〜7 不活性ガス装入の効果につき、液状媒体を変更して検討
を行った。液状媒体を変更した以外は、実施例−2と同
様に反応、処理した。結果を表4に示す。Examples -9 to 12 and Comparative Examples -4 to 7 The effects of charging an inert gas were examined by changing the liquid medium. The reaction and treatment were carried out in the same manner as in Example 2 except that the liquid medium was changed. Table 4 shows the results.
【0037】[0037]
【表4】 ODCB;o−ジクロロベンゼン(沸点180℃) 混合キシレン(沸点138〜144℃) アニソール
(沸点154℃) MPA;酢酸メトキシプロピル(沸点158℃) 窒素ガスの装入による収率向上は、液状媒体を変更して
も同様に認められた。[Table 4] ODCB; o-dichlorobenzene (boiling point 180 ° C) Mixed xylene (boiling point 138 to 144 ° C) Anisole (boiling point 154 ° C) MPA; methoxypropyl acetate (boiling point 158 ° C) The same was recognized even if it was changed.
【0038】実施例−13〜14、比較例−8〜9 実施例−3の冷熱2段法で不活性ガス装入の効果につき
検討した。液状媒体と高温側での窒素及びホスゲンの装
入速度を変更した以外は、同様に反応、処理した。結果
を表5に示す。Examples 13 to 14 and Comparative Examples -8 to 9 The effect of charging an inert gas with the two-stage cooling and heating method of Example 3 was examined. The reaction and treatment were carried out in the same manner except that the charging rates of nitrogen and phosgene on the liquid medium and the high temperature side were changed. Table 5 shows the results.
【0039】[0039]
【表5】 アミンとホスゲンを直接反応させる直接法でも、塩酸塩
法と同様に、不活性液状媒体の種類に関係なく窒素ガス
の装入によって収率が向上しホスゲン量も削減された。[Table 5] In the direct method of directly reacting an amine with phosgene, the yield was improved and the amount of phosgene was reduced by charging nitrogen gas regardless of the type of the inert liquid medium, similarly to the hydrochloride method.
【0040】実施例−15〜21、比較例−10〜16 実施例−2の造塩法で、脂肪族ポリアミンを変更して、
不活性ガス装入の効果につき検討を行った。脂肪族ポリ
アミンを変更した以外は、実施例−2と同様に反応、処
理した。尚、反応は、反応液がほぼ透明になるまで行っ
た。結果を表6に示す。Examples 15 to 21 and Comparative Examples 10 to 16 In the salt formation method of Example 2, the aliphatic polyamine was changed,
The effect of inert gas charging was studied. The reaction and treatment were conducted in the same manner as in Example 2 except that the aliphatic polyamine was changed. The reaction was performed until the reaction solution became almost transparent. Table 6 shows the results.
【0041】[0041]
【表6】 XDi以外の脂肪族ポリイソシアナートでも、窒素ガス
装入によって収率が向上した。[Table 6] For aliphatic polyisocyanates other than XDi, the yield was improved by charging nitrogen gas.
【0042】実施例−22〜23、比較例−17〜18 実施例−3の冷熱2段法で、m−XDAをHMDAにか
えて、不活性ガス装入の効果につき検討した。高温側で
の窒素及びホスゲンの装入速度を変更し、同様に反応、
処理した。結果を表7に示す。Examples 22 to 23 and Comparative Examples -17 to 18 The effect of charging an inert gas was examined by replacing m-XDA with HMDA by the two-stage cooling / heating method of Example-3. The charge rates of nitrogen and phosgene on the hot side were changed,
Processed. Table 7 shows the results.
【0043】[0043]
【表7】 XDi以外の脂肪族ポリイソシアナートであるHMDi
を、直接法で製造しても、窒素ガス装入によって収率が
向上し、ホスゲン量も削減された。[Table 7] HMDi, an aliphatic polyisocyanate other than XDi
Even when was produced by the direct method, the yield was improved and the amount of phosgene was reduced by charging nitrogen gas.
【0044】実施例−24、比較例−19 不活性ガス装入の効果につき検討した。液状媒体を酢酸
イソアミル(沸点142℃)に変更し、ホスゲンの吹き
込み速度を25g/H、窒素の装入速度を10l/Hに
変更した以外は実施例−2と同様に反応、処理した。結
果を表8に示す。Example-24, Comparative Example-19 The effect of charging an inert gas was examined. The reaction and treatment were carried out in the same manner as in Example 2 except that the liquid medium was changed to isoamyl acetate (boiling point: 142 ° C.), the blowing rate of phosgene was changed to 25 g / H, and the charging rate of nitrogen was changed to 10 l / H. Table 8 shows the results.
【0045】[0045]
【表8】 窒素ガスの装入の効果が認められ、収率が向上した。[Table 8] The effect of charging nitrogen gas was recognized, and the yield was improved.
【0046】[0046]
【発明の効果】本発明によれば、高収率で、ホスゲン量
も削減し、目的とする脂肪族ポリイソシアナートを容易
に効率良く製造できる為、工業的製造方法として極めて
価値が高い。According to the present invention, the desired aliphatic polyisocyanate can be easily and efficiently produced in a high yield, with a reduced amount of phosgene, and is therefore extremely valuable as an industrial production method.
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平6−192205(JP,A) 特開 昭63−280050(JP,A) 特開 平3−204851(JP,A) 特開 平3−7253(JP,A) 特開 平1−151548(JP,A) (58)調査した分野(Int.Cl.7,DB名) C07C 263/10 C07C 265/14 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-6-192205 (JP, A) JP-A-63-280050 (JP, A) JP-A-3-204851 (JP, A) JP-A-3-20805 7253 (JP, A) JP-A-1-151548 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C07C 263/10 C07C 265/14
Claims (5)
炭酸塩とホスゲンを不活性液状媒体中で反応させるに際
し、反応系内に不活性ガスを装入しながら反応を行うこ
とを特徴とする脂肪族ポリイソシアナートの製造方法。1. An aliphatic polyamine or a hydrochloride or carbonate thereof and a phosgene which are reacted in an inert liquid medium while introducing an inert gas into the reaction system. A method for producing a polyisocyanate.
造方法。2. The method according to claim 1, wherein the inert gas is nitrogen.
ヘキサメチレンジアミン、トリメチルヘキサメチレンジ
アミン、イソホロンジアミン、ビス(アミノシクロヘキ
シル)メタン、2,2−ビス(アミノシクロヘキシル)
プロパン、ビス(アミノメチル)シクロヘキサン又はビ
ス(アミノメチル)ノルボルネンの群から選ばれる請求
項1記載の製造方法。3. The method of claim 1, wherein the aliphatic polyamine is xylylenediamine,
Hexamethylenediamine, trimethylhexamethylenediamine, isophoronediamine, bis (aminocyclohexyl) methane, 2,2-bis (aminocyclohexyl)
The method according to claim 1, wherein the method is selected from the group consisting of propane, bis (aminomethyl) cyclohexane, and bis (aminomethyl) norbornene.
反応を行うことを特徴とする請求項1記載の製造方法。4. The method according to claim 1, wherein the reaction is carried out in an inert liquid medium having a boiling point of 130 ° C. or higher.
4記載の製造方法。5. The method according to claim 4, wherein the inert liquid medium is an ester.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP04295695A JP3201921B2 (en) | 1994-03-22 | 1995-03-02 | Method for producing aliphatic polyisocyanate |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5008294 | 1994-03-22 | ||
JP6-50082 | 1994-03-22 | ||
JP04295695A JP3201921B2 (en) | 1994-03-22 | 1995-03-02 | Method for producing aliphatic polyisocyanate |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07309827A JPH07309827A (en) | 1995-11-28 |
JP3201921B2 true JP3201921B2 (en) | 2001-08-27 |
Family
ID=26382696
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP04295695A Expired - Lifetime JP3201921B2 (en) | 1994-03-22 | 1995-03-02 | Method for producing aliphatic polyisocyanate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3201921B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3683205A4 (en) * | 2017-09-11 | 2021-06-09 | Hanwha Solutions Corporation | Method for preparing aliphatic isocyanate |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4731658B2 (en) * | 2000-04-12 | 2011-07-27 | 三井化学株式会社 | Novel alicyclic diisocyanate compound and production method and use thereof |
JP4955911B2 (en) | 2004-03-05 | 2012-06-20 | 日本曹達株式会社 | Method for producing isocyanate compound |
EP1908749A4 (en) | 2005-07-22 | 2010-05-26 | Mitsui Chemicals Inc | Process for production of isocyanate, isocyanate produced by the process, and use of the isocyanate |
JP5379014B2 (en) | 2007-10-15 | 2013-12-25 | 三井化学株式会社 | Particulate polyurethane resin composition and molded product thereof |
WO2009051114A1 (en) | 2007-10-15 | 2009-04-23 | Mitsui Chemicals Polyurethanes, Inc. | Polyurethane resin |
DE102010019342A1 (en) * | 2010-05-05 | 2011-11-10 | Bayer Materialscience Ag | Process for the preparation of isocyanates in the gas phase |
KR101730273B1 (en) | 2012-07-31 | 2017-04-25 | 미쓰이 가가쿠 가부시키가이샤 | Polyisocyanate composition, solar cell member covering material, solar cell member with cover layer, microcapsule, and binder for ink |
WO2014118121A1 (en) | 2013-01-30 | 2014-08-07 | Basf Se | 2,6-bis-(aminomethyl)piperidine derivates |
EP2975072B1 (en) | 2013-03-15 | 2017-12-27 | Mitsui Chemicals, Inc. | Low repulsion polyurethane foam and method for producing same |
WO2017030065A1 (en) | 2015-08-18 | 2017-02-23 | 三井化学株式会社 | Polyurethane foam material, molded article, and method for producing polyurethane foam material |
US10927213B2 (en) | 2016-11-17 | 2021-02-23 | Mitsui Chemicals, Inc. | Producing method of polyurethane resin, polyurethane resin, and molded article |
KR101854429B1 (en) * | 2016-12-29 | 2018-05-03 | 한화케미칼 주식회사 | Method for preparing aliphatic isocyanate |
WO2018207807A1 (en) | 2017-05-11 | 2018-11-15 | 三井化学株式会社 | Polyurethane resin, method for producing polyurethane resin, and molded article |
EP3663108A4 (en) | 2017-07-31 | 2020-12-23 | Bridgestone Corporation | Pneumatic tyre |
-
1995
- 1995-03-02 JP JP04295695A patent/JP3201921B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3683205A4 (en) * | 2017-09-11 | 2021-06-09 | Hanwha Solutions Corporation | Method for preparing aliphatic isocyanate |
Also Published As
Publication number | Publication date |
---|---|
JPH07309827A (en) | 1995-11-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100228408B1 (en) | Process for the preparation of aliphatic polyisocyanates | |
JP3201921B2 (en) | Method for producing aliphatic polyisocyanate | |
KR940001948B1 (en) | Preparation process of xylylene diisocyanate | |
CN110114339B (en) | Process for preparing aliphatic isocyanates | |
CN111132960B (en) | Process for preparing aliphatic isocyanates | |
EP3808732B1 (en) | Method for preparing aliphatic isocyanates | |
US9045395B2 (en) | Process for the production of aliphatic isocyanates | |
JP2764081B2 (en) | Method for producing alicyclic-aliphatic diisocyanate | |
JPH07233137A (en) | Method for producing aliphatic polyisocyanate | |
EP1721893B1 (en) | Method for producing isocyanate compound | |
JP3957396B2 (en) | Method for producing isocyanate compound | |
JP2875871B2 (en) | Method for producing aromatic isocyanate | |
JPH11310567A (en) | Production of aliphatic isocyanate compound | |
WO2009154077A1 (en) | Method for producing polyisocyanate | |
JPH01102086A (en) | Manufacture of isocyanate and use thereof for manufacturing ester group-containing polyisocyanate | |
JP5380931B2 (en) | Method for producing methylene cross-linked polyphenyl polyisocyanate | |
JP4110377B2 (en) | Process for producing polymethylene polyphenyl polyisocyanate | |
JP2010120870A (en) | Method for producing methylene-crosslinked polyphenyl polyisocyanate | |
US7291750B1 (en) | Method for dehydrogenofluorination of an aromatic carbamoyl fluoride | |
JP2004107334A (en) | Method for producing isocyanate compound | |
JP2007039443A (en) | Method for producing 1,3-dialkyl-2-imidazolidinone and 1,5-dialkyl-1,3,5-triazepane-2,4-dione | |
JPH04230354A (en) | Aromatic diisocyanatoindane derivative and its production | |
JPH0124783B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080622 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090622 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100622 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100622 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110622 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120622 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120622 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130622 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130622 Year of fee payment: 12 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |