JP5380931B2 - Method for producing methylene cross-linked polyphenyl polyisocyanate - Google Patents

Method for producing methylene cross-linked polyphenyl polyisocyanate Download PDF

Info

Publication number
JP5380931B2
JP5380931B2 JP2008182171A JP2008182171A JP5380931B2 JP 5380931 B2 JP5380931 B2 JP 5380931B2 JP 2008182171 A JP2008182171 A JP 2008182171A JP 2008182171 A JP2008182171 A JP 2008182171A JP 5380931 B2 JP5380931 B2 JP 5380931B2
Authority
JP
Japan
Prior art keywords
phosgene
reaction
reaction solution
phosgenation
methylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008182171A
Other languages
Japanese (ja)
Other versions
JP2010018572A (en
Inventor
武史 開川
伸一 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Polyurethane Industry Co Ltd
Original Assignee
Nippon Polyurethane Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Polyurethane Industry Co Ltd filed Critical Nippon Polyurethane Industry Co Ltd
Priority to JP2008182171A priority Critical patent/JP5380931B2/en
Priority to PCT/JP2009/060042 priority patent/WO2010007836A1/en
Publication of JP2010018572A publication Critical patent/JP2010018572A/en
Application granted granted Critical
Publication of JP5380931B2 publication Critical patent/JP5380931B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C263/00Preparation of derivatives of isocyanic acid
    • C07C263/10Preparation of derivatives of isocyanic acid by reaction of amines with carbonyl halides, e.g. with phosgene

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

本発明は、メチレン架橋ポリフェニルポリイソシアネートの製造方法に関する。   The present invention relates to a method for producing a methylene-bridged polyphenyl polyisocyanate.

ポリウレタンフォームなどの原料となるメチレン架橋ポリフェニルポリイソシアネート(以下、必要に応じて、ポリMDIと記載)は、工業的には、ポリメチレンポリフェニルポリアミンを不活性溶媒の存在下、ホスゲンと反応させること(ホスゲン化反応)によって製造される。その後、減圧蒸留によってジフェニルメタンジイソシアネート(以下、必要に応じて、単にMDIと記載)を分離し、所定量のMDIを含有するポリMDIに調整することもできる。しかし、このような方法によって得られたポリMDIは、不純物として酸分や加水分解性塩素含有化合物を含んでおり、これらの不純物が多いと、ウレタン製造時の反応性が悪くなることが知られている。そこで、このような不純物を低減するために、従来、減圧下での加熱処理が行われていた。   Industrially, methylene-crosslinked polyphenyl polyisocyanate (hereinafter referred to as poly MDI), which is a raw material for polyurethane foam, is made to react polymethylene polyphenyl polyamine with phosgene in the presence of an inert solvent. (Phosgenation reaction). Thereafter, diphenylmethane diisocyanate (hereinafter simply referred to as “MDI”, if necessary) can be separated by distillation under reduced pressure, and adjusted to poly MDI containing a predetermined amount of MDI. However, the poly MDI obtained by such a method contains an acid content and a hydrolyzable chlorine-containing compound as impurities, and it is known that if these impurities are large, the reactivity during the production of urethane deteriorates. ing. Thus, in order to reduce such impurities, conventionally, heat treatment under reduced pressure has been performed.

しかし、上述したような加熱処理を行うとポリMDIの色相が悪化し、ウレタン製品の着色原因となる。このように、加熱処理によってポリMDIの色相が悪化する理由は、ホスゲン化反応で副生したウレア化合物が、加熱によって、反応液中に残存するホスゲンと反応してウレアホスゲン化物(着色誘発物質)に変化(もしくは生成)するためと考えられている。 However, when the heat treatment as described above is performed, the hue of the poly MDI deteriorates, which causes coloring of the urethane product. Thus, the reason why the hue of poly-MDI deteriorates due to heat treatment is that the urea compound produced as a by-product in the phosgenation reaction reacts with phosgene remaining in the reaction solution by heating to react with the urea phosgenated product (color-inducing substance). It is thought to change (or generate) .

ところで、従来から、ポリアミンとホスゲンの反応液に塩化水素を導入し、塩化水素の存在下で加熱処理を行うと、ポリMDIの色相悪化を抑制できることが知られている。例えば、特許文献1には、ホスゲン化反応後の反応液から140℃以下の温度条件で残存ホスゲンを除去した後、塩化水素ガスの存在下で140℃以上の温度に加熱する方法が開示されている。   By the way, conventionally, it is known that when hydrogen chloride is introduced into a reaction solution of polyamine and phosgene and heat treatment is performed in the presence of hydrogen chloride, the hue deterioration of poly MDI can be suppressed. For example, Patent Document 1 discloses a method of removing residual phosgene from a reaction solution after a phosgenation reaction under a temperature condition of 140 ° C. or lower and then heating to 140 ° C. or higher in the presence of hydrogen chloride gas. Yes.

また、一方で、反応液に塩化水素を導入せず、その代わりに、ホスゲン化反応や残存ホスゲンの除去における溶液温度を比較的低い温度に抑えることによって、ポリMDIの色相を改善する方法も知られている。例えば、特許文献2には、ホスゲン化反応を120℃以下で行い、その後、100〜120℃で残存ホスゲンを反応液から除去する方法が開示されている。   On the other hand, there is also known a method for improving the hue of poly-MDI by not introducing hydrogen chloride into the reaction solution, but instead suppressing the solution temperature in the phosgenation reaction or removal of residual phosgene to a relatively low temperature. It has been. For example, Patent Document 2 discloses a method in which a phosgenation reaction is performed at 120 ° C. or less, and then residual phosgene is removed from the reaction solution at 100 to 120 ° C.

特開平7−233136号公報JP 7-233136 A 特開平7−316122号公報JP-A-7-316122

前記特許文献1に記載の方法のように、ホスゲン化反応後の反応液に塩化水素を導入することによってポリMDIの色相を改善することは確かに可能であるが、塩化水素導入のための工程が別に必要となるためにコストアップにつながる。また、塩化水素を扱うポンプ等、塩化水素導入のための専用の装置が必要となるし、塩化水素の使用によりプラント設備の腐食も発生しやすくなる。以上の観点からは、塩化水素を導入することなくポリMDIの色相改善を行うことが望ましい。   Although it is certainly possible to improve the hue of poly-MDI by introducing hydrogen chloride into the reaction solution after the phosgenation reaction as in the method described in Patent Document 1, a process for introducing hydrogen chloride is possible. Is necessary separately, leading to increased costs. In addition, a dedicated device for introducing hydrogen chloride such as a pump for handling hydrogen chloride is required, and the use of hydrogen chloride tends to cause corrosion of plant equipment. From the above viewpoint, it is desirable to improve the hue of poly MDI without introducing hydrogen chloride.

一方、前記特許文献2に記載の方法では、ホスゲン化反応工程や残存ホスゲンの除去工程において温度を低く抑えているものの、それでも、副生したウレア化合物と残存ホスゲンとが100℃以上で共存することになる。しかし、本願発明者らの検討によって、このような温度条件下では、実際には、副生したウレア化合物と残存ホスゲンとの反応がやはり進行して着色誘発物質が生じてしまい、色相改善が不十分となることがわかった。   On the other hand, in the method described in Patent Document 2, although the temperature is kept low in the phosgenation reaction step and the residual phosgene removal step, the by-produced urea compound and the residual phosgene coexist at 100 ° C. or higher. become. However, as a result of the study by the present inventors, under such temperature conditions, the reaction between the by-produced urea compound and the residual phosgene actually proceeds to produce a color-inducing substance, and hue improvement is not achieved. It turned out to be enough.

本発明の目的は、塩化水素を外部から導入しなくとも、高い色相改善効果が得られる、メチレン架橋ポリフェニルポリイソシアネートの製造方法を提供することである。   An object of the present invention is to provide a method for producing a methylene-bridged polyphenyl polyisocyanate which can obtain a high hue improving effect without introducing hydrogen chloride from the outside.

本発明のメチレン架橋ポリフェニレンポリイソシアネートの製造方法は、ポリメチレンポリフェニルポリアミンを不活性溶媒の存在下、ホスゲンと反応させてメチレン架橋ポリフェニレンポリイソシアネートを製造する方法において、50℃〜93℃でポリメチレンポリフェニルポリアミンとホスゲンとを反応させるホスゲン化反応工程と、前記ホスゲン化反応工程で得られた反応液から、50℃〜93℃で残存ホスゲンを除去する除去工程とを備えることを特徴とするものである。
The method for producing a methylene-bridged polyphenylene polyisocyanate according to the present invention is a method for producing a methylene-bridged polyphenylene polyisocyanate by reacting polymethylene polyphenylpolyamine with phosgene in the presence of an inert solvent at a temperature of 50 ° C. to 93 ° C. A phosgenation reaction step for reacting polyphenylpolyamine and phosgene, and a removal step for removing residual phosgene from 50 ° C. to 93 ° C. from the reaction solution obtained in the phosgenation reaction step. It is.

本発明のメチレン架橋ポリフェニレンポリイソシアネートの製造方法においては、前記ホスゲン化反応工程において、60℃〜80℃でポリメチレンポリフェニルポリアミンとホスゲンとを反応させ、且つ、前記除去工程において、60℃〜80℃で残存ホスゲンを除去することが好ましい。   In the method for producing a methylene-crosslinked polyphenylene polyisocyanate of the present invention, in the phosgenation reaction step, polymethylene polyphenylpolyamine and phosgene are reacted at 60 ° C. to 80 ° C., and in the removal step, 60 ° C. to 80 ° C. It is preferred to remove residual phosgene at 0 ° C.

本発明のメチレン架橋ポリフェニレンポリイソシアネートの製造方法においては、前記除去工程において、前記ホスゲン化反応工程よりも低い圧力条件下で、残存ホスゲンを除去することが好ましい。   In the method for producing a methylene-bridged polyphenylene polyisocyanate according to the present invention, it is preferable to remove residual phosgene in the removal step under a pressure condition lower than that in the phosgenation reaction step.

本発明のメチレン架橋ポリフェニレンポリイソシアネートの製造方法においては、前記ホスゲン化反応工程において、50kPa・G〜250kPa・Gの圧力条件下でポリメチレンポリフェニルポリアミンとホスゲンとを反応させ、前記除去工程においては、常圧以下まで減圧して、残存ホスゲンを除去することが好ましい。尚、本願中において「常圧」とは、地球上の通常の圧力、即ち、1気圧(0kPa・G)のことをいう。   In the method for producing methylene-bridged polyphenylene polyisocyanate of the present invention, in the phosgenation reaction step, polymethylene polyphenyl polyamine and phosgene are reacted under a pressure condition of 50 kPa · G to 250 kPa · G, and in the removal step, The residual phosgene is preferably removed by reducing the pressure to normal pressure or lower. In the present application, “normal pressure” means a normal pressure on the earth, that is, 1 atmosphere (0 kPa · G).

本発明のメチレン架橋ポリフェニレンポリイソシアネートの製造方法においては、前記除去工程において、前記反応液に不活性ガスを導入することにより、前記反応液から残存ホスゲンを除去することが好ましい。   In the method for producing a methylene-bridged polyphenylene polyisocyanate of the present invention, it is preferable that residual phosgene is removed from the reaction solution by introducing an inert gas into the reaction solution in the removing step.

本発明のメチレン架橋ポリフェニレンポリイソシアネートの製造方法においては、前記除去工程において、常圧以下まで減圧することにより、前記反応液から残存ホスゲンを除去することが好ましく、−95kPa・G〜−50kPa・Gまで減圧することにより、前記反応液から残存ホスゲンを除去することがさらに好ましい。   In the method for producing a methylene-bridged polyphenylene polyisocyanate according to the present invention, it is preferable to remove residual phosgene from the reaction solution by reducing the pressure to normal pressure or lower in the removing step, and from −95 kPa · G to −50 kPa · G. It is more preferable to remove the residual phosgene from the reaction solution by reducing the pressure to a minimum.

本発明によれば、50℃〜93℃でポリメチレンポリフェニルポリアミンとホスゲンとを反応させた後、得られた反応液から50℃〜93℃で残存ホスゲンを除去する。つまり、ホスゲン化反応工程や残存ホスゲンの除去工程において、反応液の温度を93℃以下にすることによって、ホスゲン化反応で副生するウレア化合物と残存ホスゲンとの副反応が大きく進行すると考えられる、100℃以上の温度で、両者を共存させないことになる。これにより、反応液への塩化水素の導入を行うことなく、ポリMDIの十分な色相改善が可能となる。
According to the present invention, 50 ° C. After reacting polymethylene polyphenyl polyamines with phosgene at ~ 93 ° C., to remove residual phosgene at 50 ° C. ~ 93 ° C. from the resulting reaction solution. That is, in the phosgenation reaction step and the residual phosgene removal step, it is considered that the side reaction between the urea compound produced as a by-product in the phosgenation reaction and the residual phosgene proceeds greatly by setting the temperature of the reaction solution to 93 ° C. or lower. Both will not coexist at a temperature of 100 ° C. or higher. Thereby, the hue of poly MDI can be sufficiently improved without introducing hydrogen chloride into the reaction solution.

次に、本発明の好適な実施形態について詳細に説明する。   Next, preferred embodiments of the present invention will be described in detail.

本実施形態のメチレン架橋ポリフェニレンポリイソシアネートの製造方法は、ポリメチレンポリフェニルポリアミンとホスゲンとを反応させた後(ホスゲン化反応工程)、ホスゲン化反応後の反応液から残存ホスゲンを除去する(除去工程)。その後、濃縮してジフェニルメタンジイソシアネート(MDI)を分離することも可能である。   In the method for producing a methylene-crosslinked polyphenylene polyisocyanate according to the present embodiment, after reacting polymethylene polyphenylpolyamine and phosgene (phosgenation reaction step), residual phosgene is removed from the reaction solution after the phosgenation reaction (removal step). ). It can then be concentrated to separate diphenylmethane diisocyanate (MDI).

(ホスゲン化反応工程)
ホスゲン化反応工程で使用されるポリメチレンポリフェニルポリアミン(以下、ポリMDAともいう)は、下記一般式(化1)で表される。このポリMDAの製法は特に限定されるものではないが、一般的には、酸触媒の存在下でのアニリンとホルムアルデヒドの付加縮合によって得られる。尚、下記式(化1)中のnは、0又は1以上の整数を表している。
(Phosgenation reaction process)
The polymethylene polyphenyl polyamine (hereinafter also referred to as poly MDA) used in the phosgenation reaction step is represented by the following general formula (Formula 1). The method for producing this poly MDA is not particularly limited, but it is generally obtained by addition condensation of aniline and formaldehyde in the presence of an acid catalyst. In addition, n in the following formula (Formula 1) represents 0 or an integer of 1 or more.

Figure 0005380931
Figure 0005380931

上記において、n=0の場合は、一般式(化1)で表されるポリアミンは、メチレンジアニリン(MDA)であり2核体に相当する。また、n=1の場合は3核体、n=2の場合は4核体であり、n=mの場合は(m+2)核体となる。上記一般式(化1)で表されるポリアミンは、アニリンに由来する骨格(1つのアミノ基と1つのベンゼン環からなる骨格)の数が異なるものの混合物であってもよい。即ち、2核体、3核体、4核体、5核体、及び、それ以上の多核体の混合物であってもよい。   In the above, when n = 0, the polyamine represented by the general formula (Formula 1) is methylenedianiline (MDA) and corresponds to a binuclear body. Further, when n = 1, it is a trinuclear body, when n = 2, it is a tetranuclear body, and when n = m, it is a (m + 2) nucleus. The polyamine represented by the general formula (Chemical Formula 1) may be a mixture of anilines derived from different skeletons (skeletons composed of one amino group and one benzene ring). That is, it may be a mixture of binuclear, trinuclear, tetranuclear, pentanuclear, and higher polynuclear bodies.

ホスゲン化反応は、上記ポリMDAを不活性溶媒に溶解させ、これにホスゲンを導入することによって行うことができる。ここで、使用可能な不活性溶媒としては、トルエン、キシレン等の芳香族炭化水素、クロロトルエン、クロロベンゼン、ジクロロベンゼン等のハロゲン化炭化水素、酢酸ブチル、酢酸アミル等のエステル類、メチルイソブチルケトン等のケトン類等が挙げられる。また、ホスゲン化の手法は特に限定されるものではなく、塩酸塩法、冷熱2段法、ホスゲン加圧法等の公知の方法を用いて行うことができる。また、バッチ的に反応を生じさせることも可能であるが、工業的見地からは、連続的に反応を生じさせる方法が好ましい。   The phosgenation reaction can be carried out by dissolving the poly MDA in an inert solvent and introducing phosgene into this. Here, usable inert solvents include aromatic hydrocarbons such as toluene and xylene, halogenated hydrocarbons such as chlorotoluene, chlorobenzene and dichlorobenzene, esters such as butyl acetate and amyl acetate, and methyl isobutyl ketone. And ketones. The phosgenation method is not particularly limited, and can be performed using a known method such as a hydrochloride method, a two-stage cooling method, or a phosgene pressurization method. In addition, although it is possible to cause the reaction in batches, a method in which the reaction is continuously caused is preferable from an industrial viewpoint.

ポリアミンのホスゲン化反応は、以下の主反応4式(1)〜(4)で表すことができる。尚、下記式(1)〜(4)中のRは、一般式(化1)において、アミノ基を除いた残基を示す。
(1)R−NH+COCl→R−NHCOCl+HCl
(2)R−NH+HCl→R−NH・HCl
(3)R−NH・HCl+COCl→R−NHCOCl+2HCl
(4)R−NHCOCl→R−NCO+HCl
The polyamine phosgenation reaction can be represented by the following main reaction formulas (1) to (4). In the following formulas (1) to (4), R represents a residue in the general formula (Chemical Formula 1) excluding the amino group.
(1) R-NH 2 + COCl 2 → R-NHCOCl + HCl
(2) R-NH 2 + HCl → R-NH 2 .HCl
(3) R-NH 2 .HCl + COCl 2 → R-NHCOCl + 2HCl
(4) R-NHCOCl → R-NCO + HCl

上記(1)〜(4)で表される反応が進行することによって、生成される物質は、下記一般式(化2)で表される、メチレン架橋ポリフェニルポリイソシアネートである。尚、下記一般式(化2)中のnは、0又は1以上の整数を表しており、n=0のときはモノメリックMDI(2核体)であり、n≧1のときはポリメリックMDI(3核体以上)である。また、一般式(化1)で表されるポリアミンが多核体の混合物である場合には、一般式(化2)で表される物質も多核体の混合物となる。   A substance produced by the progress of the reactions represented by the above (1) to (4) is methylene-bridged polyphenyl polyisocyanate represented by the following general formula (Formula 2). In the following general formula (Formula 2), n represents 0 or an integer of 1 or more. When n = 0, it is a monomeric MDI (binuclear), and when n ≧ 1, a polymeric MDI. (3 nuclei or more). When the polyamine represented by the general formula (Chemical Formula 1) is a mixture of polynuclear bodies, the substance represented by the General Formula (Chemical Formula 2) is also a mixture of polynuclear bodies.

Figure 0005380931
Figure 0005380931

ここで、ホスゲン化反応を生じさせるときの温度(反応液温度)は、50℃〜100℃が好ましく、60℃〜80℃がより好ましい。   Here, the temperature (reaction liquid temperature) when causing the phosgenation reaction is preferably 50 ° C to 100 ° C, more preferably 60 ° C to 80 ° C.

温度が100℃を超えると、色相悪化の原因となる着色誘発物質が生成されるのを十分に抑制できない。この理由は以下のように推測される。   If the temperature exceeds 100 ° C., it is not possible to sufficiently suppress the generation of a color inducing substance that causes hue deterioration. The reason is presumed as follows.

ホスゲン化反応工程においては、上記式(1)〜(4)の主反応の他、下記式(5)で示される副反応も進行することが考えられる。
(5)2R−NH+COCl→R−NHCONH−R+2HCl
In the phosgenation reaction step, it is considered that the side reaction represented by the following formula (5) proceeds in addition to the main reactions of the above formulas (1) to (4).
(5) 2R-NH 2 + COCl 2 → R-NHCONH-R + 2HCl

ここで、式(5)の右辺のR−NHCONH−Rは、ホスゲン化反応時に副生するウレア化合物であり、反応液中で不純物として存在するが、ウレア化合物自体はポリMDIの色相には影響を及ぼさない物質である。   Here, R-NHCONH-R on the right side of the formula (5) is a urea compound by-produced during the phosgenation reaction and exists as an impurity in the reaction solution, but the urea compound itself affects the hue of poly-MDI. It is a substance that does not affect.

しかし、反応液中にホスゲン(COCl)が残存している状態で、反応液の温度が100℃を超えると、さらに副反応が進行するようになる。即ち、ウレア化合物(R−NHCONH−R)が残存ホスゲンと反応して、着色誘発物質であるウレアホスゲン化物が生成する。 However, when the temperature of the reaction liquid exceeds 100 ° C. with phosgene (COCl 2 ) remaining in the reaction liquid, the side reaction further proceeds. That is, the urea compound (R-NHCONH-R) reacts with the remaining phosgene to produce a urea phosgenated product that is a coloring inducer.

つまり、1)反応液中にホスゲンが残存している、2)反応液温度が100℃を超える、の2つの条件が満たされている場合に、着色誘発物質が生成されることになる。ここで、ホスゲン化反応工程においては、その主反応(特に、上記式(1)及び(3))を進行させるためにホスゲンが必要であることから、反応液中にはホスゲンを存在させる必要があり、上記1)の条件は必然的に満たされる。そこで、上記2)の条件を満たさないように、反応液温度を100℃以下とすることが好ましいのである。   That is, a coloring inducer is generated when the following two conditions are satisfied: 1) phosgene remains in the reaction solution, and 2) the reaction solution temperature exceeds 100 ° C. Here, in the phosgenation reaction step, since phosgene is necessary to advance the main reaction (particularly, the above formulas (1) and (3)), it is necessary to make phosgene present in the reaction solution. Yes, the above condition 1) is necessarily satisfied. Therefore, the reaction solution temperature is preferably 100 ° C. or lower so as not to satisfy the condition 2).

尚、少し補足すると、先にも述べたように、従来技術(例えば、特許文献1)として、ホスゲン化反応時に、塩化水素を反応液に導入することにより、着色を抑制する技術が知られている。これは、ウレア化合物とホスゲンとの反応によって得られた、ウレアホスゲン化物(着色誘発物質)に塩化水素を添加することによって、ウレアホスゲン化物を、着色に関して無害な別の物質に変化させることができるためである。このように、塩化水素を添加する場合には、ウレアホスゲン化物が生成されても問題ないことから、100℃以下まで温度を低くしてウレア化合物とホスゲンとの反応を抑える必要はさほどない。一方、本実施形態では、外部から塩化水素を導入しない代わりに、温度を低く抑えることによって、ウレア化合物とホスゲンとの反応を抑制しているのである。   In addition, as mentioned above, as described above, as a conventional technique (for example, Patent Document 1), a technique for suppressing coloring by introducing hydrogen chloride into a reaction solution during a phosgenation reaction is known. Yes. By adding hydrogen chloride to a urea phosgenated product (color-inducing substance) obtained by the reaction of a urea compound and phosgene, the urea phosgenated product can be changed to another material that is harmless with respect to coloring. Because. Thus, when hydrogen chloride is added, there is no problem even if a urea phosgenation product is formed. Therefore, it is not necessary to suppress the reaction between the urea compound and phosgene by lowering the temperature to 100 ° C. or lower. On the other hand, in this embodiment, instead of not introducing hydrogen chloride from the outside, the reaction between the urea compound and phosgene is suppressed by keeping the temperature low.

一方、反応液の温度が低いと着色誘発物質の生成を抑制するという点では有利であるが、あまり温度が低いとホスゲン化反応の進行速度が非常に遅くなるために、工業的には不適である。従って、実際の製造工程に適用しうる現実的な反応速度を考慮して、ホスゲン化反応工程の温度は50℃以上であることが好ましい。   On the other hand, if the temperature of the reaction solution is low, it is advantageous in terms of suppressing the formation of coloring inducers, but if the temperature is too low, the rate of progress of the phosgenation reaction becomes very slow, which is not industrially suitable. is there. Therefore, the temperature of the phosgenation reaction step is preferably 50 ° C. or higher in consideration of a realistic reaction rate that can be applied to an actual production step.

尚、上記式(5)で副生するウレア化合物は、それ自体は色相に影響を及ぼさない物質であり、ウレア化合物のままで存在する限り(ホスゲンと反応してウレアホスゲン化物にならない限り)、色相に関して無害である。しかし、ポリMDIを製造する上では不純物であることには変わらず、不純物であるウレア化合物の生成を少なくするためには式(5)の反応をできるだけ抑制することが好ましい。ここで、式(5)の反応は、加圧条件下では進行しにくいことが知られている。そこで、このホスゲン化反応工程においては、50kPa・G〜250kPa・Gの加圧条件下で、ポリアミンとホスゲンの反応を進行させることが好ましい。   In addition, the urea compound by-produced in the above formula (5) is a substance that does not affect the hue itself, and as long as it remains as a urea compound (unless it reacts with phosgene to form a urea phosgenated product), Harmless with respect to hue. However, in producing polyMDI, it remains an impurity, and it is preferable to suppress the reaction of the formula (5) as much as possible in order to reduce the generation of urea compounds as impurities. Here, it is known that the reaction of the formula (5) hardly proceeds under a pressurized condition. Therefore, in this phosgenation reaction step, it is preferable to advance the reaction between polyamine and phosgene under a pressure of 50 kPa · G to 250 kPa · G.

(除去工程)
上記ホスゲン化反応工程で得られた反応液中には、通常、未反応のホスゲンが残存している。そのため、上述のホスゲン化反応工程で着色誘発物質の生成を抑制できたとしても、未反応ホスゲンが残存した状態のまま、後工程(減圧蒸留等)へ移行して加熱処理がなされると、反応液中のウレア化合物と残存ホスゲンが反応し(式(5))、着色誘発物質の生成が行われてしまう。そこで、この除去工程において、反応液から未反応の残存ホスゲンを除去する。
(Removal process)
In the reaction solution obtained in the phosgenation reaction step, unreacted phosgene usually remains. Therefore, even if the generation of the color-inducing substance can be suppressed in the above-described phosgenation reaction step, the reaction proceeds when the heat treatment is performed by moving to a subsequent step (vacuum distillation or the like) with the unreacted phosgene remaining. The urea compound in the liquid reacts with the remaining phosgene (formula (5)), and a color-inducing substance is generated. Therefore, in this removal step, unreacted residual phosgene is removed from the reaction solution.

反応液から残存ホスゲンを除去する方法としては、反応液に窒素、ヘリウム、アルゴン等の、反応液と反応しない不活性ガスを導入する方法や、雰囲気圧力を常圧以下まで減圧して反応液中のホスゲンを気化させる方法等を採用できる。さらに、不活性ガスの導入と減圧の両方を組み合わせてもよい。   Residual phosgene can be removed from the reaction solution by introducing an inert gas that does not react with the reaction solution, such as nitrogen, helium, or argon, or by reducing the atmospheric pressure to below the normal pressure. A method of vaporizing phosgene can be employed. Furthermore, you may combine both introduction of an inert gas, and pressure reduction.

また、この除去工程中の反応液の温度も、上記ホスゲン化反応工程と同様に、50℃〜100℃が好ましく、60℃〜80℃がより好ましい。   Further, the temperature of the reaction solution during this removal step is preferably 50 ° C. to 100 ° C., more preferably 60 ° C. to 80 ° C., similarly to the phosgenation reaction step.

温度を100℃以下とする理由は、ホスゲン化反応工程と同じく、着色誘発物質の生成を抑制するためである。即ち、上記式(5)の反応によって生成したウレア化合物が、残存ホスゲンと反応することをできるだけ抑制するために、反応液温度を100℃以下とすることが好ましい。   The reason for setting the temperature to 100 ° C. or lower is to suppress the formation of a color-inducing substance as in the phosgenation reaction step. That is, in order to suppress as much as possible that the urea compound produced | generated by reaction of the said Formula (5) reacts with residual phosgene, it is preferable to make reaction liquid temperature into 100 degrees C or less.

一方、反応液の温度が低すぎると、反応液中のホスゲンが気化しにくくなり、ホスゲンを効果的に除去することができない。この観点から、除去工程における反応液温度は50℃以上とすることが好ましい。   On the other hand, if the temperature of the reaction solution is too low, phosgene in the reaction solution becomes difficult to vaporize and phosgene cannot be effectively removed. From this viewpoint, the reaction solution temperature in the removal step is preferably 50 ° C. or higher.

また、先に述べたように、副反応(式(5))抑制の観点からホスゲン化反応を加圧条件下で行った場合には、この除去工程おいて減圧し、ホスゲン化反応工程よりも低い圧力条件下で、残存ホスゲンを除去することが好ましい。具体的には、常圧以下の圧力まで減圧することが好ましい。 Further, as described above, when a side reaction phosgenation reaction in terms of (Equation (5)) inhibition was performed under pressurized conditions, and Oite reduced to the removal step, from the phosgenation step It is preferable to remove residual phosgene under low pressure conditions. Specifically, it is preferable to reduce the pressure to a pressure equal to or lower than normal pressure.

尚、上記ホスゲン化反応工程で説明した主反応(1)〜(4)のうち、実際にホスゲン(COCl)を要する反応は、式(1)と式(3)のみである。従って、まず、ホスゲン化反応を加圧条件下で行い、ウレア化合物の生成を抑制しながら式(1)〜(3)の反応を生じさせる(式(4)の反応もある程度進行する)。その後、ホスゲンを要する式(3)の反応がほぼ完了した段階で減圧し、低圧条件下で残存ホスゲンの除去を行いつつ、同時に式(4)の反応を進行させるという流れになる。 Of the main reactions (1) to (4) described in the phosgenation reaction step, the only reactions that actually require phosgene (COCl 2 ) are the formulas (1) and (3). Therefore, first, the phosgenation reaction is carried out under pressure to cause the reactions of formulas (1) to (3) while suppressing the formation of urea compounds (the reaction of formula (4) also proceeds to some extent). Thereafter, the pressure is reduced when the reaction of the formula (3) requiring phosgene is almost completed, and the reaction of the formula (4) is advanced at the same time while removing the remaining phosgene under the low pressure condition.

このように、残存ホスゲンの除去を低圧条件下で行うと、反応液中のホスゲンの気化が促進されるため、残存ホスゲンの除去をより効率よく行うことができる。   Thus, when residual phosgene is removed under low pressure conditions, vaporization of phosgene in the reaction solution is promoted, so that residual phosgene can be removed more efficiently.

また、イソシアネートを生成する反応である式(4)(R−NHCOCl→R−NCO+HCl)は、塩化水素(HCl)を生成する反応でもある。一方で、雰囲気圧力が低圧であるほど反応液中に含まれる塩化水素が気化しやすく、反応液中の塩化水素が減少する傾向をとる。従って、除去工程で減圧することによって、反応液中の塩化水素が減少して、塩化水素を生成する式(4)の反応が進行し、その結果、イソシアネートの生成(NHCOCl→NCO)が促進される。この観点からも、除去工程において減圧し、低圧条件下で残存ホスゲンの除去を行うことが好ましい。   Further, the formula (4) (R—NHCOCl → R—NCO + HCl), which is a reaction that generates isocyanate, is also a reaction that generates hydrogen chloride (HCl). On the other hand, as the atmospheric pressure is lower, hydrogen chloride contained in the reaction solution is more easily vaporized, and the hydrogen chloride in the reaction solution tends to decrease. Therefore, by reducing the pressure in the removing step, the hydrogen chloride in the reaction solution is reduced, and the reaction of the formula (4) that generates hydrogen chloride proceeds. As a result, the generation of isocyanate (NHCOCl → NCO) is promoted. The Also from this viewpoint, it is preferable to reduce the pressure in the removing step and remove the residual phosgene under low pressure conditions.

以上のようにしてポリMDIを得る。また、反応液から未反応の残存ホスゲンを除去した後、この反応液を濃縮して、ジフェニルメタンジイソシアネート(MDI)を分離し、ポリMDIを得ることも可能である。尚、この段階では既に残存ホスゲンが除去されているため、反応液を加熱(例えば、200℃以上)しても、着色誘発物質が生成されることはない。   A poly MDI is obtained as described above. It is also possible to remove unreacted residual phosgene from the reaction solution and then concentrate the reaction solution to separate diphenylmethane diisocyanate (MDI) to obtain poly MDI. In this stage, since the residual phosgene has already been removed, even if the reaction solution is heated (for example, 200 ° C. or higher), a color inducing substance is not generated.

以上説明したように、本実施形態によれば、50℃〜100℃でポリメチレンポリフェニルポリアミンとホスゲンとを反応させた後、50℃〜100℃で反応液から残存ホスゲンを除去する。つまり、ホスゲン化反応工程や残存ホスゲンの除去工程において、反応液の温度を100℃以下にすることにより、ホスゲン化反応で副生するウレア化合物と残存ホスゲンとの副反応が大きく進行すると考えられる100℃以上の温度で、両者を共存させないことになる。これにより、反応液への塩化水素の導入を行うことなく、十分な色相改善が可能となる。
As described above, according to the present embodiment , after reacting polymethylene polyphenyl polyamine and phosgene at 50 ° C. to 100 ° C., residual phosgene is removed from the reaction solution at 50 ° C. to 100 ° C. That is, in the phosgenation reaction step and the residual phosgene removal step, it is considered that the side reaction between the urea compound produced as a by-product in the phosgenation reaction and the residual phosgene proceeds greatly by setting the temperature of the reaction solution to 100 ° C. or less. Both will not coexist at temperatures above ℃. This makes it possible to improve the hue sufficiently without introducing hydrogen chloride into the reaction solution.

尚、さらなる着色改善のために、反応液へのフェノール系や亜燐酸系の酸化防止剤や金属水素化物(ボラン)などの還元剤の添加や、アルコールあるいは水の添加といった、従来から知られた着色改善方法を併用してもよい。   In order to further improve the coloration, it has been conventionally known to add a reducing agent such as a phenolic or phosphorous acid-based antioxidant or a metal hydride (borane) to the reaction solution, or to add alcohol or water. A coloring improvement method may be used in combination.

次に、本発明を実施例によりさらに詳細に説明する。但し、本発明は以下の実施例によって何ら限定して解釈されるものではない。また、以下の説明において,特段の記載がない限り、「%」は「質量%」を示す。   Next, the present invention will be described in more detail with reference to examples. However, the present invention is not construed as being limited in any way by the following examples. In the following description, “%” means “mass%” unless otherwise specified.

以下の実施例及び比較例では、ポリMDAとして、アミン基濃度:9.5mol/kg、2,2’体及び2,4’体:14.3質量%、4,4’体:53.4質量%、3核体:32質量%、のものを使用した。   In the following Examples and Comparative Examples, as poly MDA, amine group concentration: 9.5 mol / kg, 2,2 ′ isomer and 2,4 ′ isomer: 14.3 mass%, 4,4 ′ isomer: 53.4 A mass%, trinuclear body: 32 mass% was used.

<実施例1〜3>
実施例1〜3では、以下の1)〜5)の工程を経て、ポリMDIを製造し、それぞれの色相を測定した。
1)熱交換器を備えた3Lの加圧反応容器にクロロベンゼン700gを仕込み、容器内を10℃に冷却した後、容器内を撹拌しながらホスゲン132gを吹き込んだ。
<Examples 1-3>
In Examples 1 to 3, poly MDI was produced through the following steps 1) to 5), and the respective hues were measured.
1) 700 g of chlorobenzene was charged into a 3 L pressurized reaction vessel equipped with a heat exchanger, and the inside of the vessel was cooled to 10 ° C., and then 132 g of phosgene was blown into the vessel while stirring.

2)次に、ホスゲン/クロロベンゼン溶液が入った容器内の圧力を120kPa・Gとした後、30℃に調整したポリMDAのモノクロロベンゼン溶液(ポリMDA濃度10%)700gを容器内に一気に仕込み、混合撹拌した。 2) Next, after the pressure in the container containing the phosgene / chlorobenzene solution was set to 120 kPa · G, 700 g of a monochlorobenzene solution of poly MDA adjusted to 30 ° C. (poly MDA concentration 10%) was charged all at once in the container, The mixture was stirred.

3)上記混合後、直ちに混合液を所定の反応温度まで上昇させ、この反応温度を90分保持してホスゲン化反応を行った。尚、この反応温度は、実施例1では65℃、実施例2では78℃、実施例3では93℃とした。 3) Immediately after the mixing, the mixture was raised to a predetermined reaction temperature, and this reaction temperature was maintained for 90 minutes to carry out a phosgenation reaction. The reaction temperature was 65 ° C. in Example 1, 78 ° C. in Example 2, and 93 ° C. in Example 3.

4)次に、容器内の圧力を常圧(0kPa・G)まで下げ、前記反応温度を維持したまま、窒素を3L/minで通気することにより残存ホスゲンの除去を70分間かけて行った。尚、上記の窒素通気時間は、反応液中のホスゲン量が所定濃度(800ppm以下、より好ましくは300ppm以下)となるように設定されている。 4) Next, the pressure in the container was lowered to normal pressure (0 kPa · G), and while maintaining the reaction temperature, nitrogen was passed at 3 L / min to remove residual phosgene over 70 minutes. The nitrogen aeration time is set so that the amount of phosgene in the reaction solution has a predetermined concentration (800 ppm or less, more preferably 300 ppm or less).

5)ホスゲン除去後、130℃/20torrでモノクロロベンゼンを留去させ、さらに、得られた濃縮液を窒素通気下、220℃で10分保持後、即座に60℃まで冷却し、得られたポリMDIの溶液色を目視にて測定した。 5) After removal of phosgene, monochlorobenzene was distilled off at 130 ° C./20 torr. Further, the obtained concentrated liquid was kept at 220 ° C. for 10 minutes under nitrogen flow and immediately cooled to 60 ° C. The solution color of MDI was measured visually.

<実施例4,5>
実施例4,5では、ホスゲン化反応後に、反応温度(実施例4では65℃、実施例5では78℃)と反応圧力(120kPa・G)を維持し(つまり、容器内を常圧まで減圧せずに加圧状態のままで)、窒素を3L/minで通気することにより残存ホスゲンの除去を行った。但し、これらの実施例4,5においては、溶液中に残存するホスゲンを、前記実施例1〜3と同等の濃度以下まで除去するのに190分の窒素通気が必要であった。それ以外の条件については、前記実施例1〜3と同じである。
<Examples 4 and 5>
In Examples 4 and 5, after the phosgenation reaction, the reaction temperature (65 ° C. in Example 4, 78 ° C. in Example 5) and the reaction pressure (120 kPa · G) are maintained (that is, the inside of the container is reduced to normal pressure). The remaining phosgene was removed by aeration of nitrogen at 3 L / min. However, in these Examples 4 and 5, it was necessary to ventilate nitrogen for 190 minutes in order to remove the phosgene remaining in the solution to a concentration equal to or less than that in Examples 1 to 3 described above. About other conditions, it is the same as the said Examples 1-3.

<比較例1〜4>
比較例1〜4では、前記実施例1〜3と、ホスゲン化反応時の温度、及び、その後の残存ホスゲン除去時の温度をそれぞれ異ならせた。具体的には、ホスゲン化反応温度は、比較例1では78℃、比較例2では105℃、比較例3では115℃、比較例4では115℃とした。また、ホスゲン除去時の温度は、比較例1では115℃、比較例2では105℃、比較例3では115℃、比較例4では78℃とした。それ以外の条件については、前記実施例1〜3と同じである。
<Comparative Examples 1-4>
In Comparative Examples 1 to 4, the temperature during the phosgenation reaction and the temperature during the subsequent removal of residual phosgene were different from those of Examples 1 to 3, respectively. Specifically, the phosgenation reaction temperature was 78 ° C. in Comparative Example 1, 105 ° C. in Comparative Example 2, 115 ° C. in Comparative Example 3, and 115 ° C. in Comparative Example 4. The temperature at the time of phosgene removal was 115 ° C. in Comparative Example 1, 105 ° C. in Comparative Example 2, 115 ° C. in Comparative Example 3, and 78 ° C. in Comparative Example 4. About other conditions, it is the same as the said Examples 1-3.

<溶液色測定方法>
450mlの無色透明瓶に、上述した実施例1〜5、及び、比較例1〜4によってそれぞれ得られた試料2gとアセトン400mlを加えて溶解し、23℃で溶液色を目視にて測定した。値はAPHA(ハーゼン単位色数)で示した。
<Solution color measurement method>
In a 450 ml colorless transparent bottle, 2 g of the sample obtained in each of Examples 1 to 5 and Comparative Examples 1 to 4 and 400 ml of acetone were added and dissolved, and the solution color was visually measured at 23 ° C. The value is indicated by APHA (Hazen unit color number).

<検証>
以上の実施例1〜5と比較例1〜4のそれぞれについて、ホスゲン化反応条件及びホスゲン除去条件と、得られたポリMDI溶液の色相をまとめたものを表1に示す。
<Verification>
Table 1 shows a summary of the phosgenation reaction conditions and phosgene removal conditions and the hues of the obtained poly-MDI solutions for each of Examples 1 to 5 and Comparative Examples 1 to 4.

Figure 0005380931
Figure 0005380931

表1に示すように、ホスゲン化反応とホスゲン除去の両方を100℃以下の温度で行う実施例1〜5では、ホスゲン化反応と残存ホスゲン除去の一方又は両方において溶液温度が100℃〜120℃となる比較例1〜4と比べて、色相が大幅に改善されていることがわかる。   As shown in Table 1, in Examples 1 to 5 in which both the phosgenation reaction and phosgene removal are performed at a temperature of 100 ° C. or lower, the solution temperature is 100 ° C. to 120 ° C. in one or both of the phosgenation reaction and residual phosgene removal. It can be seen that the hue is greatly improved as compared with Comparative Examples 1 to 4.

また、ホスゲン化反応温度とホスゲン除去時の処理温度を、60℃〜80℃の範囲とした実施例1,2,4,5では、これらよりも温度の高い実施例3と比べて、色相がさらに改善していることがわかる。色相が低いほど、そのMDIを使用したポリウレタンフォーム等の成形品の色が良好となることから、ホスゲン化反応温度とホスゲン除去温度は、60℃〜80℃であることがより好ましい。   Further, in Examples 1, 2, 4, and 5 in which the phosgenation reaction temperature and the treatment temperature at the time of phosgene removal were in the range of 60 ° C. to 80 ° C., the hue was higher than in Example 3 where the temperature was higher than these. It turns out that it is improving further. The lower the hue, the better the color of a molded article such as polyurethane foam using the MDI, and therefore the phosgenation reaction temperature and the phosgene removal temperature are more preferably 60 ° C to 80 ° C.

また、実施例4,5は、実施例1,2と比較して、ホスゲン除去時に常圧まで減圧していない点で異なるものの、ホスゲン化反応温度とホスゲン除去時の処理温度は60℃〜80℃となっており、得られたポリMDIの色相は実施例1,2と同程度となっている。つまり、色相の良好なポリMDIを得るという観点からは、ホスゲン除去時の減圧は必須ではない。しかし、上述したように、ホスゲン除去時に減圧しない実施例4,5では、ホスゲンを効率よく除去することができず、残存ホスゲン除去に要する時間が長くなってしまう。従って、処理時間を短縮するという観点からは、実施例1,2のように、ホスゲン除去時に減圧することが好ましい。   Examples 4 and 5 differ from Examples 1 and 2 in that the pressure is not reduced to normal pressure during phosgene removal, but the phosgenation reaction temperature and the treatment temperature during phosgene removal are 60 ° C to 80 ° C. The hue of the obtained poly MDI is about the same as in Examples 1 and 2. That is, from the viewpoint of obtaining a poly MDI having a good hue, pressure reduction during phosgene removal is not essential. However, as described above, in Examples 4 and 5 in which the pressure is not reduced during phosgene removal, phosgene cannot be efficiently removed, and the time required for removing the residual phosgene becomes long. Therefore, from the viewpoint of shortening the processing time, it is preferable to reduce the pressure when removing phosgene as in Examples 1 and 2.

本発明により得ることが可能となった、着色の極めて少ないポリMDIは、該ポリMDIを原料とする分野(バインダー等)、又は、該ポリMDIを原料として得られるポリウレタン樹脂が用いられるあらゆる分野(発泡体、塗料、接着剤、シーラント、エラストマー等)において、低着色が要求される場合に有用である。   The poly MDI with very little coloration that can be obtained by the present invention is a field using the poly MDI as a raw material (such as a binder), or any field where a polyurethane resin obtained using the poly MDI as a raw material is used ( This is useful when low coloration is required in foams, paints, adhesives, sealants, elastomers, and the like.

Claims (6)

ポリメチレンポリフェニルポリアミンを不活性溶媒の存在下、ホスゲンと反応させてメチレン架橋ポリフェニレンポリイソシアネートを製造する方法において、
50℃〜93℃でポリメチレンポリフェニルポリアミンとホスゲンとを反応させるホスゲン化反応工程と、
前記ホスゲン化反応工程で得られた反応液から、50℃〜93℃で残存ホスゲンを除去する除去工程と、
を備えることを特徴とするメチレン架橋ポリフェニレンポリイソシアネートの製造方法。
In a process for producing a methylene crosslinked polyphenylene polyisocyanate by reacting polymethylene polyphenyl polyamine with phosgene in the presence of an inert solvent,
A phosgenation reaction step of reacting polymethylene polyphenyl polyamine and phosgene at 50 ° C. to 93 ° C .;
A removal step of removing residual phosgene from 50 ° C. to 93 ° C. from the reaction solution obtained in the phosgenation reaction step;
A method for producing a methylene-bridged polyphenylene polyisocyanate, comprising:
前記ホスゲン化反応工程において、60℃〜80℃でポリメチレンポリフェニルポリアミンとホスゲンとを反応させ、
且つ、前記除去工程において、60℃〜80℃で残存ホスゲンを除去することを特徴とする請求項1に記載のメチレン架橋ポリフェニレンポリイソシアネートの製造方法。
In the phosgenation reaction step, polymethylene polyphenyl polyamine and phosgene are reacted at 60 ° C. to 80 ° C.,
And in the said removal process, residual phosgene is removed at 60 to 80 degreeC, The manufacturing method of the methylene bridge | crosslinking polyphenylene polyisocyanate of Claim 1 characterized by the above-mentioned.
前記除去工程において、前記ホスゲン化反応工程よりも低い圧力条件下で、残存ホスゲンを除去することを特徴とする請求項1又は2に記載のメチレン架橋ポリフェニレンポリイソシアネートの製造方法。   The method for producing a methylene-bridged polyphenylene polyisocyanate according to claim 1 or 2, wherein in the removing step, residual phosgene is removed under a pressure condition lower than that in the phosgenation reaction step. 前記ホスゲン化反応工程において、50kPa・G〜250kPa・Gの圧力条件下でポリメチレンポリフェニルポリアミンとホスゲンとを反応させ、
前記除去工程においては、常圧以下まで減圧して、残存ホスゲンを除去することを特徴とする請求項3に記載のメチレン架橋ポリフェニレンポリイソシアネートの製造方法。
In the phosgenation reaction step, polymethylene polyphenyl polyamine and phosgene are reacted under a pressure condition of 50 kPa · G to 250 kPa · G,
4. The method for producing a methylene-bridged polyphenylene polyisocyanate according to claim 3, wherein in the removing step, the residual phosgene is removed by reducing the pressure to normal pressure or lower.
前記除去工程において、前記反応液に不活性ガスを導入することにより、前記反応液から残存ホスゲンを除去することを特徴とする請求項1〜4の何れかに記載のメチレン架橋ポリフェニレンポリイソシアネートの製造方法。   The methylene-bridged polyphenylene polyisocyanate according to any one of claims 1 to 4, wherein, in the removing step, residual phosgene is removed from the reaction solution by introducing an inert gas into the reaction solution. Method. 前記除去工程において、常圧以下まで減圧することにより、前記反応液から残存ホスゲンを除去することを特徴とする請求項1〜5の何れかに記載のメチレン架橋ポリフェニレンポリイソシアネートの製造方法。   The method for producing a methylene-bridged polyphenylene polyisocyanate according to any one of claims 1 to 5, wherein in the removing step, residual phosgene is removed from the reaction solution by reducing the pressure to normal pressure or lower.
JP2008182171A 2008-07-14 2008-07-14 Method for producing methylene cross-linked polyphenyl polyisocyanate Active JP5380931B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008182171A JP5380931B2 (en) 2008-07-14 2008-07-14 Method for producing methylene cross-linked polyphenyl polyisocyanate
PCT/JP2009/060042 WO2010007836A1 (en) 2008-07-14 2009-06-02 Method for manufacturing methylene cross-linked polyphenyl polyisocyanates

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008182171A JP5380931B2 (en) 2008-07-14 2008-07-14 Method for producing methylene cross-linked polyphenyl polyisocyanate

Publications (2)

Publication Number Publication Date
JP2010018572A JP2010018572A (en) 2010-01-28
JP5380931B2 true JP5380931B2 (en) 2014-01-08

Family

ID=41550244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008182171A Active JP5380931B2 (en) 2008-07-14 2008-07-14 Method for producing methylene cross-linked polyphenyl polyisocyanate

Country Status (2)

Country Link
JP (1) JP5380931B2 (en)
WO (1) WO2010007836A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012145714A2 (en) * 2011-04-22 2012-10-26 Emergent Product Development Seattle, Llc Prostate-specific membrane antigen binding proteins and related compositions and methods

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3229714B2 (en) * 1992-06-23 2001-11-19 三井化学株式会社 Method for producing methylene-crosslinked polyphenylene polyisocyanate
JP3336066B2 (en) * 1993-03-25 2002-10-21 三井化学株式会社 Triamine, triisocyanate and methods for producing them
JP3037057B2 (en) * 1994-02-23 2000-04-24 三井化学株式会社 Method for producing methylene-crosslinked polyphenylene polyisocyanate
JP3037065B2 (en) * 1994-05-26 2000-04-24 三井化学株式会社 Method for producing methylene-crosslinked polyphenylene polyisocyanate
EP1890998B1 (en) * 2005-05-30 2014-02-26 Huntsman International Llc Process for the preparation of polyisocyanates of the diphenylmethane series

Also Published As

Publication number Publication date
WO2010007836A1 (en) 2010-01-21
JP2010018572A (en) 2010-01-28

Similar Documents

Publication Publication Date Title
ES2453145T3 (en) Process for the preparation of diphenylmethane polyisocyanates
JP5416830B2 (en) Method for producing color stable MDA and MDI
SK58597A3 (en) Process for preparing isocyanates
KR970001071B1 (en) Process for the production of methylene-crosslinked polyphenylene polyisocyanate
JP2005220137A (en) Diphenylmethane-based diisocyanate and polyisocyanate each having regulated acidity
JP6675497B2 (en) Method for producing pentamethylene diisocyanate
CN111132960A (en) Process for preparing aliphatic isocyanates
JP3201921B2 (en) Method for producing aliphatic polyisocyanate
CN108884024B (en) Preparation process of xylylene diisocyanate XDI
JP5380931B2 (en) Method for producing methylene cross-linked polyphenyl polyisocyanate
KR101084850B1 (en) Process for the production of polyisocyanates
JP5158199B2 (en) Method for producing polyisocyanate
JP5258327B2 (en) Method for producing polyisocyanate
JP2006069941A (en) Method for decomposing and recovering isocyanate-based compound
WO2010058647A1 (en) Method for producing methylene-crosslinked polyphenyl polyisocyanate
JP6507024B2 (en) Process for producing aliphatic polyisocyanate
JP3037065B2 (en) Method for producing methylene-crosslinked polyphenylene polyisocyanate
JP6535542B2 (en) Method for producing aliphatic polyisocyanate and apparatus for producing aliphatic polyisocyanate
JP2007051092A (en) Method for producing aliphatic isocyanate containing oxyalkylene group
JP4307588B2 (en) Process for producing aliphatic isocyanate compounds
JP4920186B2 (en) Method for producing methylene-crosslinked polyphenylene polyisocyanate
ES2938995T3 (en) Method for converting monoisocyanates to ureas
JP4110377B2 (en) Process for producing polymethylene polyphenyl polyisocyanate
JP2004027160A (en) Method for producing methylene-crosslinked polyphenylene polyisocyanate
CN117500782A (en) Process for preparing at least one polyisocyanate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130618

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130916

R150 Certificate of patent or registration of utility model

Ref document number: 5380931

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250