JPH07232999A - Znse single crystal and its production - Google Patents

Znse single crystal and its production

Info

Publication number
JPH07232999A
JPH07232999A JP2278394A JP2278394A JPH07232999A JP H07232999 A JPH07232999 A JP H07232999A JP 2278394 A JP2278394 A JP 2278394A JP 2278394 A JP2278394 A JP 2278394A JP H07232999 A JPH07232999 A JP H07232999A
Authority
JP
Japan
Prior art keywords
znse
single crystal
crystal
melt
lattice constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2278394A
Other languages
Japanese (ja)
Inventor
Hiroshi Okada
広 岡田
Kazuhiro Uehara
一浩 上原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2278394A priority Critical patent/JPH07232999A/en
Publication of JPH07232999A publication Critical patent/JPH07232999A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To produce a ZnSe single crystal free from twin defects with satisfactory productivity. CONSTITUTION:A melt is prepd. by adding 0.1-6mol% ZnTe and/or 0.1-5mol% BeSe to ZnSe and melting them. Crystal growth is carried out from the melt to produce the objective ZnSe single crystal contg. Zn, Se and Te and/or Be as essential components. The compsn. of this single crystal consists of, by atom, 50% Zn, (50-x)% Se and x% Te, (50-y)% Zn, y% Be and 50% Se or (50-x)% Se, (50-y)% Zn, x% Te and y% Be (0.05<=x<=3 and 0.05<=y<=2.5).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、青色半導体レーザ素
子、青色発光ダイオード素子などの単結晶成長用基板材
料として利用される、双晶欠陥のない高品質ZnSe系
単結晶及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a twin-defect-free high-quality ZnSe-based single crystal used as a substrate material for growing a single crystal such as a blue semiconductor laser device and a blue light emitting diode device, and a method for producing the same.

【0002】[0002]

【従来の技術】青色半導体レーザは、現有の赤色半導体
レーザの約1/2の波長であるため、コンパクトディス
クなどに代表される光記録の密度を4倍にできるといわ
れており、かつ他の光源に比較して、コンパクト、低消
費電力などの利点があるため、その開発が要望されてい
る。
2. Description of the Related Art Since a blue semiconductor laser has a wavelength about half that of a currently used red semiconductor laser, it is said that the density of optical recording represented by a compact disc can be quadrupled, and other Compared with a light source, it has advantages such as compactness and low power consumption, and therefore its development is desired.

【0003】また、青色半導体ダイオードが実現されれ
ば、現有の赤色、緑色の発光ダイオードと合わせて、光
の3原色が得られ、大型の高輝度カラーディスプレイな
どへの応用が考えられている。これらの発光素子の製造
には、青色光のエネルギーに対応したバンドギャップを
持つ、いわゆるワイドギャップ半導体材料が使用されて
いる。ワイドギャップ半導体材料の中では、ZnSe系
のII−VI族化合物半導体が最も有望とされている。しか
し、デバイス作製に必要なエピタキシャル成長用基板と
してのZnSe単結晶基板は、工業的に安価に製造でき
る製法が確率されていないため、一般的には、格子定数
の近い、GaAsをエピタキシャル成長用基板として使
用している。
Further, if a blue semiconductor diode is realized, the three primary colors of light can be obtained in combination with the existing red and green light emitting diodes, and its application to a large high-brightness color display is considered. A so-called wide-gap semiconductor material having a bandgap corresponding to the energy of blue light is used for manufacturing these light-emitting elements. Among wide-gap semiconductor materials, ZnSe-based II-VI group compound semiconductors are regarded as the most promising. However, since a ZnSe single crystal substrate, which is a substrate for epitaxial growth necessary for device fabrication, has not been industrially manufactured at a low cost, GaAs, which has a close lattice constant, is generally used as a substrate for epitaxial growth. is doing.

【0004】しかし、GaAs基板(格子定数:5.6
54Å)とZnSe(格子定数:5.668Å)は格子
定数が近いとはいえ、なお0.25%の不整合があり、
また熱膨張係数の違いもあるため、エピタキシャル成長
層に歪が残り、転位などの欠陥が発生し、引いてはデバ
イス特性の劣化を引き起こすという欠陥が避けられな
い。そのため、青色発光素子の実用化のためには、良質
のZnSe系単結晶基板が望まれる。
However, a GaAs substrate (lattice constant: 5.6
54Å) and ZnSe (lattice constant: 5.668Å) have close lattice constants, but still have a mismatch of 0.25%,
Further, since there is a difference in thermal expansion coefficient, strain remains in the epitaxial growth layer, and defects such as dislocations occur, which inevitably leads to deterioration of device characteristics. Therefore, a high-quality ZnSe-based single crystal substrate is desired for practical use of the blue light emitting device.

【0005】[0005]

【発明が解決しようとする課題】基板に加工するたのバ
ルク結晶を工業的に成長する方法として、融液から結晶
の成長を行う融液成長法が生産性の観点から有利である
が、ZnSeは1526℃に融点を持ち、ブリッジマン
法などの融液成長法により結晶の成長を行った場合、1
420℃付近で高温相の六方晶から低温相の立方晶への
相転移が起こるため、これに起因する双晶欠陥が導入さ
れ、良質の単結晶が得られないという欠点がある(Jour
nal of Crystal Growth,vol.86, 1988,132〜137 頁参
照)。また、特開昭63−310786号公報にブリッ
ジマン法によるZnSe単結晶の製造方法が開示されて
おり、その詳細は発明者による技術論文(Journal of C
rystalGrowth,vol.117, 1992,80〜84頁参照)により知
ることができる。前記公報には双晶に関する記述はない
が、前記論文には双晶が発生することが記載されてい
る。
As a method for industrially growing a new bulk crystal processed on a substrate, a melt growth method of growing a crystal from a melt is advantageous from the viewpoint of productivity. Has a melting point of 1526 ° C., and when a crystal is grown by a melt growth method such as Bridgman method, 1
At around 420 ° C, a phase transition from a high temperature hexagonal system to a low temperature phase cubic system occurs, so that twin defects are introduced, resulting in the disadvantage that a good single crystal cannot be obtained (Jour.
nal of Crystal Growth, vol.86, 1988, 132-137). Further, Japanese Patent Application Laid-Open No. 63-310786 discloses a method for producing a ZnSe single crystal by the Bridgman method, and the details thereof are described in a technical paper by the inventor (Journal of C
rystalGrowth, vol.117, 1992, pp. 80-84)). Although there is no description of twinning in the publication, twinning occurs in the article.

【0006】相転移に伴う双晶欠陥を回避するには、原
理的には、上記1420℃以下の温度で結晶の成長を行
い、立方晶の結晶相を成長させればよい。その方法とし
て、特開平1−264990号公報に開示されているよ
うに化学気相成長法や物理気相成長法などの低温成長法
があるが、成長速度が遅く、生産性が非常に悪いという
問題がある。
In order to avoid twin defects due to the phase transition, in principle, it is only necessary to grow crystals at a temperature of 1420 ° C. or lower to grow a cubic crystal phase. As a method therefor, there is a low temperature growth method such as a chemical vapor deposition method or a physical vapor deposition method as disclosed in JP-A-1-264990, but the growth rate is slow and the productivity is very poor. There's a problem.

【0007】本発明はかかる問題に鑑みなされたもの
で、生産性が良好で、双晶欠陥を含まないZnSe系単
結晶およびその製造方法を提供することを目的とする。
The present invention has been made in view of the above problems, and an object of the present invention is to provide a ZnSe-based single crystal having good productivity and containing no twin defects, and a method for producing the same.

【0008】[0008]

【課題を解決するための手段】本発明のZnSe系単結
晶は、Zn、Se及びTeを本質的成分として含有し、
各成分の組成が原子%でZn:50%、Se:50−x
%、Te:x%、但しx:0.05〜3としたもの、あ
るいはZn、Be及びSeを本質的成分として含有し、
各成分の組成が原子%でZn:50−y%、Be:y
%、Se:50%、但しy:0.05〜2.5としたも
の、あるいはZn、Se、Be及びTeを本質的成分と
して含有し、各成分の組成が原子%でSe:50−x
%、Zn:50−y%、Te:x%、Be:y%、但し
x:0.05〜3、y:0.05〜2.5としたもので
ある。
The ZnSe type single crystal of the present invention contains Zn, Se and Te as essential components,
The composition of each component is atomic%, Zn: 50%, Se: 50-x
%, Te: x%, where x: 0.05 to 3 or Zn, Be and Se as essential components,
The composition of each component is atomic%: Zn: 50-y%, Be: y
%, Se: 50%, but y: 0.05 to 2.5, or Zn, Se, Be and Te are contained as essential components, and the composition of each component is atomic%: Se: 50-x.
%, Zn: 50-y%, Te: x%, Be: y%, where x: 0.05-3 and y: 0.05-2.5.

【0009】一方、本発明のZnSe系単結晶の製造方
法は、ZnSeに0.1〜6mol%のZnTeを添加
して溶融し、あるいはZnSeに0.1〜5mol%の
BeSeを添加して溶融し、あるいはZnSeに0.1
〜6mol%のZnTe及び0.1〜5mol%のBe
Seを添加して溶融し、該融液から結晶成長を行うもの
である。融液から結晶成長を行う方法としては、高圧垂
直ブリッジマン法、回転引き上げ法、水平ブリッジマン
法などの公知の融液成長法を適宜適用することができ
る。
On the other hand, according to the method for producing a ZnSe-based single crystal of the present invention, 0.1 to 6 mol% of ZnTe is added to ZnSe for melting, or 0.1 to 5 mol% of BeSe is added to ZnSe for melting. Or 0.1 to ZnSe
~ 6 mol% ZnTe and 0.1-5 mol% Be
Se is added and melted, and crystals are grown from the melt. As a method for growing a crystal from a melt, a known melt growth method such as a high pressure vertical Bridgman method, a rotary pulling method, a horizontal Bridgman method can be appropriately applied.

【0010】尚、ZnSe系単結晶に対し、n型ドーパ
ントの塩素を添加するなど、伝導制御のために数十〜数
百ppm程度の通常用いられる微量の元素を添加するこ
とは、本発明の本質を何ら変更するものではなく、本発
明に包含されるものである。
It is to be noted that addition of a small amount of a commonly used trace element of about several tens to several hundreds ppm for controlling conduction, such as addition of an n-type dopant chlorine, to a ZnSe type single crystal is not effective in the present invention. It does not change the essence at all, and is included in the present invention.

【0011】[0011]

【作用】ZnSeにSeと置換してTeを、あるいはZ
nと置換してBeを所定量含有させることにより、立方
晶相が安定する。その機構の詳細は不明であるが、成長
したZnSeTe単結晶中ではSe原子位置に原子半径
の大きいTe原子が置換し、一方ZnBeSe単結晶中
ではZn原子位置に原子半径の小さいBe原子が置換
し、結晶に応力場を生じさせることにより、立方晶相を
安定化させるものと思われる。立方晶相の安定により、
融液から成長した結晶の降温中の相転移はなくなり、相
転移に起因する高密度の双晶の発生を回避することがで
きる。
[Function] ZnSe is replaced with Se to replace Te, or Z
The cubic phase is stabilized by substituting a predetermined amount of Be in place of n. Although the details of the mechanism are unknown, in the grown ZnSeTe single crystal, Te atoms having a large atomic radius are substituted at Se atom positions, while in the ZnBeSe single crystal, Be atoms having a small atomic radius are substituted at Zn atom positions. , It seems that the cubic phase is stabilized by generating a stress field in the crystal. Due to the stability of the cubic phase,
The phase transition of the crystal grown from the melt during cooling is eliminated, and the generation of high-density twin crystals due to the phase transition can be avoided.

【0012】この場合、TeはSeと同族のV族元素で
あり、一方BeはZnと同族のII族元素であるため、こ
れらの元素はZnSe中では共に等電子不純物であり、
ドナー、アクセプタなどとしては働かず、ZnSe系基
板の電気特性におよぼす影響は無視しうる。Zn50Se
50-xTex 系結晶、Zn50-yBey Te50系結晶及びZ
50-yBe y Se50-xTex 系結晶(但し、添字は原子
%を示す。)において、Seと置換すべきTeの含有量
はx:0.05〜3とされ、一方Znと置換すべきBe
の含有量はy:0.05〜2.5とされる。xおよびy
が共に0.05未満では効果が不足し、安定した作用が
得られない。一方、xが3を、yが2.5を越えると組
成的過冷却が顕著となり、単結晶成長が困難になる。ま
た、Zn50Se50-xTex 系では成長結晶の格子定数が
Teの増加に従って大きくなり、Zn50-yBe y Se50
系ではBeの増加に従って小さくなり、いずれの場合に
ついてもエピタキシャル成長時の格子不整合が大きくな
り、エピタキシャル成長用基板としての適性を失うよう
になる。一方、Zn50-yBey Se50-xTex 系では
x、yの比率を調整することにより格子定数を制御する
ことが可能であり、例えばZnSeと格子整合した基板
結晶を得ることもできる。因みに、既述の通りZnSe
の格子定数は5.668Åであり、ZnTeの格子定数
は6.103Åであり、一方BeSeのそれは5.13
9Åである。
In this case, Te is a group V element that is in the same group as Se.
On the other hand, Be is a Group II element that is in the same group as Zn, so
Both of these elements are isoelectronic impurities in ZnSe,
It does not work as a donor, acceptor, etc., and is a ZnSe group
The effect on the electrical properties of the plate is negligible. Zn50Se
50-xTexSystem crystal, Zn50-yBeyTe50System crystal and Z
n50-yBe ySe50-xTexSystem crystal (however, the subscript is an atom
% Is shown. ), The content of Te that should replace Se
Is x: 0.05 to 3, while Be which should be replaced with Zn
Content of y: 0.05 to 2.5. x and y
If both are less than 0.05, the effect is insufficient and a stable action is obtained.
I can't get it. On the other hand, if x exceeds 3 and y exceeds 2.5, the group
Proper supercooling becomes remarkable and single crystal growth becomes difficult. Well
Zn50Se50-xTexIn the system, the lattice constant of the grown crystal is
Zn increases with increasing Te, and Zn50-yBe ySe50
In the system, it decreases as Be increases, and in any case
However, the lattice mismatch during epitaxial growth is large.
And lose its suitability as a substrate for epitaxial growth.
become. On the other hand, Zn50-yBeySe50-xTexIn the system
Control the lattice constant by adjusting the ratio of x and y
It is possible, for example, a substrate lattice-matched with ZnSe
It is also possible to obtain crystals. Incidentally, as already mentioned, ZnSe
Has a lattice constant of 5.668Å, and ZnTe has a lattice constant of
Is 6.103Å, while that of BeSe is 5.13
It is 9Å.

【0013】また、特に基板とエピタキシャル成長層の
接合を積極的に利用する、言い換えれば、基板中に活性
層を有するデバイス構造の場合は、Teの置換量の増大
に伴い、ZnSe系基板のバンドギャップエネルギーが
減少し、発光波長は長波長側にシフトするが、xが3を
越えると波長のずれが過大となり、青色発光素子として
望ましくない。また、Beを置換する場合、その置換量
の増大に伴い、ZnSe系基板のバンドギャップエネル
ギーが増大し、発光波長は短波長側にシフトするが、y
が2.5を越えると波長のずれが過大となり、Teを置
換する場合と同様、青色発光素子として望ましくない。
一方、Zn50-yBey Se50-xTex 系ではx、yの比
率を調整することによりバンドギャップを自由に変化さ
せることが可能であり、ZnSeと格子整合した基板で
ZnSeと同じバンドギャップ値をもたせることもでき
る。
Further, in particular, in the case of a device structure in which the junction between the substrate and the epitaxial growth layer is positively utilized, in other words, in the case of a device structure having an active layer in the substrate, the band gap of the ZnSe-based substrate increases as the substitution amount of Te increases. Although the energy decreases and the emission wavelength shifts to the long wavelength side, when x exceeds 3, the wavelength shift becomes excessive, which is not desirable for a blue light emitting element. When Be is replaced, the bandgap energy of the ZnSe-based substrate increases with an increase in the amount of replacement, and the emission wavelength shifts to the short wavelength side.
Is more than 2.5, the wavelength shift becomes too large, which is not desirable for a blue light emitting element as in the case of replacing Te.
On the other hand, in the Zn 50-y Be y Se 50-x Te x system, the band gap can be freely changed by adjusting the ratio of x and y, and the same band as ZnSe can be obtained on a substrate lattice-matched with ZnSe. It can also have a gap value.

【0014】Zn50Se50-xTex 系ではSeと置換す
べきTeの好ましい含有量は0.05〜1.5at%
(x:0.05〜1.5)であり、Zn50-yBey Se
50系ではZnと置換すべきBeの好ましい含有量は、
0.05〜1.25at%(y:0.05〜1.25)で
ある。エピタキシャル成長用基板として、格子不整合が
従来のGaAs基板と同等以下(0.25%以下)とな
る範囲だからである。一方、Zn50-yBey Se50-x
x 系では、|0.435x−0.529y|≦0.7
の関係を満たす限り、Te:0.05〜3at%、Be:
0.05〜2.5at%の含有量の範囲でZnSeとの格
子不整合を0.25%以下にすることが可能になる。
In the Zn 50 Se 50-x Te x system, the preferable content of Te to replace Se is 0.05 to 1.5 at%.
(X: 0.05~1.5) a is, Zn 50-y Be y Se
In the 50 system, the preferable content of Be to be replaced with Zn is
It is 0.05 to 1.25 at% (y: 0.05 to 1.25). This is because the lattice mismatch of the epitaxial growth substrate is within the same range (0.25% or less) as that of the conventional GaAs substrate. On the other hand, Zn 50-y Be y Se 50-x T
In the e x system, | 0.435x-0.529y | ≦ 0.7
As long as the relationship of is satisfied, Te: 0.05 to 3 at%, Be:
It becomes possible to make the lattice mismatch with ZnSe to be 0.25% or less in the range of the content of 0.05 to 2.5 at%.

【0015】実際のデバイスの製作に際しては、Zn
(Se,S)、(Zn,Cd)Se、(Zn,Cd)
(Se,S)などの混晶系薄膜成長を必要とする場合が
あり、Te、Beの置換すべき含有量は、これらの混晶
材料の格子定数に近くなるように、Te:0.05〜3
at%(x:0.05〜3)、Be:0.05〜2.5at
%(y:0.05〜2.5)の範囲で適宜選択すること
ができる。
When manufacturing an actual device, Zn
(Se, S), (Zn, Cd) Se, (Zn, Cd)
In some cases, it is necessary to grow a mixed crystal thin film such as (Se, S), and the content of Te and Be to be replaced should be Te: 0.05 so that the content should be close to the lattice constant of these mixed crystal materials. ~ 3
at% (x: 0.05 to 3), Be: 0.05 to 2.5 at
It can be appropriately selected within the range of% (y: 0.05 to 2.5).

【0016】本発明にかかるZn(Se,Te)単結
晶、(Zn,Be)Se単結晶及び(Zn,Be)(S
e,Te)単結晶の製造方法としては、所定組成の融液
を溶製し、融液から単結晶を成長させることにより、良
好な生産性のもとで所定の単結晶を得ることができる。
融液の溶製については、ZnSeにZnTeを0.1〜
6.0mol %又は/及びBeSeを0.1〜5.0mol
%添加し、溶融することにより、所定の単結晶組成を有
するZn(Se,Te)、(Zn,Be)Seあるいは
(Zn,Be)(Se,Te)融液を得ることができ
る。
Zn (Se, Te) single crystal, (Zn, Be) Se single crystal and (Zn, Be) (S) according to the present invention
e, Te) As a method for producing a single crystal, a predetermined single crystal can be obtained with good productivity by melting a melt having a predetermined composition and growing the single crystal from the melt. .
Regarding melting of the melt, ZnSe is added to ZnSe in an amount of 0.1 to 0.1
6.0 mol% or / and BeSe 0.1-5.0 mol
%, And melted to obtain a Zn (Se, Te), (Zn, Be) Se or (Zn, Be) (Se, Te) melt having a predetermined single crystal composition.

【0017】[0017]

【実施例】以下、具体的な実施例を掲げて本発明を説明
する。 実施例A 6N(ナイン)グレードのZnSe多結晶に対し、表1
に示すように種々のモル%の6NグレードのZnTeを
添加して、全量が200gになるように原料を調製し
た。
EXAMPLES The present invention will be described below with reference to specific examples. Example A For 6N (Nine) grade ZnSe polycrystals, Table 1
As shown in (4), various mol% of 6N grade ZnTe was added to prepare a raw material so that the total amount was 200 g.

【0018】この原料を成長用容器(ルツボ)に入れ、
高圧垂直ブリッジマン炉に装入して、該炉の中で結晶を
育成した。前記成長用容器はP−BN材で形成され、直
径25mmの円筒形をしており、その底部には核生成用の
直径2mm、長さ40mmのキャピラリー部(細管部)が設
けられている。炉内のArガス圧を10MPaとし、原
料部を1550℃まで昇温し、原料を融解した後、10
mm/hの速度でキャピラリー部がヒータ外となるように
容器を下降し、キャピラリー部に種結晶となる結晶核を
発生させた後、引き続いて5mm/hの速度で容器を下降
して容器の上端部が1450℃となり原料の結晶化が終
了したところで、容器全体を200℃/hで降温した。
得られた結晶の状態を表1に併せて示す。
This raw material was placed in a growth container (crucible),
The crystal was grown in a high pressure vertical Bridgman furnace. The growth vessel is made of P-BN material and has a cylindrical shape with a diameter of 25 mm, and a capillary portion (capillary portion) with a diameter of 2 mm and a length of 40 mm for nucleation is provided at the bottom thereof. After the Ar gas pressure in the furnace was set to 10 MPa and the raw material part was heated to 1550 ° C. to melt the raw material, 10
After lowering the container at a speed of mm / h so that the capillary is out of the heater to generate crystal nuclei as seed crystals in the capillary part, the container is subsequently lowered at a speed of 5 mm / h to When the upper end reached 1450 ° C and the crystallization of the raw material was completed, the temperature of the entire container was lowered at 200 ° C / h.
The state of the obtained crystals is also shown in Table 1.

【0019】[0019]

【表1】 [Table 1]

【0020】同表より、Seと置換するTeの含有範囲
が、本発明に該当する0.05〜3at%の試料No. 1
〜6では無双晶が70%以上の単結晶が得られており、
特に0.5〜1.5at%では双晶、多結晶の生成が皆
無であることが分かる。次に、試料No. 1〜7の結晶を
用いて、その中央部における格子定数を測定した結果を
図1に示す。図中の破線はベガード則による理論値を示
している。同図より、格子定数の値は、ZnTeの添加
量に比例しており、しかもベガード則に従っており、本
発明範囲においては添加したZnTeがZnSe中に完
全に固溶していることが確認された。 実施例B 6NグレードのZnSe多結晶に対し、表2に示すよう
に種々のモル%の6NグレードのBeSeを添加して、
全量が200gとなるように原料を調製した。この原料
を用いて実施例Aと同様の条件で高圧垂直ブリッジマン
法により結晶を成長させた。得られた結晶の状態を表2
に併せて示す。
From the table, the content range of Te substituting for Se is 0.05 to 3 at% corresponding to the present invention, Sample No. 1
In ~ 6, 70% or more of twin-free crystals were obtained,
In particular, it can be seen that at 0.5 to 1.5 at%, no twins or polycrystals are formed. Next, FIG. 1 shows the results of measuring the lattice constant in the central portion of the crystals of Sample Nos. 1 to 7. The broken line in the figure indicates the theoretical value according to Vegard's law. From the figure, it was confirmed that the value of the lattice constant is proportional to the added amount of ZnTe and complies with Vegard's law, and that the added ZnTe is completely dissolved in ZnSe within the scope of the present invention. . Example B To a 6N grade ZnSe polycrystal, various mol% of 6N grade BeSe was added as shown in Table 2,
The raw material was prepared so that the total amount would be 200 g. Using this raw material, crystals were grown by the high pressure vertical Bridgman method under the same conditions as in Example A. Table 2 shows the state of the obtained crystals.
Are also shown.

【0021】[0021]

【表2】 [Table 2]

【0022】同表より、Znと置換するBeの含有範囲
が、本発明に該当する0.05〜2.5at%の試料N
o. 11〜14では無双晶が75%以上の単結晶が得ら
れており、特に0.5〜1.25at%では双晶、多結
晶の生成が皆無であることが分かる。次に、試料No. 1
1〜15の結晶を用いて、実施例Aと同様にして、その
中央部における格子定数を測定した結果を図2に示す。
図中の破線はベガード則による理論値を示している。同
図より、格子定数の値は、BeSeの添加量に比例して
おり、しかもベガード則に従っており、本発明範囲にお
いては添加したBeSeがZnSe中に完全に固溶して
いることが確認された。
From the table, the content range of Be substituting for Zn is 0.05 to 2.5 at% of the sample N which corresponds to the present invention.
In o. 11 to 14, single crystals with 75% or more of twin-free crystals were obtained, and it was found that twin crystals and polycrystals were not formed at 0.5 to 1.25 at% in particular. Next, sample No. 1
FIG. 2 shows the results of measuring the lattice constant in the central portion of the crystals of Nos. 1 to 15 in the same manner as in Example A.
The broken line in the figure indicates the theoretical value according to Vegard's law. From the figure, it was confirmed that the value of the lattice constant is proportional to the addition amount of BeSe and complies with Vegard's law, and that the added BeSe is completely dissolved in ZnSe within the scope of the present invention. .

【0023】実施例C 6NグレードのZnSe多結晶に対し、表3に示すよう
に種々のモル%の6NグレードのZnTe及びBeSe
を添加して、全量が200gとなるように原料を調製し
た。この原料を用いて実施例Aと同様の条件で高圧垂直
ブリッジマン法により結晶を成長させた。得られた結晶
の状態を表3に併せて示す。
Example C For 6N grade ZnSe polycrystals, as shown in Table 3, various mol% of 6N grade ZnTe and BeSe.
Was added to prepare a raw material so that the total amount was 200 g. Using this raw material, crystals were grown by the high pressure vertical Bridgman method under the same conditions as in Example A. The state of the obtained crystals is also shown in Table 3.

【0024】[0024]

【表3】 [Table 3]

【0025】同表より、Seと置換するTeの含有範囲
が0.05〜3at%で、Znと置換するBeの含有範
囲が0.05〜2.5at%の実施例に該当する試料N
o. 31〜38では無双晶が75%以上の単結晶が得ら
れたことが分かる。次に、実施例の試料No. 31〜38
の結晶を用いて、実施例Aと同様にして、その中央部に
おける格子定数を測定した結果を図3に示す。図におい
て、横軸の数字は試料No. を示しており、また一点鎖線
はZnSeの格子定数の値を示しており、一方細線はZ
nSeの格子定数±0.25%の値を示している。同図
より、各実施例の単結晶の格子定数は、ZnSeの格子
定数±0.25%の範囲に収まっていることが確認され
た。図4は、表3及び図3に基づいて、(Zn,Be)
(Se,Te)単結晶の格子定数がZnSeの格子定数
±0.25%の範囲に収まるTeとBeとの含有範囲を
図示したもので、前記実施例であるNo. 31〜38のT
eとBeとの含有量をプロットすることにより、境界線
が決定された。境界線の斜線間の領域を数式を用いて表
現すると、|0.435x−0.529y|≦0.7で
あり、図中の斜線で示した領域は前記不等式、Te:
0.05〜3.0at%及びBe:0.05〜2.5at%
を満足する領域を示している。また、図4中、破線はZ
nSeと格子整合する組成を意味している。
From the same table, it can be seen that the sample N corresponding to the embodiment in which the content range of Te substituting for Se is 0.05 to 3 at% and the content range of Be substituting for Zn is 0.05 to 2.5 at%
It can be seen that, in o. 31 to 38, a single crystal containing 75% or more of twin-free crystal was obtained. Next, sample Nos. 31 to 38 of the example.
FIG. 3 shows the result of measuring the lattice constant in the central portion of the crystal of Example 1 in the same manner as in Example A. In the figure, the numbers on the horizontal axis indicate the sample No., and the alternate long and short dash line indicates the value of the lattice constant of ZnSe, while the thin line indicates Z.
The value of the lattice constant of nSe ± 0.25% is shown. From the figure, it was confirmed that the lattice constant of the single crystal of each example was within the range of the lattice constant of ZnSe ± 0.25%. FIG. 4 shows (Zn, Be) based on Table 3 and FIG.
The content range of Te and Be within which the lattice constant of a (Se, Te) single crystal is within the lattice constant of ZnSe ± 0.25% is shown in FIG.
The boundary line was determined by plotting the contents of e and Be. When the region between the diagonal lines of the boundary line is expressed by a mathematical formula, | 0.435x−0.529y | ≦ 0.7, and the shaded region in the figure is the inequality, Te:
0.05-3.0 at% and Be: 0.05-2.5 at%
Shows the region that satisfies. Further, in FIG. 4, the broken line is Z
It means a composition that is lattice-matched with nSe.

【0026】[0026]

【発明の効果】以上説明した通り、本発明によれば、Z
nSeのSeを所定量のTeと、あるいはZnを所定量
のBeと置換して含有させたので、立方晶相が安定する
ようになり、融液成長法により結晶の成長を行っても双
晶の発生が抑制され、高品質のZnSe系の単結晶を高
い生産性の下で容易に製造することができる。
As described above, according to the present invention, Z
Since Se of nSe is contained by substituting a predetermined amount of Te or Zn by a predetermined amount of Be, the cubic phase becomes stable, and even if crystals are grown by the melt growth method, twin crystals are formed. Is suppressed, and a high-quality ZnSe-based single crystal can be easily manufactured with high productivity.

【図面の簡単な説明】[Brief description of drawings]

【図1】ZnTeの添加量と結晶の格子定数との関係を
示すグラフである。
FIG. 1 is a graph showing the relationship between the amount of ZnTe added and the crystal lattice constant.

【図2】BeSeの添加量と結晶の格子定数との関係を
示すグラフである。
FIG. 2 is a graph showing the relationship between the amount of BeSe added and the crystal lattice constant.

【図3】実施例Cにおける実施例試料の各組成点と格子
定数との関係を示すグラフである。
FIG. 3 is a graph showing a relationship between each composition point and a lattice constant of an example sample in Example C.

【図4】(Zn,Be)(Se,Te)単結晶の格子定
数がZnSeの格子定数±0.25%の範囲に収まるT
eとBeとの含有範囲を示すグラフである。
FIG. 4 shows that the lattice constant of a (Zn, Be) (Se, Te) single crystal falls within the range of ± 0.25% of the lattice constant of ZnSe.
It is a graph which shows the content range of e and Be.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 Zn、Se及びTeを本質的成分として
含有し、各成分の組成が原子%でZn:50%、Se:
50−x%、Te:x%、但しx:0.05〜3である
ZnSe系単結晶。
1. Zn, Se and Te are contained as essential components, and the composition of each component is atomic%: Zn: 50%, Se:
ZnSe-based single crystal with 50-x%, Te: x%, where x: 0.05-3.
【請求項2】 x:0.05〜1.5である請求項1に
記載したZnSe系単結晶。
2. The ZnSe-based single crystal according to claim 1, wherein x: 0.05 to 1.5.
【請求項3】 ZnSeに0.1〜6mol%のZnT
eを添加して溶融し、該融液から結晶成長を行うZnS
e系単結晶の製造方法。
3. ZnSe of 0.1 to 6 mol% in ZnSe
ZnS in which e is added and melted, and crystals are grown from the melt
Method for producing e-type single crystal.
【請求項4】 Zn、Be及びSeを本質的成分として
含有し、各成分の組成が原子%でZn:50−y%、B
e:y%、Se:50%、但しy:0.05〜2.5で
あるZnSe系単結晶。
4. Zn, Be and Se are contained as essential components, and the composition of each component is Zn: 50-y%, B in atomic%.
e: y%, Se: 50%, but y: 0.05 to 2.5 ZnSe-based single crystal.
【請求項5】 y:0.05〜1.25である請求項5
に記載したZnSe系単結晶。
5. The method according to claim 5, wherein y is 0.05 to 1.25.
The ZnSe-based single crystal described in 1.
【請求項6】 ZnSeに0.1〜5mol%のBeS
eを添加して溶融し、該融液から結晶成長を行うZnS
e系単結晶の製造方法。
6. ZnSe 0.1 to 5 mol% BeS
ZnS in which e is added and melted, and crystals are grown from the melt
Method for producing e-type single crystal.
【請求項7】 Zn、Se、Te及びBeを本質的成分
として含有し、各成分の組成が原子%でSe:50−x
%、Zn:50−y%、Te:x%、Be:y%、但し
x:0.05〜3、y:0.05〜2.5であるZnS
e系単結晶。
7. Zn, Se, Te and Be are contained as essential components, and the composition of each component is Se: 50-x in atomic%.
%, Zn: 50-y%, Te: x%, Be: y%, where ZnS is x: 0.05-3 and y: 0.05-2.5.
e-based single crystal.
【請求項8】 |0.435x−0.529y|≦0.
7である請求項7に記載したZnSe系単結晶。
8. | 0.435x−0.529y | ≦ 0.
7. The ZnSe-based single crystal according to claim 7, which is 7.
【請求項9】 ZnSeに0.1〜6mol%のZnT
e及び0.1〜5mol%のBeSeを添加して溶融
し、該融液から結晶成長を行うZnSe系単結晶の製造
方法。
9. ZnSe of 0.1 to 6 mol% in ZnSe
A method for producing a ZnSe-based single crystal in which e and 0.1 to 5 mol% of BeSe are added and melted, and crystal growth is performed from the melt.
JP2278394A 1994-02-21 1994-02-21 Znse single crystal and its production Pending JPH07232999A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2278394A JPH07232999A (en) 1994-02-21 1994-02-21 Znse single crystal and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2278394A JPH07232999A (en) 1994-02-21 1994-02-21 Znse single crystal and its production

Publications (1)

Publication Number Publication Date
JPH07232999A true JPH07232999A (en) 1995-09-05

Family

ID=12092279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2278394A Pending JPH07232999A (en) 1994-02-21 1994-02-21 Znse single crystal and its production

Country Status (1)

Country Link
JP (1) JPH07232999A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997018592A3 (en) * 1995-11-13 1997-07-17 Siemens Ag Opto-electronic component made from ii-vi semiconductor material
WO1997050159A1 (en) * 1996-06-27 1997-12-31 Minnesota Mining And Manufacturing Company Be-CONTAINING II-VI BLUE-GREEN LASER DIODES
US6583450B1 (en) 1997-02-13 2003-06-24 3M Innovative Properties Company II-VI semiconductor device with BeTe buffer layer

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997018592A3 (en) * 1995-11-13 1997-07-17 Siemens Ag Opto-electronic component made from ii-vi semiconductor material
US6265734B1 (en) 1995-11-13 2001-07-24 Siemens Aktiengesellschaft Opto-electronic component made from II-VI semiconductor material
US6495859B2 (en) 1995-11-13 2002-12-17 Siemens Aktiengesellschaft Opto-electronic component made from II-VI semiconductor material
WO1997050159A1 (en) * 1996-06-27 1997-12-31 Minnesota Mining And Manufacturing Company Be-CONTAINING II-VI BLUE-GREEN LASER DIODES
US5818859A (en) * 1996-06-27 1998-10-06 Minnesota Mining And Manufacturing Company Be-containing II-VI blue-green laser diodes
US6583450B1 (en) 1997-02-13 2003-06-24 3M Innovative Properties Company II-VI semiconductor device with BeTe buffer layer
US6759690B2 (en) 1997-02-13 2004-07-06 3M Innovative Properties Company II-VI semiconductor device with BeTe buffer layer

Similar Documents

Publication Publication Date Title
US5530267A (en) Article comprising heteroepitaxial III-V nitride semiconductor material on a substrate
US4315796A (en) Crystal growth of compound semiconductor mixed crystals under controlled vapor pressure
US20120192787A1 (en) Mg-CONTAINING ZnO MIXED SINGLE CRYSTAL, LAMINATE THEREOF AND THEIR PRODUCTION METHODS
US4465527A (en) Method for producing a group IIB-VIB compound semiconductor crystal
Namikawa ZnSe single crystals grown by vapor growth methods and their applications
US4196171A (en) Apparatus for making a single crystal of III-V compound semiconductive material
US5728212A (en) Method of preparing compound semiconductor crystal
US4944811A (en) Material for light emitting element and method for crystal growth thereof
US5015327A (en) Method for producing semiconductive single crystal
JPH07232999A (en) Znse single crystal and its production
JP2000086398A (en) P type gaas single crystal and its production
JP3207983B2 (en) Method for producing single crystal of group I-III-VI2 compound
WO2024009683A1 (en) Method for producing group iii nitride crystals
JP3435118B2 (en) Method for growing compound semiconductor bulk crystal and method for manufacturing compound semiconductor device
US4609411A (en) Liquid-phase epitaxial growth method of a IIIb-Vb group compound
JPS58217496A (en) Method and device for pulling-up single crystal of compound semiconductor
CN1622409A (en) Zinc oxide bluish violet light semiconductor growth using liquid phase epitaxial method
JPH05310494A (en) Growth of single crystal
Isshiki et al. 9 Bulk Crystal Growth of Wide-Bandgap ll-Vl Materials
JP2537322B2 (en) Semiconductor crystal growth method
JP3193440B2 (en) Method for producing I-III-VI group 2 semiconductor single crystal
Kato et al. Effect of solution thickness on ZnSe crystals grown from Se/Te mixed solutions
JP2000235172A (en) Magneto-optical device material
JPS61117198A (en) Melt for growth of inp single crystal and method for using said melt
JP2000095599A (en) Production of semiconductor crystal