JPH07232182A - Wet oxidation treatment of organic meter containing waste water - Google Patents

Wet oxidation treatment of organic meter containing waste water

Info

Publication number
JPH07232182A
JPH07232182A JP2422194A JP2422194A JPH07232182A JP H07232182 A JPH07232182 A JP H07232182A JP 2422194 A JP2422194 A JP 2422194A JP 2422194 A JP2422194 A JP 2422194A JP H07232182 A JPH07232182 A JP H07232182A
Authority
JP
Japan
Prior art keywords
wastewater
catalyst
wastewater treatment
waste water
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2422194A
Other languages
Japanese (ja)
Inventor
Masahiko Maesaki
雅彦 前崎
Keiji Kono
慶治 幸野
Koji Sumitani
浩二 隅谷
Kazuhiro Sato
和広 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP2422194A priority Critical patent/JPH07232182A/en
Publication of JPH07232182A publication Critical patent/JPH07232182A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To develop an new process for efficiently wet oxidizing an organic meter containing waste water. CONSTITUTION:The waste water containing methanol, formalin, formic acid, acetoaldehyde, acetic acid, ethylene glycol, aliphatic ester or the like is oxidation-decomposed at 200-270 deg.C with a platinum group metallic catalyst by supplying an oxygen containing gas to the waste water.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は有機物含有廃水の処理法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for treating organic waste water.

【0002】[0002]

【従来の技術】近年、地球レベルでの環境問題の改善が
叫ばれており、各種産業分野で環境保全のための技術的
対策が緊急に迫られている。その中でも、特に環境破壊
の問題が大きく取り上げられるようになってきており、
産業廃棄物を発生せずかつ処理コストの安価な優れた排
水処理法の確立が望まれている。これまで、排水処理の
方法として、排水中の有機物を生物学的に分解する活性
汚泥法が広く採用されてきた。しかし、この方法は、有
機物を分解する微生物の活動環境をコントロールするの
が非常に難しく、微妙な運転技術が要求される。また、
処理後に、余剰汚泥が発生するために、余剰汚泥の処理
にさらなる処理コストがかかり、経済的に不利な方法で
ある。
2. Description of the Related Art In recent years, there has been a call for improvement of environmental problems at the global level, and technical measures for environmental conservation are urgently required in various industrial fields. Among them, the issue of environmental destruction has come to be widely taken up,
It is desired to establish an excellent wastewater treatment method that does not generate industrial waste and has a low treatment cost. Until now, the activated sludge method of biologically decomposing organic matter in wastewater has been widely adopted as a wastewater treatment method. However, in this method, it is very difficult to control the active environment of microorganisms that decompose organic matter, and delicate operation technology is required. Also,
Since the excess sludge is generated after the treatment, the treatment of the excess sludge requires additional treatment cost, which is an economically disadvantageous method.

【0003】有機物含有排水を高温高圧下液相状態で空
気などの酸素含有ガスを吹き込んで酸化分解し、分解物
を除去するジーマーマンプロセス(以下、ジンプロ法と
略称する。)が実用化されている。しかしながら、この
方法によって高濃度の排水を処理する場合、反応条件が
反応温度300〜400℃、反応圧力100〜200k
g/cm2Gと非常に厳しいにもかかわらず、完全に分
解処理することは困難であり、通常、酸化分解率は40
〜70%である。そのため、あまり普及していない。
A Zimmerman process (hereinafter abbreviated as Zinpro method) in which oxygen-containing gas such as air is blown into an organic-material-containing wastewater in a liquid phase at high temperature and high pressure to oxidatively decompose and the decomposed product is removed has been put into practical use. There is. However, when treating high-concentration wastewater by this method, the reaction conditions are a reaction temperature of 300 to 400 ° C. and a reaction pressure of 100 to 200 k.
Although it is very strict as g / cm 2 G, it is difficult to completely decompose it, and the oxidative decomposition rate is usually 40.
~ 70%. Therefore, it is not widely used.

【0004】一方、最近になって触媒を利用した湿式酸
化排水処理法が積極的に研究されている。触媒を用いる
ことにより、排水中の有機物の処理効率をジンプロ法に
比べて格段に向上させた処理法であり、有機物を二酸化
炭素と水にほぼ完全に分解することができる。またジン
プロ法では、処理できなかったアンモニア等の窒素分を
処理分解することも可能である。これまでに開示されて
いる特許文献によれば、有機物、アンモニアを含有する
排水をほぼ完全に酸化分解処理する条件はいずれも反応
温度250℃、反応圧力70kg/cm2G以上である
(特開昭53−20663号公報、特開昭62−132
589号公報)。ジンプロ法に比べて処理条件は穏和に
なったとはいえ、これでもまだかなり厳しく、プロセス
設備の腐食、ユーティリティーなどの運転コストの増大
等の問題が解消されていない。これまでよりも穏和な処
理条件で湿式酸化処理が可能となる新たな触媒系の開発
が切望される。
On the other hand, recently, a wet oxidation wastewater treatment method using a catalyst has been actively studied. By using a catalyst, this is a treatment method in which the treatment efficiency of organic substances in wastewater is significantly improved as compared with the Zinpro method, and the organic substances can be decomposed almost completely into carbon dioxide and water. In the Zinpro method, it is also possible to treat and decompose the nitrogen component such as ammonia that could not be treated. According to the patent documents disclosed so far, the conditions for almost completely oxidatively decomposing wastewater containing organic matter and ammonia are a reaction temperature of 250 ° C. and a reaction pressure of 70 kg / cm 2 G or more. JP-A-53-20663, JP-A-62-132
589). Although the treatment conditions have become milder than those of the Zinpro method, they are still severe, and problems such as corrosion of process equipment and an increase in operating costs such as utilities have not been solved. It is desired to develop a new catalyst system that enables wet oxidation treatment under milder treatment conditions than before.

【0005】[0005]

【発明が解決しようとしている課題】本発明の目的は、
有機物含有排水の処理条件をより穏和にすることによっ
て、より経済性に優れた排水処理法を提供することにあ
る。
The object of the present invention is to:
An object of the present invention is to provide a wastewater treatment method that is more economical by making the treatment conditions for wastewater containing organic substances milder.

【0006】[0006]

【課題を解決するための手段】本発明者は技術の現状に
鑑みてこれまでの触媒湿式酸化法よりも経済的に有利な
排水処理技術を完成すべく、鋭意研究を重ねた結果、白
金族金属をチタニア、ジルコニアあるいはアルミナに担
持せしめた触媒を用いることにより、有機物含有廃水を
これまで報告されている処理条件に比べて穏和な処理条
件であるにも拘らず、分解処理できることを見いだし、
本発明を完成するに至った。
In view of the current state of the art, the present inventor has conducted extensive studies in order to complete a wastewater treatment technology that is more economically advantageous than the conventional catalytic wet oxidation method. By using a catalyst in which a metal is supported on titania, zirconia or alumina, it has been found that the organic matter-containing wastewater can be decomposed in spite of mild treatment conditions compared to the treatment conditions reported so far,
The present invention has been completed.

【0007】即ち、本発明は、以下の排水処理法を提供
するものである。
That is, the present invention provides the following wastewater treatment method.

【0008】メタノール、ホルマリン、ギ酸、アセトア
ルデヒド、酢酸、エチレングリコール及び低級脂肪酸の
メチルエステル等の有機物を含有する排水を、白金族金
属を無機酸化物担体に担持した触媒で、酸素含有ガスを
供給して酸化分解することからなる排水処理法である。
Oxygen-containing gas is supplied to waste water containing organic substances such as methanol, formalin, formic acid, acetaldehyde, acetic acid, ethylene glycol and methyl ester of lower fatty acid by a catalyst having a platinum group metal supported on an inorganic oxide carrier. The wastewater treatment method consists of oxidative decomposition.

【0009】以下、本発明を詳細に説明する。The present invention will be described in detail below.

【0010】本発明の適用できる有機物含有排水は特に
低級有機物を含有するものであり、1例を挙げれば、ジ
メチルテレフタレート製造工場、ポリエチレンテレフタ
レート製造工場から排出される排水がある。低級有機物
としてメタノール、ホルムアルデヒド、ギ酸、アセトア
ルデヒド、酢酸及び低級脂肪酸のメチルエステルなどが
挙げられ、それぞれ単独でも、またそれらの混合物であ
ってもかまわない。
The organic matter-containing wastewater to which the present invention can be applied particularly contains lower organic matter, and one example thereof is wastewater discharged from a dimethyl terephthalate manufacturing plant and a polyethylene terephthalate manufacturing plant. Examples of the lower organic substance include methanol, formaldehyde, formic acid, acetaldehyde, acetic acid, methyl ester of lower fatty acid, and the like, which may be used alone or as a mixture thereof.

【0011】本発明において触媒として使用できる白金
族金属はルテニウム、パラジウム及び白金であり、これ
らの1種類あるいは2種類以上を使用できる。
The platinum group metals that can be used as catalysts in the present invention are ruthenium, palladium and platinum, and one or more of these can be used.

【0012】また、これらの金属は適当な担体上に支持
させて使用することが好ましい。担体として用いられる
物質としてはチタニア、アルミナ、ジルコニア等が適当
である。
Further, it is preferable to use these metals by supporting them on a suitable carrier. Titania, alumina, zirconia and the like are suitable as the substance used as the carrier.

【0013】各種金属の担持量は通常、担体重量の0.
1〜10%、好ましくは0.5〜5%である。金属濃度
が高くなるにつれて分解効率の上昇が見られるが、金属
濃度を10%以上に高めても、分解効率は上がらなくな
る。触媒活性をできるだけ有効に発揮させるためには金
属濃度0.5〜5%の範囲が適当である。
The amount of various metals carried is usually 0.
It is 1 to 10%, preferably 0.5 to 5%. Although the decomposition efficiency increases as the metal concentration increases, even if the metal concentration is increased to 10% or more, the decomposition efficiency does not increase. In order to exert the catalytic activity as effectively as possible, a metal concentration range of 0.5 to 5% is suitable.

【0014】触媒形状としては、粒状、ペレット状、円
柱状、破砕片状、ハニカム状或いは粉末状等の種々の形
態で使用することができる。
The catalyst may be used in various forms such as granular form, pellet form, columnar form, crushed piece form, honeycomb form or powder form.

【0015】本発明において回分式で反応を行う場合、
触媒量は金属濃度として1000〜13000ppmの
範囲が好ましく、13000ppm以上に触媒量を増し
ても分解率の大きな向上は見られない。
When the reaction is carried out batchwise in the present invention,
The catalyst amount is preferably in the range of 1000 to 13000 ppm as the metal concentration, and even if the catalyst amount is increased to 13000 ppm or more, the decomposition rate is not significantly improved.

【0016】本発明において連続式で反応を行う場合、
排水の液空間速度(以後LHSVと略称する)は1〜5
0h-1、特に5〜20h-1の範囲が好ましい。
In the present invention, when the reaction is carried out continuously,
The liquid hourly space velocity (hereinafter abbreviated as LHSV) of drainage is 1 to 5
The range of 0 h −1 , especially 5 to 20 h −1 is preferable.

【0017】本発明において酸素源は酸素ガス、酸素濃
度を高めた空気、通常の空気のいずれも用いることが可
能である。酸素濃度を高めるにつれて有機物含有排水の
分解効率を向上させることができるが、経済的な理由か
ら酸素源として空気を使用するのが望ましい。
In the present invention, as the oxygen source, any of oxygen gas, air having an increased oxygen concentration, and ordinary air can be used. Although it is possible to improve the decomposition efficiency of the organic matter-containing wastewater as the oxygen concentration is increased, it is preferable to use air as the oxygen source for economic reasons.

【0018】本発明において反応温度は200〜270
℃、好ましくは220〜250℃の範囲である。また、
反応圧力はこのような高温下でも排水が液相を保持する
ような加圧下、上記の反応温度では30〜70kg/c
2G、特に40〜70kg/cm2Gとするのが好まし
い。気相状態で反応させると、触媒表面に有機物、無機
物などの触媒活性劣化物質が付着しやすくなって、触媒
寿命が短くなる。
In the present invention, the reaction temperature is 200 to 270.
C., preferably 220 to 250.degree. Also,
The reaction pressure is 30 to 70 kg / c at the reaction temperature under the pressure so that the waste water maintains the liquid phase even at such a high temperature.
It is preferably m 2 G, particularly 40 to 70 kg / cm 2 G. When the reaction is carried out in the gas phase, substances such as organic substances and inorganic substances which deteriorate the catalytic activity tend to adhere to the surface of the catalyst, which shortens the life of the catalyst.

【0019】本発明において反応時間は30分間〜2時
間、特に1時間程度とするのが好ましい。
In the present invention, the reaction time is 30 minutes to 2 hours, preferably about 1 hour.

【0020】[0020]

【発明の効果】以上のように、本発明によれば、有機物
含有廃水を単一工程で高分解処理を行うことが可能とな
り、低コストで効率良く排水処理できる。
As described above, according to the present invention, it becomes possible to highly decompose the organic matter-containing wastewater in a single step, and the wastewater can be efficiently treated at low cost.

【0021】[0021]

【実施例】【Example】

[実施例1]撹拌機を有するチタン・ライニング製で内
容積500mLのオートクレーブに外径約1mmφのチ
タニア球に2重量%のルテニウム(Ru)を担持させた
触媒12.5g、及び約3重量%の酢酸を含む水溶液1
00gを装入して、250℃にまで昇温した。この時、
オートクレーブ内圧は40kg/cm2Gとなった。続
いて、30kg/cm2相当の空気をオートクレーブに
導入して、オートクレーブ内圧を70kg/cm2Gと
した。撹拌速度1000rpmで撹拌しながら、この状
態で温度を250℃に保持することによって分解反応を
1時間行った。
[Example 1] 12.5 g of a catalyst in which 2 wt% of ruthenium (Ru) was supported on a titania sphere having an outer diameter of about 1 mmφ and made of a titanium lining having a stirrer and having an inner volume of 500 mL, and about 3 wt% Aqueous solution containing acetic acid 1
00 g was charged and the temperature was raised to 250 ° C. This time,
The internal pressure of the autoclave was 40 kg / cm 2 G. Subsequently, air equivalent to 30 kg / cm 2 was introduced into the autoclave to adjust the internal pressure of the autoclave to 70 kg / cm 2 G. While stirring at a stirring speed of 1000 rpm, the decomposition reaction was carried out for 1 hour by keeping the temperature at 250 ° C in this state.

【0022】反応終了後、処理水を取り出し、ガスクロ
マトグラフィー、全有機炭素分析により酢酸のガスクロ
マトグラフィー分解率(以後GC分解率と略称する)及
び全有機炭素分解率(以後TOC分解率と略称する)を
求めた。その結果を表1に示した。また、ガスクロマト
グラフィーにより、系内気相中に存在する分解ガスの組
成を求めた。その結果を表2に示した。窒素ガスは酢酸
の分解反応で発生したのではなく、もともと空気中に含
まれていたものである。
After the completion of the reaction, the treated water is taken out, and the gas chromatographic decomposition rate of acetic acid (hereinafter abbreviated as GC decomposition rate) and the total organic carbon decomposition rate (hereinafter referred to as TOC decomposition rate) are analyzed by gas chromatography and total organic carbon analysis. To do). The results are shown in Table 1. Further, the composition of the decomposed gas existing in the gas phase in the system was determined by gas chromatography. The results are shown in Table 2. Nitrogen gas was not originally generated by the decomposition reaction of acetic acid, but was originally contained in the air.

【0023】Ru−チタニア触媒により酢酸は効率良く
分解され、一部、メタンガスの発生も見られるが主に二
酸化炭素と水に分解される。
Acetic acid is efficiently decomposed by the Ru-titania catalyst, and although some methane gas is also generated, it is mainly decomposed into carbon dioxide and water.

【0024】[0024]

【表1】 [Table 1]

【0025】[0025]

【表2】 [Table 2]

【0026】[実施例2〜7] (触媒検討)実施例1に述べた方法に従い、各種白金族
触媒を用いて実施例1と同一処理条件で、酢酸水溶液の
分解処理実験を行った。その結果を表3に示した。
[Examples 2 to 7] (Catalyst examination) In accordance with the method described in Example 1, a decomposition treatment experiment of an acetic acid aqueous solution was conducted under the same treatment conditions as in Example 1 using various platinum group catalysts. The results are shown in Table 3.

【0027】金属ではルテニウム、白金が非常に高い分
解活性を示す。一方、パラジウムはルテニウム、白金に
比べると分解活性はかなり低い。担体はチタニア、アル
ミナが特に良く、白金の担体としてジルコニアを用いた
場合はアルミナを用いた場合に比べて酢酸分解効率は若
干低下する。
Among metals, ruthenium and platinum have extremely high decomposition activity. On the other hand, palladium has much lower decomposition activity than ruthenium and platinum. The carrier is particularly preferably titania or alumina, and when zirconia is used as the platinum carrier, the acetic acid decomposition efficiency is slightly lower than when alumina is used.

【0028】[0028]

【表3】 [Table 3]

【0029】[実施例8〜11] (反応温度検討)5%Ru−チタニア触媒を用いて反応
圧力を70kg/cm2Gに固定し、反応温度を段階的
に変えた酢酸分解処理実験を行い、高い酢酸分解効率を
維持した状態でどこまで反応温度を下げることが可能で
あるかを検討した。実験手順は実施例1に述べた方法に
従って行い、触媒、反応温度以外の処理条件は実施例1
と同一とした。実験結果を表4に示した。
[Examples 8 to 11] (Study of reaction temperature) A 5% Ru-titania catalyst was used to fix the reaction pressure to 70 kg / cm 2 G, and an acetic acid decomposition treatment experiment was conducted by changing the reaction temperature stepwise. Then, we investigated how far the reaction temperature could be lowered while maintaining high acetic acid decomposition efficiency. The experimental procedure was performed according to the method described in Example 1, and the treatment conditions other than the catalyst and the reaction temperature were the same as those in Example 1.
Same as. The experimental results are shown in Table 4.

【0030】反応温度を250℃から230℃に下げて
も、TOC分解率は93%と非常に高い分解活性を示
す。さらに200℃まで下げても、本触媒はTOC分解
率75%を保持している。しかし、180℃まで下げる
と、TOC分解率は46%と大きく低下する。したがっ
て、排水中の酢酸を分解処理する反応温度は220〜2
30℃まで下げることが可能であり、5%Ru−チタニ
ア触媒は通常、触媒湿式酸化処理がよく行われる反応温
度250℃に比べると反応温度を20〜30℃下げるこ
とが可能である。
Even when the reaction temperature is lowered from 250 ° C. to 230 ° C., the TOC decomposition rate is 93%, which shows a very high decomposition activity. Even when the temperature is further lowered to 200 ° C., the present catalyst maintains the TOC decomposition rate of 75%. However, when the temperature is lowered to 180 ° C., the TOC decomposition rate is greatly reduced to 46%. Therefore, the reaction temperature for decomposing acetic acid in wastewater is 220 to 2
The reaction temperature can be lowered to 30 ° C., and the reaction temperature of the 5% Ru-titania catalyst can be lowered by 20 to 30 ° C. as compared with the reaction temperature of 250 ° C. at which the catalytic wet oxidation treatment is often performed.

【0031】[0031]

【表4】 [Table 4]

【0032】[実施例12〜15] (反応圧力検討)実施例1に述べた方法に従って2%R
u−αアルミナ触媒を用い、反応温度を250℃に固定
し、反応圧力を段階的に下げて酢酸水溶液の分解処理実
験を行った。250℃に昇温した時のオートクレーブ内
圧は40kg/cm2Gで一定であることから、オート
クレーブに導入する空気量を減らすことにより反応圧力
を順次、下げていった。その結果を表5に示した。
[Examples 12 to 15] (Study of reaction pressure) According to the method described in Example 1, 2% R
Using a u-α alumina catalyst, the reaction temperature was fixed at 250 ° C., and the reaction pressure was lowered stepwise to carry out a decomposition treatment experiment of an aqueous acetic acid solution. Since the internal pressure of the autoclave when the temperature was raised to 250 ° C. was constant at 40 kg / cm 2 G, the reaction pressure was gradually decreased by reducing the amount of air introduced into the autoclave. The results are shown in Table 5.

【0033】反応圧力70kでTOC分解率は97%で
あるが、45kg/cm2Gに下げても、TOC分解率
は95%を維持しており、酢酸分解効率の低下は非常に
小さい。したがって反応圧力もまた通常の70kg/c
2Gから45kg/cm2Gと大きく下げることが可能
である。
At a reaction pressure of 70 k, the TOC decomposition rate is 97%, but even if the TOC decomposition rate is lowered to 45 kg / cm 2 G, the TOC decomposition rate is maintained at 95%, and the decrease in acetic acid decomposition efficiency is very small. Therefore, the reaction pressure is also normal 70 kg / c
It is possible to significantly reduce it from m 2 G to 45 kg / cm 2 G.

【0034】[0034]

【表5】 [Table 5]

【0035】[実施例16〜17] (反応液検討)実施例1に述べた方法に従い、実施例1
と同一触媒、同一処理条件で、調整排水、メタノールの
分解処理実験を行った。その結果を表6に示した。
[Examples 16 to 17] (Study of reaction solution) In accordance with the method described in Example 1, Example 1
Under the same catalyst and the same treatment conditions as above, an experiment for decomposing wastewater and methanol was performed. The results are shown in Table 6.

【0036】本発明における触媒は酢酸だけでなく、ホ
ルムアルデヒド、ギ酸、メタノールなど低級有機化合物
及びそれらの2種類以上の混合物を含む排水を高効率で
分解処理することが可能である。
The catalyst of the present invention is capable of highly efficiently decomposing wastewater containing not only acetic acid but also lower organic compounds such as formaldehyde, formic acid, methanol and mixtures of two or more thereof.

【0037】なお調整排水中の有機物組成は次のとおり
であった。 酢酸 3.7重量%,メタノール 0.2
重量% ホルムアルデヒド 0.8重量%,ギ酸 1.2
重量%
The organic matter composition in the adjusted wastewater was as follows. Acetic acid 3.7% by weight, methanol 0.2
% By weight formaldehyde 0.8% by weight, formic acid 1.2
weight%

【0038】[0038]

【表6】 [Table 6]

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐藤 和広 愛媛県松山市北吉田町77番地 帝人株式会 社松山事業所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kazuhiro Sato 77 Kitayoshida-cho, Matsuyama-shi, Ehime Prefecture Teijin Limited Matsuyama Office

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 メタノール、ホルマリン、ギ酸、アセト
アルデヒド、酢酸、エチレングリコール及び/または低
級脂肪酸のメチルエステルを含有する排水を、白金族金
属を無機酸化物担体に担持した触媒により、酸素含有ガ
スを供給して酸化分解することからなる有機物含有排水
の処理法。
1. An oxygen-containing gas is supplied to a wastewater containing methanol, formalin, formic acid, acetaldehyde, acetic acid, ethylene glycol and / or a lower fatty acid methyl ester by a catalyst having a platinum group metal supported on an inorganic oxide carrier. A method for treating wastewater containing organic substances, which comprises oxidative decomposition.
【請求項2】 白金族金属がルテニウム、白金またはパ
ラジウムである請求項1に記載の排水処理法。
2. The wastewater treatment method according to claim 1, wherein the platinum group metal is ruthenium, platinum or palladium.
【請求項3】 担体がチタニア、アルミナあるいはジル
コニアである請求項1に記載の排水処理法。
3. The wastewater treatment method according to claim 1, wherein the carrier is titania, alumina or zirconia.
【請求項4】 触媒中の金属濃度が触媒重量に対して
0.1〜10%である請求項1に記載の排水処理法。
4. The method for treating wastewater according to claim 1, wherein the metal concentration in the catalyst is 0.1 to 10% based on the weight of the catalyst.
【請求項5】 排水処理を反応温度200〜270℃で
行う請求項1に記載の排水処理法。
5. The wastewater treatment method according to claim 1, wherein the wastewater treatment is carried out at a reaction temperature of 200 to 270 ° C.
【請求項6】 排水処理を反応圧力30〜70kg/c
2Gで行う請求項1に記載の排水処理法。
6. A reaction pressure of 30 to 70 kg / c for wastewater treatment
The wastewater treatment method according to claim 1, which is carried out at m 2 G.
JP2422194A 1994-02-22 1994-02-22 Wet oxidation treatment of organic meter containing waste water Pending JPH07232182A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2422194A JPH07232182A (en) 1994-02-22 1994-02-22 Wet oxidation treatment of organic meter containing waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2422194A JPH07232182A (en) 1994-02-22 1994-02-22 Wet oxidation treatment of organic meter containing waste water

Publications (1)

Publication Number Publication Date
JPH07232182A true JPH07232182A (en) 1995-09-05

Family

ID=12132236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2422194A Pending JPH07232182A (en) 1994-02-22 1994-02-22 Wet oxidation treatment of organic meter containing waste water

Country Status (1)

Country Link
JP (1) JPH07232182A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030061083A (en) * 2002-01-10 2003-07-18 한국염색기술연구소 Treatment method of waste water containing ethylene glycol
KR100490865B1 (en) * 2001-12-11 2005-05-19 국보산업 주식회사 Method of Treating wastewater using catalytic wet oxidation process
JP2010221098A (en) * 2009-03-23 2010-10-07 Hitachi Zosen Corp Method of decomposing lower alcohol in waste water

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100490865B1 (en) * 2001-12-11 2005-05-19 국보산업 주식회사 Method of Treating wastewater using catalytic wet oxidation process
KR20030061083A (en) * 2002-01-10 2003-07-18 한국염색기술연구소 Treatment method of waste water containing ethylene glycol
JP2010221098A (en) * 2009-03-23 2010-10-07 Hitachi Zosen Corp Method of decomposing lower alcohol in waste water

Similar Documents

Publication Publication Date Title
Melero et al. Heterogeneous catalytic wet peroxide oxidation systems for the treatment of an industrial pharmaceutical wastewater
KR940021488A (en) How to remove solid organics
JP2004330047A (en) Metal or metal oxide-carrying bismuth vanadate photocatalyst for photodecomposition of endocrine disruptor
CN109574189A (en) Processing method containing ammonia nitrogen and COD waste water
Nguyen et al. Imidacloprid degradation by electro-Fenton process using composite Fe3O4–Mn3O4 nanoparticle catalyst
EP0001070B1 (en) Process for producing pyruvic acid
JPH07232182A (en) Wet oxidation treatment of organic meter containing waste water
JPH07232178A (en) Treatment of organic material containing waste water
CN109796073A (en) Nitrogen-containing wastewater processing method
CA2288344A1 (en) Method for eliminating ethanol in exhaust gas
JPH07100383A (en) Catalyst for acyloxy modification of conjugated diene and production of unsaturated glycol diester using the same
JPH11333474A (en) Method for treating wastewater containing phenol
JPH0912492A (en) Production of 1,4-butanediol and/or tetrahydrofurane
JP4066527B2 (en) Treatment of wastewater containing hydrogen peroxide and ammonia
JP2002542213A (en) Method for producing and purifying aromatic acid
JPH10158198A (en) Decomposition of organic peroxide
JP5078373B2 (en) Wastewater treatment method
JPH07204666A (en) Treatment of waste aqueous alkali solution
JPH11347574A (en) Method for reacting substance dissolved in liquid with hardly dissolvable gas
JPH08192174A (en) Treatment of waste water containing aliphatic aldehyde
CN1078171A (en) Electric-multiphase catalytic process and reactor thereof
JP2005021731A (en) Treatment method for anaerobically digested liquid
JPH11147093A (en) Control method of catalytic wet oxidizing treatment apparatus
JP2001300563A (en) Method for treating waste water
JPH05317881A (en) Denitrification method