JPH07232068A - Preparation of hydrogenation catalyst for preparing alcohol - Google Patents

Preparation of hydrogenation catalyst for preparing alcohol

Info

Publication number
JPH07232068A
JPH07232068A JP6325609A JP32560994A JPH07232068A JP H07232068 A JPH07232068 A JP H07232068A JP 6325609 A JP6325609 A JP 6325609A JP 32560994 A JP32560994 A JP 32560994A JP H07232068 A JPH07232068 A JP H07232068A
Authority
JP
Japan
Prior art keywords
copper
catalyst
zinc
hydrogen
contg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6325609A
Other languages
Japanese (ja)
Other versions
JP3551511B2 (en
Inventor
Yasushi Shiomi
康 塩見
Hiroyuki Fukushima
博之 福嶋
Toshihiko Sumita
俊彦 住田
Shinichi Furusaki
真一 古崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP32560994A priority Critical patent/JP3551511B2/en
Publication of JPH07232068A publication Critical patent/JPH07232068A/en
Application granted granted Critical
Publication of JP3551511B2 publication Critical patent/JP3551511B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To prepare a hydrogenation catalyst for preparing an alcohol with high activity and high filtration properties and contg. no chromium by reducing basic carbonate contg. copper and zinc with hydrogen, and oxidizing partially it with an oxygen-contg. gas. CONSTITUTION:A copper- and zinc-contg. insoluble basic carboriate is obtd. by mixing a soluble copper salt- and soluble zinc salt-contg. water soln. with a water soln. of a precipitant contg. an alkali carbonate or an alkali hydrogen carbonate. The formed precipitation is recovered, washed with water and dried in an inert gas. Then, this insoluble carbonate contg. copper and zinc is reduced with hydrogen without burning as it is and then, the copper reduced by bringing it into catalytic contact with an oxygen-contg. gas is partially oxidized. A hydrogenation catalyst for preparing alcohol is obtd. thereby. In addition, it is pref. that in the partial oxidation after reduction with hydrogen, 10-80% reduced copper is usually oxidized to copper oxide to obtain practical activity and filtration properties.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、カルボン酸エステルを
水素で水素化分解して有用なアルコールを製造する際に
使用する高活性かつ高濾過性のアルコール製造用水素化
触媒の製造法に関する。アルコールはポリウレタン、不
飽和ポリエステル、可塑剤等の原料として、また、香
料、溶剤、樹脂変性剤等として有用な化合物である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a highly active and highly filterable hydrogenation catalyst for producing alcohol, which is used for producing a useful alcohol by hydrogenolysis of carboxylic acid ester with hydrogen. Alcohol is a compound useful as a raw material for polyurethane, unsaturated polyester, plasticizer and the like, and also as a fragrance, a solvent, a resin modifier and the like.

【0002】[0002]

【従来の技術】アルコールは、一般に触媒存在下でカル
ボン酸エステルなどのカルボニル化合物を水素で水素化
分解することによって製造されている。例えば、アルコ
ールとして、1,6−ヘキサンジオールなどのジオール
は、ε−カプロラクタムの合成原料として有用なシクロ
ヘキサノール及びシクロヘキサノンを製造するシクロヘ
キサンの液相空気酸化において、酸化反応で副生するカ
ルボン酸の混合物をアルコールでエステル化した後、生
成したエステル化物を水素で水素化分解して製造されて
いる(特公昭49−27164号公報、特公昭53−3
3567号公報参照)。
Alcohols are generally produced by hydrogenolysis of carbonyl compounds such as carboxylic acid esters with hydrogen in the presence of a catalyst. For example, as an alcohol, a diol such as 1,6-hexanediol is a mixture of carboxylic acids by-produced in the oxidation reaction in liquid-phase air oxidation of cyclohexane to produce cyclohexanol and cyclohexanone useful as a synthetic raw material for ε-caprolactam. Is esterified with alcohol, and the produced esterified product is hydrolyzed with hydrogen (Japanese Patent Publication No. 49-27164 and Japanese Patent Publication No. 53-3).
3567 gazette).

【0003】このようなジオールの製造においては、水
素化触媒として銅−クロム系触媒がよく用いられている
が、銅−クロム系触媒は有害なクロムを含むため、その
使用に当たっては触媒のハンドリングに特別な防塵対策
が必要であり、また、触媒の製造工程で排出される排水
や廃液の処理にも特別な設備が必要となるなどの欠点を
有する。特に、液相懸濁の条件で反応を行う場合には、
触媒成分が一部反応液に溶解するため、反応液から製品
の1,6−ヘキサンジオールなどのジオールを蒸留分離
した後の蒸留釜残の処理が問題となっている。
In the production of such a diol, a copper-chromium-based catalyst is often used as a hydrogenation catalyst. However, since the copper-chromium-based catalyst contains harmful chromium, it is necessary to handle the catalyst during its use. It has the drawbacks that special dust-proof measures are required and that special equipment is required for the treatment of wastewater and waste liquid discharged in the catalyst manufacturing process. Especially when carrying out the reaction under the condition of liquid phase suspension,
Since some of the catalyst components are dissolved in the reaction solution, there is a problem in treating the residue of the distillation still after the product diol such as 1,6-hexanediol is distilled off from the reaction solution.

【0004】上記の欠点を補うために、高級アルコール
の製造法として、クロムを含まない水素化触媒を用いる
方法が知られているが、この方法も工業的に充分満足で
きるものであるとは言えない。例えば、ヤシ油脂肪酸メ
チルエステルからの対応するアルコールの製造法とし
て、酸化銅及び酸化鉄を酸化アルミニウムに担持した水
素化触媒を用いる方法が知られているが(特公昭58−
50775号公報参照)、前記のようなジオールの製造
に適用する場合には、この触媒は、濾過性は銅−クロム
系触媒と同等であるが活性がかなり低いという問題を有
している。また、ラウリン酸メチルエステルからのラウ
リルアルコールの製造法として、酸化銅と酸化亜鉛から
成る水素化触媒を用いる方法も提案されているが(特開
昭63−141937号公報参照)、前記のようなジオ
ールの製造に適用する場合、この触媒は、活性は銅−ク
ロム系触媒よりも高いものの濾過性が極めて悪いという
問題を有している。
In order to make up for the above-mentioned drawbacks, a method using a hydrogenation catalyst containing no chromium is known as a method for producing higher alcohols, but this method is also industrially sufficiently satisfactory. Absent. For example, as a method for producing a corresponding alcohol from coconut oil fatty acid methyl ester, a method using a hydrogenation catalyst in which copper oxide and iron oxide are supported on aluminum oxide is known (Japanese Patent Publication No. S58-58-
No. 50775), when applied to the production of diols as described above, this catalyst has a problem that its filterability is equivalent to that of the copper-chromium catalyst, but its activity is considerably low. As a method for producing lauryl alcohol from lauric acid methyl ester, a method using a hydrogenation catalyst composed of copper oxide and zinc oxide has been proposed (see Japanese Patent Laid-Open No. 63-141937), but as described above. When applied to the production of diols, this catalyst has a problem that its activity is higher than that of the copper-chromium-based catalyst, but its filterability is extremely poor.

【0005】その他、クロムを含まない水素化触媒とし
て、合成ガスからのメタノールの合成(特開昭64−2
6526号公報参照)やメチルスチレン及びアセトフェ
ノンからのクメン及びエチルベンゼンの合成(DD21
8090参照)に使用される、酸化銅−酸化亜鉛を還元
して得られる銅金属−酸化銅−酸化亜鉛からなる水素化
触媒が知られているが、この触媒も、前記のようなジオ
ール類の製造に適用する場合には濾過性が悪いという問
題を有している。また、この触媒は通常活性が高く空気
に触れると発熱又は発火するためにハンドリングが非常
に煩雑であるという問題も有している。
Besides, as a chromium-free hydrogenation catalyst, the synthesis of methanol from syngas (Japanese Patent Laid-Open No. 64-2).
6526) or the synthesis of cumene and ethylbenzene from methylstyrene and acetophenone (DD21).
8090), a hydrogenation catalyst composed of copper metal-copper oxide-zinc oxide obtained by reducing copper oxide-zinc oxide is known. When applied to manufacturing, it has a problem of poor filterability. Further, this catalyst has a problem that handling is very complicated because the catalyst usually has high activity and generates heat or ignites when it is exposed to air.

【0006】[0006]

【発明が解決しようとする課題】本発明は、高活性かつ
高濾過性で、有害なクロムを含まない、ハンドリングの
容易なアルコール製造用水素化触媒の製造法を提供する
と共に、該触媒を使用する工業的に好適なアルコールの
製造法を提供することを目的とするものである。
DISCLOSURE OF THE INVENTION The present invention provides a method for producing a hydrogenation catalyst for alcohol production which has high activity and high filterability, does not contain harmful chromium, and is easy to handle, and uses the catalyst. It is an object of the present invention to provide an industrially suitable method for producing alcohol.

【0007】[0007]

【課題を解決するための手段】本発明者らは本発明の目
的を達成するためにクロムを含まない銅系の触媒につい
て鋭意研究した結果、特定の条件下で得られる銅及び亜
鉛を含む塩基性炭酸塩を還元した後に、還元された銅を
部分酸化した触媒の活性が極めて高く、濾過性も優れて
いることを見出して本発明を完成するに至った。即ち、
本発明は、可溶性銅塩及び可溶性亜鉛塩を含有する水溶
液と炭酸アルカリ又は炭酸水素アルカリを含有する水溶
液とを混合して得られる銅及び亜鉛を含む塩基性炭酸塩
を水素で還元し、次いで酸素含有ガスで部分酸化するこ
とを特徴とするアルコール製造用水素化触媒の製造法に
関する。
DISCLOSURE OF THE INVENTION The inventors of the present invention have conducted extensive studies on a chromium-free copper-based catalyst in order to achieve the object of the present invention, and as a result, have obtained a base containing copper and zinc obtained under specific conditions. The present invention has been completed by finding that after the reduction of the acidic carbonate, the activity of the catalyst obtained by partially oxidizing the reduced copper is extremely high and the filterability is also excellent. That is,
The present invention reduces a basic carbonate containing copper and zinc obtained by mixing an aqueous solution containing a soluble copper salt and a soluble zinc salt with an aqueous solution containing an alkali carbonate or an alkali hydrogencarbonate with hydrogen, and then oxygen. The present invention relates to a method for producing a hydrogenation catalyst for alcohol production, which comprises partial oxidation with a contained gas.

【0008】最初に本発明のアルコール製造用水素化触
媒の前駆体である銅及び亜鉛を含む不溶性の塩基性炭酸
塩の調製法について述べる。銅及び亜鉛を含む不溶性の
塩基性炭酸塩は、可溶性銅塩及び可溶性亜鉛塩を含有す
る水溶液と炭酸アルカリ又は炭酸水素アルカリを含有す
る沈澱剤の水溶液とを混合して得られる沈澱を回収する
ことによって調製される。このとき使用される可溶性銅
塩及び可溶性亜鉛塩としては、それぞれ水溶性のもので
あればよく、例えば、硝酸銅、硫酸銅、塩化銅等の銅の
無機酸塩、酢酸銅等の銅の有機酸塩、テトラアンミン銅
硝酸塩等の銅のアンミン錯塩や、硝酸亜鉛、硫酸亜鉛、
塩化亜鉛等の亜鉛の無機酸塩、酢酸亜鉛等の亜鉛の有機
酸塩、ヘキサアンミン亜鉛硝酸塩等の亜鉛のアンミン錯
塩が挙げられる。また、炭酸アルカリとしては、炭酸ナ
トリウム、炭酸カリウム、炭酸アンモニウム等が、炭酸
水素アルカリとしては、炭酸水素ナトリウム、炭酸水素
カリウム、炭酸水素アンモニウム等が好適に使用され
る。上記の銅塩及び亜鉛塩の使用割合は特に限定されな
いが、実用的な活性及び濾過性を得るためには銅/亜鉛
比(原子比)は通常1:9〜9:1、好ましくは2:8
〜7:3、更に好ましくは2:8〜6:4である。
First, a method for preparing an insoluble basic carbonate containing copper and zinc, which are precursors of the hydrogenation catalyst for alcohol production of the present invention, will be described. The insoluble basic carbonate containing copper and zinc is obtained by mixing an aqueous solution containing a soluble copper salt and a soluble zinc salt with an aqueous solution of a precipitating agent containing an alkali carbonate or an alkali hydrogen carbonate to recover a precipitate. Prepared by The soluble copper salt and the soluble zinc salt used at this time may each be water-soluble, for example, copper nitrate, copper sulfate, an inorganic acid salt of copper such as copper chloride, an organic salt of copper such as copper acetate. Acid salt, copper ammine complex salts such as tetraammine copper nitrate, zinc nitrate, zinc sulfate,
Examples thereof include inorganic acid salts of zinc such as zinc chloride, organic acid salts of zinc such as zinc acetate, and ammine complex salts of zinc such as hexaammine zinc nitrate. Further, sodium carbonate, potassium carbonate, ammonium carbonate and the like are preferably used as the alkali carbonate, and sodium hydrogen carbonate, potassium hydrogen carbonate, ammonium hydrogen carbonate and the like are preferably used as the alkali hydrogen carbonate. The use ratio of the above-mentioned copper salt and zinc salt is not particularly limited, but in order to obtain practical activity and filterability, the copper / zinc ratio (atomic ratio) is usually 1: 9 to 9: 1, preferably 2 :. 8
˜7: 3, more preferably 2: 8 to 6: 4.

【0009】可溶性銅塩及び可溶性亜鉛塩を含有する水
溶液と前記沈澱剤を含有する水溶液とを混合するときの
温度は、通常50℃以上でリフラックス温度以下、好ま
しくは60〜95℃である。この温度が低すぎると生成
する銅及び亜鉛を含む不溶性の塩基性炭酸塩の結晶性が
悪くなって水素化触媒の活性及び濾過性が共に悪いもの
となり、逆に高すぎると目的の塩基性炭酸塩以外に一部
酸化銅や銅又は亜鉛の水酸化物が生成して沈澱に混入
し、水素化触媒の濾過性が悪いものとなるために好まし
くない。
The temperature at which the aqueous solution containing the soluble copper salt and the soluble zinc salt is mixed with the aqueous solution containing the precipitant is usually 50 ° C. or higher and the reflux temperature or lower, preferably 60 to 95 ° C. If this temperature is too low, the crystallinity of the insoluble basic carbonate containing copper and zinc formed will be poor, and the activity and filterability of the hydrogenation catalyst will be poor. In addition to salts, a part of hydroxides of copper oxide or copper or zinc is generated and mixed in the precipitate, and the filterability of the hydrogenation catalyst becomes poor, which is not preferable.

【0010】また、このときのpHは前記の可溶性銅塩
及び可溶性亜鉛塩を含有する水溶液及び/又は沈澱剤を
含有する水溶液の滴下速度を調節することによって通常
6.5〜9.5に維持されることが好適である。pHが
低すぎると目的の塩基性炭酸塩の他に塩基性硝酸銅、塩
基性硫酸銅等の使用した金属塩由来のアニオンを含有す
る塩基性塩が生成して水素化触媒の活性及び濾過性が共
に悪いものとなり、逆に高すぎると沈澱の量が少なくな
ったり、酸化銅が生成して沈澱に混入し、水素化触媒の
濾過性が悪いものとなるために好ましくない。上記溶液
の滴下終了後、生成した塩基性炭酸塩を熟成するため、
溶液を攪拌しながら滴下時の温度に保持するか又は放冷
することが好ましい。なお、このとき、pHがわずかに
変化するが特に調整する必要はない。
The pH at this time is usually maintained at 6.5 to 9.5 by adjusting the dropping rate of the aqueous solution containing the soluble copper salt and the soluble zinc salt and / or the aqueous solution containing the precipitating agent. Is preferably performed. If the pH is too low, a basic salt containing anions derived from the metal salts used, such as basic copper nitrate and basic copper sulfate, will be formed in addition to the desired basic carbonate, and the activity and filterability of the hydrogenation catalyst will be improved. On the contrary, if it is too high, the amount of the precipitate is reduced, or copper oxide is generated and mixed in the precipitate, which is not preferable because the hydrogenation catalyst has poor filterability. After the dropping of the above solution, in order to age the generated basic carbonate,
It is preferable that the solution is maintained at the temperature at the time of dropping with stirring or allowed to cool. At this time, the pH slightly changes, but it is not particularly necessary to adjust it.

【0011】以上のような操作によって生成する沈澱を
回収して水洗した後、銅及び亜鉛を含む不溶性の塩基性
炭酸塩は、この沈殿を、通常、空気中又は窒素ガス等の
不活性ガス中、100〜120℃で乾燥して得ることが
できる。得られた銅及び亜鉛を含む不溶性の塩基性炭酸
塩は、X線回折によると銅と亜鉛を含む塩基性炭酸塩で
あるオーリカルサイト(Zn,Cu)5 (CO3
2 (OH)6 と同型の複塩が主成分で、一部塩基性炭酸
亜鉛が含まれているものである。
The precipitate produced by the above operation is recovered and washed with water, and the insoluble basic carbonate containing copper and zinc is usually precipitated in the air or an inert gas such as nitrogen gas. It can be obtained by drying at 100 to 120 ° C. The obtained insoluble basic carbonate containing copper and zinc is an auricalcite (Zn, Cu) 5 (CO 3 ) which is a basic carbonate containing copper and zinc according to X-ray diffraction.
The main component is a double salt of the same type as 2 (OH) 6 and a part of basic zinc carbonate is contained.

【0012】次に、前記の銅と亜鉛を含む不溶性の塩基
性炭酸塩からの本発明の銅金属−酸化銅−酸化亜鉛から
成るアルコール製造用水素化触媒の調製法について述べ
る。本発明の銅金属−酸化銅−酸化亜鉛から成るアルコ
ール製造用水素化触媒は、上記の銅と亜鉛を含む不溶性
の塩基性炭酸塩を焼成することなくそのまま水素で還元
し、次いでこれを酸素含有ガスと接触させて、還元され
た銅を部分酸化することにより調製される。還元に用い
られる水素は純ガスでも窒素等の不活性ガスで1容量%
の濃度にまで希釈されたものでもよいが、ガス中の水素
の濃度が低すぎると処理時間を長くしなければならず、
高すぎると還元で生じる反応熱の除去が困難になって銅
のシンタリングによる触媒活性の低下を引き起こすの
で、水素が通常2〜60容量%の濃度になるように不活
性ガスで希釈されて使用される。このときのガス流量は
通常1〜100l/g・cat・hrである。また、こ
のときの温度は、低すぎると処理時間が長くなり、高す
ぎると還元された銅のシンタリングによる触媒活性の低
下が起こるので、通常100〜400℃、好ましくは1
20〜350℃の範囲に維持される。
Next, a method for preparing the hydrogenation catalyst for alcohol production comprising copper metal-copper oxide-zinc oxide of the present invention from the insoluble basic carbonate containing copper and zinc will be described. The hydrogenation catalyst for alcohol production consisting of copper metal-copper oxide-zinc oxide of the present invention is an insoluble basic carbonate containing copper and zinc, which is directly reduced with hydrogen without calcination, and then the oxygen-containing It is prepared by partial oxidation of reduced copper in contact with gas. Hydrogen used for reduction is pure gas or inert gas such as nitrogen, 1% by volume
It may be diluted to the concentration of, but if the concentration of hydrogen in the gas is too low, the treatment time must be lengthened,
If it is too high, it will be difficult to remove the reaction heat generated by the reduction and the catalytic activity will decrease due to copper sintering. Therefore, hydrogen is usually diluted with an inert gas to a concentration of 2 to 60% by volume before use. To be done. The gas flow rate at this time is usually 1 to 100 l / g.cat.hr. If the temperature at this time is too low, the treatment time will be long, and if it is too high, the catalytic activity will decrease due to the sintering of the reduced copper. Therefore, the temperature is usually 100 to 400 ° C., preferably 1 ° C.
It is maintained in the range of 20 to 350 ° C.

【0013】水素還元後の部分酸化は上記の還元処理さ
れた銅と亜鉛を含む不溶性の塩基性炭酸塩を酸素含有ガ
スと接触させて行われるが、実用的な活性及び濾過性を
得るためには還元された銅の通常10〜80%が酸化銅
に酸化されることが好適である。この処理は、還元処理
された触媒を、通常、室温で、酸素濃度が0.1〜5容
量%になるように窒素ガスで希釈した酸素ガス又は空気
と接触させた後に、更に酸素濃度が20容量%になるよ
うに窒素ガスで希釈した酸素ガス、又は空気と接触させ
ることによって行われる。なお、部分酸化の際に温度上
昇が起こるが、シンタリングを抑えるために処理温度は
通常100℃以下に抑えることが好適である。このよう
にして得られた銅金属−酸化銅−酸化亜鉛から成るアル
コール製造用水素化触媒はそのまま本発明の水素化分解
の触媒として使用される。
Partial oxidation after hydrogen reduction is carried out by bringing the insoluble basic carbonate containing the above-mentioned reduced copper and zinc into contact with an oxygen-containing gas, but in order to obtain practical activity and filterability. It is preferred that usually 10-80% of the reduced copper is oxidized to copper oxide. In this treatment, the reduced catalyst is usually contacted with oxygen gas or air diluted with nitrogen gas so as to have an oxygen concentration of 0.1 to 5% by volume at room temperature, and then the oxygen concentration is further increased to 20%. It is carried out by contacting with oxygen gas diluted with nitrogen gas so as to have a volume% or air. Although the temperature rises during the partial oxidation, it is preferable to keep the treatment temperature at 100 ° C. or lower in order to suppress sintering. The thus obtained hydrogenation catalyst for alcohol production comprising copper metal-copper oxide-zinc oxide is used as it is as a catalyst for hydrocracking of the present invention.

【0014】本発明で得られる銅金属−酸化銅−酸化亜
鉛から成るアルコール製造用水素化触媒は、次のような
各種のカルボン酸エステルの水素化分解によるアルコー
ルの製造の際に使用することができる。 (1)アジピン酸ジメチル、アジピン酸ジエチル、アジ
ピン酸ジプロピル、アジピン酸ジブチル、アジピン酸と
1,6−ヘキサンジオール等のジオールとのジエステル
などのアジピン酸ジエステルからの1,6−ヘキサンジ
オールの製造。 (2)グルタル酸ジメチル、グルタル酸ジエチル、グル
タル酸ジプロピル、グルタル酸ジブチルなどのグルタル
酸ジエステルからの1,5−ペンタンジオールの製造。 (3)コハク酸ジメチル、コハク酸ジエチル、コハク酸
ジプロピル、コハク酸ジブチルなどのコハク酸ジエステ
ルからの1,4−ブタンジオールの製造。 (4)乳酸メチル、乳酸エチル、乳酸プロピル、乳酸ブ
チルなどの乳酸エステルからのプロピレングリコールの
製造。 (5)シュウ酸ジメチル、シュウ酸ジエチル、シュウ酸
ジプロピル、シュウ酸ジブチル等のシュウ酸ジエステル
や、グリコール酸メチル、グリコール酸エチル、グリコ
ール酸プロピル、グリコール酸ブチルなどのグリコール
酸エステルからのエチレングリコールの製造。 (6)カプロン酸メチル、カプロン酸エチル、オクタン
酸メチル、オクタン酸エチル、オレイン酸メチル、オレ
イン酸エチル、ラウリン酸メチル、ラウリン酸エチル、
リノール酸メチル、リノール酸エチルなどの炭素数6以
上の飽和又は不飽和、あるいは直鎖又は分枝鎖のカルボ
ン酸と炭素数1〜4の低級アルコールとのエステルから
の高級アルコールの製造。 (7)水酸基又はアミノ基を持つカルボン酸エステルか
らのポリオール及びアミノアルコールの製造。
The copper metal-copper oxide-zinc oxide hydrogenation catalyst obtained by the present invention can be used in the production of alcohols by hydrogenolysis of various carboxylic acid esters as described below. it can. (1) Production of 1,6-hexanediol from adipic acid diesters such as dimethyl adipate, diethyl adipate, dipropyl adipate, dibutyl adipate, and diesters of adipic acid and diols such as 1,6-hexanediol. (2) Production of 1,5-pentanediol from glutaric acid diesters such as dimethyl glutarate, diethyl glutarate, dipropyl glutarate and dibutyl glutarate. (3) Production of 1,4-butanediol from succinic acid diesters such as dimethyl succinate, diethyl succinate, dipropyl succinate and dibutyl succinate. (4) Production of propylene glycol from lactic acid esters such as methyl lactate, ethyl lactate, propyl lactate and butyl lactate. (5) Oxalic acid diesters such as dimethyl oxalate, diethyl oxalate, dipropyl oxalate and dibutyl oxalate, and ethylene glycol from glycolic acid esters such as methyl glycolate, ethyl glycolate, propyl glycolate and butyl glycolate. Manufacturing. (6) Methyl caproate, ethyl caproate, methyl octanoate, ethyl octanoate, methyl oleate, ethyl oleate, methyl laurate, ethyl laurate,
Production of higher alcohols from esters of saturated or unsaturated carbon atoms having 6 or more carbon atoms, such as methyl linoleate and ethyl linoleate, or linear or branched carboxylic acids and lower alcohols having 1 to 4 carbon atoms. (7) Production of polyol and amino alcohol from carboxylic acid ester having hydroxyl group or amino group.

【0015】また、本発明で得られるアルコール製造用
水素化触媒は、シクロヘキサンの酸化反応液、即ち、シ
クロヘキサンを液相空気酸化してシクロヘキサノール及
びシクロヘキサノンを製造する際の酸化反応液やこのシ
クロヘキサノール及びシクロヘキサノンを硝酸酸化して
アジピン酸を製造する際の酸化反応液から水抽出やアル
カリ洗浄によって分離回収されるカルボン酸の混合物
を、アルコール、特に1,6−ヘキサンジオールなどの
ジオールでエステル化したエステル化物(例えば、特公
昭49−27164号公報、特公昭53−33567号
公報参照)を水素化分解するための触媒としても好適に
使用することができる。
The hydrogenation catalyst for alcohol production obtained in the present invention is an oxidation reaction liquid of cyclohexane, that is, an oxidation reaction liquid when cyclohexane is liquid-phase air-oxidized to produce cyclohexanol and cyclohexanone, and this cyclohexanol. And a mixture of carboxylic acids separated and recovered by water extraction or alkali washing from an oxidation reaction solution for producing adipic acid by nitric acid oxidation of cyclohexanone is esterified with an alcohol, particularly a diol such as 1,6-hexanediol. It can also be suitably used as a catalyst for hydrocracking an esterified compound (see, for example, JP-B-49-27164 and JP-B-53-33567).

【0016】このエステル化物は、上記のような方法で
分離回収されるアジピン酸、グルタール酸、コハク酸な
どの二塩基酸及びオキシカプロン酸などのオキシ酸を含
有するカルボン酸の混合物をアルコールでエステル化す
ることにより容易に得ることができる。このとき、アル
コールとしては、例えば、メタノール、エタノール、プ
ロパノール、ブタノールなどの一価アルコール、又は
1,4−ブタンジオール、1,5−ペンタンジオール、
1,6−ヘキサンジオールなどのジオールを使用するこ
とができるが、好ましくは1,6−ヘキサンジオール、
特に好ましくは1,6−ヘキサンジオールを50%以上
含む上記エステル化物の水素化分解反応液が使用され
る。
This esterified product is obtained by esterifying an alcohol with a mixture of a carboxylic acid containing a dibasic acid such as adipic acid, glutaric acid and succinic acid and an oxyacid such as oxycaproic acid which are separated and recovered by the above method. It can be easily obtained by converting At this time, as the alcohol, for example, monohydric alcohol such as methanol, ethanol, propanol, butanol, or 1,4-butanediol, 1,5-pentanediol,
A diol such as 1,6-hexanediol can be used, but preferably 1,6-hexanediol,
Particularly preferably, a hydrocracking reaction liquid of the above esterified product containing 50% or more of 1,6-hexanediol is used.

【0017】上記のエステル化におけるアルコールの使
用量は、通常、原料のカルボン酸混合物の酸価(AV
値)に対して、アルコールの水酸基が当量で1.2〜
1.5倍の範囲であるように選ばれる。これが1.2倍
よりも小さい場合は、エステル化が非常に遅くなって反
応が完結しないため、得られるエステル化物のAV値が
高くなり水素化分解の原料としては好ましくないものと
なる。また、1.5倍よりも大きい場合は、エステル化
には支障はないが、エステル化及び水素化分解における
反応液の処理量が多くなるために装置が大きくなり、ま
た、目的のジオールの回収に多量のエネルギーを必要と
し、経済性が損なわれるようになる。
The amount of alcohol used in the above esterification is usually the acid value (AV) of the starting carboxylic acid mixture.
Value), the hydroxyl group of alcohol is 1.2 to
It is chosen to be in the range of 1.5 times. If this is less than 1.2 times, the esterification will be very slow and the reaction will not be completed, so that the AV value of the obtained esterified product will be high, which is not preferable as a raw material for hydrocracking. Further, when it is larger than 1.5 times, there is no problem in the esterification, but the apparatus becomes large because the amount of the reaction solution to be treated in the esterification and the hydrogenolysis becomes large, and the target diol is recovered. It requires a large amount of energy, which impairs economic efficiency.

【0018】その他のエステル化の条件については特に
制限はないが、通常、反応温度200〜250℃で、得
られるエステル化物のAV値が5mg−KOH/g以
下、特に2mg−KOH/g以下になるまでエステル化
を行うことが好適である。これは、エステル化物のAV
値が5mg−KOH/gより高くなると、水素化分解に
おいて酸性物質の作用により水素化触媒の成分の溶解が
著しくなりその活性が低下するようになるためである。
なお、エステル化は平衡反応であるので、生成する水を
窒素ガスなどの不活性ガスに気化同伴させて除去すれば
反応を速やかに完結させることができる。
Other esterification conditions are not particularly limited, but usually, at a reaction temperature of 200 to 250 ° C., the AV value of the obtained esterified product is 5 mg-KOH / g or less, particularly 2 mg-KOH / g or less. It is preferable to carry out esterification until that time. This is an esterified AV
This is because when the value is higher than 5 mg-KOH / g, the action of the acidic substance in the hydrocracking causes the components of the hydrogenation catalyst to be remarkably dissolved and its activity to be reduced.
Since esterification is an equilibrium reaction, the reaction can be completed promptly by vaporizing and removing the produced water with an inert gas such as nitrogen gas.

【0019】エステルの水素化分解は、前記水素化触媒
の存在下、通常、反応温度が200〜300℃、好まし
くは250〜300℃で、水素圧が該反応温度において
150〜300kg/cm2 (ゲージ圧)、好ましくは
200〜300kg/cm2(ゲージ圧)の条件で、前
記カルボン酸エステルや上記のようにして得られたアジ
ピン酸と1,6−ヘキサンジオールとのエステル化物を
水素で水素化分解することによって行われる。反応温度
が300℃より高くなると水の副生が多くなり、水素圧
が300kg/cm2 (ゲージ圧)より高くなると装置
の安全性の点を考慮しなければならないのでそれぞれ好
ましくない。
The hydrocracking of the ester is usually carried out in the presence of the above-mentioned hydrogenation catalyst at a reaction temperature of 200 to 300 ° C., preferably 250 to 300 ° C. and a hydrogen pressure of 150 to 300 kg / cm 2 (at the reaction temperature). (Gauge pressure), preferably 200 to 300 kg / cm 2 (gauge pressure) under conditions of hydrogenation of the esterification product of the carboxylic acid ester or adipic acid and 1,6-hexanediol obtained as described above with hydrogen. It is performed by chemical decomposition. When the reaction temperature is higher than 300 ° C., the amount of by-products of water increases, and when the hydrogen pressure is higher than 300 kg / cm 2 (gauge pressure), the safety of the equipment must be taken into consideration.

【0020】エステルの水素化分解は一般的な液相懸濁
床の装置で行われる。即ち、原料のカルボン酸エステル
と前記水素化触媒を耐圧反応器に仕込み、水素加圧下、
攪拌しながら反応温度まで昇温して反応させるバッチ式
の反応で実施される。また、予め原料のカルボン酸エス
テルに前記水素化触媒を懸濁させて水素加圧下で加熱し
た後、これを反応器の下部に連続的に導入して反応させ
る連続式の反応で実施することもできる。なお、水素化
触媒としては、通常、粒径分布が5〜100μm、メジ
アン径が15〜25μmのものが使用され、その使用量
は、原料のカルボン酸エステルに対して、通常0.1〜
3.0重量%、好ましくは0.3〜1.5重量%であ
る。
The hydrocracking of the ester is carried out in conventional liquid phase suspension bed equipment. That is, the raw material carboxylic acid ester and the hydrogenation catalyst were charged into a pressure resistant reactor, and under pressure of hydrogen,
The reaction is carried out in a batch system in which the temperature is raised to the reaction temperature while stirring and the reaction is performed. Further, it may be carried out by a continuous reaction in which the hydrogenation catalyst is suspended in a raw material carboxylic acid ester in advance and heated under hydrogen pressure, and then continuously introduced into the lower part of the reactor to react. it can. In addition, as the hydrogenation catalyst, one having a particle size distribution of 5 to 100 μm and a median diameter of 15 to 25 μm is usually used, and the usage amount thereof is usually 0.1 to 0.1 with respect to the carboxylic acid ester as a raw material.
It is 3.0% by weight, preferably 0.3 to 1.5% by weight.

【0021】カルボン酸エステルの水素化分解によって
生成したアルコールは、上記の反応器から取り出される
反応液から常法により容易に分離精製される。例えば、
フィルター式濾過装置を用いて反応液から水素化触媒を
分離した後、減圧蒸留装置を用いて1,6−ヘキサンジ
オール、1,5−ペンタンジオール、1,4−ブタンジ
オール、エチレングリコール、ラウリルアルコールなど
を分離精製して目的の製品をそれぞれ得ることができ
る。
The alcohol produced by the hydrogenolysis of the carboxylic acid ester is easily separated and purified from the reaction solution taken out from the above reactor by a conventional method. For example,
After separating the hydrogenation catalyst from the reaction solution using a filter-type filtration device, a vacuum distillation device was used to remove 1,6-hexanediol, 1,5-pentanediol, 1,4-butanediol, ethylene glycol, and lauryl alcohol. Etc. can be separated and purified to obtain the desired products.

【0022】[0022]

【実施例】次に、実施例及び比較例を挙げて本発明の方
法を具体的に説明する。各実施例及び比較例におけるア
ジピン酸と1,6−ヘキサンジオールとのエステル化物
は、特公昭49−27164号公報記載のシクロヘキサ
ンの液相空気酸化反応液の水抽出による方法に従って調
製されたカルボン酸の混合物(アジピン酸:26.8重
量%、オキシカプロン酸:31.9重量%、グルタール
酸:6.1重量%、コハク酸:1.2重量%)を、1,
6−ヘキサンジオールを50%以上含有する水素化分解
反応液でエステル化して調製した。得られたエステル化
物は、1,6−ヘキサンジオールを3.1重量%、1,
5−ペンタンジオールを1.1重量%、1,4−ブタン
ジオールを0.06重量%含み、その酸価(AV)は
0.8mg−KOH/g、ケン化価(SV)は343m
g−KOH/gであった。
EXAMPLES Next, the method of the present invention will be specifically described with reference to Examples and Comparative Examples. The esterified product of adipic acid and 1,6-hexanediol in each of the Examples and Comparative Examples is a carboxylic acid prepared according to the method of water extraction of a liquid phase air oxidation reaction liquid of cyclohexane described in JP-B-49-27164. (Adipic acid: 26.8% by weight, oxycaproic acid: 31.9% by weight, glutaric acid: 6.1% by weight, succinic acid: 1.2% by weight)
It was prepared by esterification with a hydrogenolysis reaction liquid containing 50% or more of 6-hexanediol. The obtained esterified product contained 3.1% by weight of 1,6-hexanediol,
It contains 1.1% by weight of 5-pentanediol and 0.06% by weight of 1,4-butanediol, and has an acid value (AV) of 0.8 mg-KOH / g and a saponification value (SV) of 343 m.
It was g-KOH / g.

【0023】なお、このエステル化に使用した水素化分
解反応液は特開平3−115237号公報に記載されて
いる実施例1の方法により得られたもので、1,6−ヘ
キサンジオールを61.1重量%、1,5−ペンタンジ
オールを8.5重量%、1,4−ブタンジオールを0.
8重量%含むものである。また、生成物の分析は下記の
実施例におけると同様の方法により行ったものである。
The hydrogenolysis reaction solution used for this esterification was obtained by the method of Example 1 described in JP-A-3-115237, and 1,6-hexanediol was added at 61. 1% by weight, 8.5% by weight of 1,5-pentanediol and 0.1% of 1,4-butanediol.
It contains 8% by weight. The analysis of the product was carried out by the same method as in the following examples.

【0024】実施例1 〔触媒の調製〕14.5重量%炭酸アンモニウム水溶液
250mlを内容積2lのガラス容器(触媒調製槽)に
入れて80〜85℃に保ち、攪拌下、この溶液にpHが
6.5に維持されるように硝酸銅0.157モル及び硝
酸亜鉛0.125モルを水250mlに溶解した溶液を
30分間で滴下した。滴下終了後、引き続き攪拌しなが
ら放冷したが、この間、触媒調製槽中の溶液のpHは
8.2まで上昇した。生成した沈澱を濾過して洗浄し、
空気中120℃で乾燥した後、70メッシュの篩を通し
て銅及び亜鉛を含む塩基性炭酸塩(水素化触媒の前駆
体)4gを得た。この塩基性炭酸塩をガラス製のボート
状容器に入れて内径25mmのガラス管内に仕込み、窒
素で希釈した水素ガス(水素濃度:2容量%)を12l
/hrの流量で流しながら、110℃、170℃、27
0℃の順でそれぞれ1時間保持し、次いで水素濃度を3
0容量%まで上げて270℃で1時間保持して還元し
た。水素還元終了後、窒素気流中で室温まで冷却した。
Example 1 [Preparation of catalyst] 250 ml of a 14.5% by weight ammonium carbonate aqueous solution was placed in a glass container (catalyst preparation tank) having an internal volume of 2 l and kept at 80 to 85 ° C. A solution prepared by dissolving 0.157 mol of copper nitrate and 0.125 mol of zinc nitrate in 250 ml of water so as to maintain 6.5 was added dropwise over 30 minutes. After the completion of dropping, the mixture was allowed to cool with stirring, and during this period, the pH of the solution in the catalyst preparation tank rose to 8.2. The precipitate formed is filtered and washed,
After drying in air at 120 ° C., 4 g of a basic carbonate (precursor of hydrogenation catalyst) containing copper and zinc was obtained through a 70-mesh sieve. This basic carbonate was placed in a glass boat-shaped container, charged into a glass tube having an inner diameter of 25 mm, and 12 l of hydrogen gas diluted with nitrogen (hydrogen concentration: 2% by volume) was charged.
110 ° C, 170 ° C, 27 while flowing at a flow rate of / hr
Hold in the order of 0 ° C for 1 hour each, and then adjust the hydrogen concentration to 3
The content was reduced to 0% by volume and held at 270 ° C. for 1 hour. After the hydrogen reduction was completed, it was cooled to room temperature in a nitrogen stream.

【0025】次いで、銅を部分酸化するために、窒素ガ
スで希釈した酸素ガス(酸素濃度:0.1容量%)を3
6l/hrの流量で室温で流して10時間処理を行い、
更に徐々に酸素濃度を上げて20容量%に達した時点で
処理を終了した。この部分酸化処理の間、処理温度は1
00℃以下に維持した。得られた触媒の銅/亜鉛比(原
子比)は1:1で、銅の部分酸化率は19.1%であっ
た。なお、触媒の銅/亜鉛比(原子比)は触媒を塩酸に
溶解して原子吸光分析により求め、銅の部分酸化率は、
熱重量測定装置(TGA−50:島津製)を使用し、キ
ャリヤーガスとして水素ガスを用いて500℃までの重
量変化を測定することにより求めた。この場合、相当す
る重量減少が部分酸化された銅に由来するものであるの
で、銅と酸素が1:1で結合しているとして部分酸化率
を算出した。
Next, in order to partially oxidize copper, oxygen gas diluted with nitrogen gas (oxygen concentration: 0.1% by volume) is added to 3 parts.
Flow at room temperature at a flow rate of 6 l / hr for 10 hours,
The treatment was terminated when the oxygen concentration was gradually increased to reach 20% by volume. During this partial oxidation treatment, the treatment temperature is 1
The temperature was maintained below 00 ° C. The copper / zinc ratio (atomic ratio) of the obtained catalyst was 1: 1 and the partial oxidation rate of copper was 19.1%. The copper / zinc ratio (atomic ratio) of the catalyst was obtained by dissolving the catalyst in hydrochloric acid and performing atomic absorption spectrometry.
It was determined by using a thermogravimetric analyzer (TGA-50: manufactured by Shimadzu) and using hydrogen gas as a carrier gas to measure the weight change up to 500 ° C. In this case, since the corresponding weight loss was derived from partially oxidized copper, the partial oxidation rate was calculated assuming that copper and oxygen were bonded at a ratio of 1: 1.

【0026】〔カルボン酸エステルの水素化分解〕カル
ボン酸エステルとして前記のアジピン酸と1,6−ヘキ
サンジオールとのエステル化物350gと上記触媒3.
5gとを内容積500mlのSUS製オートクレーブに
仕込み、水素ガスを25℃で180kg/cm2 (ゲー
ジ圧)まで圧入した後、攪拌しながら280℃まで加熱
した。次いで、反応温度280℃で、水素ガスを補充し
ながら水素圧を280kg/cm2 (ゲージ圧)の定圧
に保って5時間水素化分解を行った。
[Hydrolysis of Carboxylic Acid Ester] 350 g of an esterified product of adipic acid and 1,6-hexanediol as a carboxylic acid ester and the above catalyst 3.
5 g and 5 g were charged into an SUS autoclave having an internal volume of 500 ml, and hydrogen gas was injected at 25 ° C. to 180 kg / cm 2 (gauge pressure), and then heated to 280 ° C. with stirring. Next, at the reaction temperature of 280 ° C., hydrogen decomposition was carried out for 5 hours while maintaining the hydrogen pressure at a constant pressure of 280 kg / cm 2 (gauge pressure) while supplementing hydrogen gas.

【0027】反応終了後、10μmのメンブレンフィル
ター(有効直径:45mm)をセットした加圧濾過器
に、55℃に保持された反応液を全量入れて窒素ガスで
1kg/cm2 (ゲージ圧)に加圧しながら濾過を行っ
た。濾過時間は、この反応液の最初の50mlが通過し
た後、次の50mlの濾過に要する時間をストップウォ
ッチで測定して求めた。水素化分解により生成した1,
6−ヘキサンジオールなどのジオールは濾過して得られ
た濾液をガスクロマトグラフィーにより分析して求め
た。その結果、反応液の濾過性は0.2分で極めて良好
であった。また、反応液中には、1,6−ヘキサンジオ
ールが57.5重量%、1,5−ペンタンジオールが
9.5重量%、1,4−ブタンジオールが0.8重量%
含まれていた。
After completion of the reaction, the total amount of the reaction solution kept at 55 ° C. was put into a pressure filter equipped with a 10 μm membrane filter (effective diameter: 45 mm), and the pressure was adjusted to 1 kg / cm 2 (gauge pressure) with nitrogen gas. Filtration was performed under pressure. The filtration time was determined by measuring the time required for filtration of the next 50 ml after passing the first 50 ml of this reaction solution with a stopwatch. Produced by hydrocracking 1,
Diols such as 6-hexanediol were obtained by analyzing the filtrate obtained by filtration by gas chromatography. As a result, the filterability of the reaction solution was 0.2 minutes, which was extremely good. In the reaction solution, 57.5% by weight of 1,6-hexanediol, 9.5% by weight of 1,5-pentanediol and 0.8% by weight of 1,4-butanediol were added.
Was included.

【0028】実施例2 〔触媒の調製〕実施例1と同様に触媒を調製して分析し
た。触媒の調製条件及び得られた結果を表1に示す。 〔カルボン酸エステルの水素化分解〕カルボン酸エステ
ルとして前記のアジピン酸と1,6−ヘキサンジオール
とのエステル化物100gと上記触媒2gとを内容積5
00mlのSUS製オートクレーブに仕込み、水素ガス
を25℃で180kg/cm2 (ゲージ圧)まで圧入し
た後、攪拌しながら280℃まで加熱して、反応温度2
80℃、反応開始時の水素圧250kg/cm2 (ゲー
ジ圧)で3時間水素化分解を行った。なお、以下の実施
例及び比較例では、触媒活性の指標として、得られた反
応液中のアルコール類の濃度を測定する代わりに、反応
中にゲージ圧が240kg/cm2 から210kg/c
2 に下がる時間を測定して水素吸収速度を算出した。
得られた結果を表1に示す。
Example 2 [Preparation of catalyst] A catalyst was prepared and analyzed in the same manner as in Example 1. Table 1 shows the catalyst preparation conditions and the obtained results. [Hydrolysis of Carboxylic Acid Ester] 100 g of the esterified product of adipic acid and 1,6-hexanediol as a carboxylic acid ester and 2 g of the above catalyst were used as the internal volume 5
It was charged in a 00 ml autoclave made of SUS, hydrogen gas was injected at 25 ° C. to 180 kg / cm 2 (gauge pressure), and then heated to 280 ° C. with stirring to give a reaction temperature of 2
Hydrogenolysis was carried out at 80 ° C. for 3 hours at a hydrogen pressure of 250 kg / cm 2 (gauge pressure) at the start of the reaction. In the following examples and comparative examples, as an index of catalyst activity, instead of measuring the concentration of alcohols in the obtained reaction solution, a gauge pressure of 240 kg / cm 2 to 210 kg / c was used during the reaction.
The time to fall to m 2 was measured to calculate the hydrogen absorption rate.
The results obtained are shown in Table 1.

【0029】比較例1 実施例2において、触媒を市販の銅−クロム触媒(N2
03:日揮化学製)2gに変えたことのほかは、実施例
2と同様に水素化分解と分析を行った。その結果、水素
吸収速度は0.863mol/hrで、濾過時間は3.
2分であった。
Comparative Example 1 In Example 2, the catalyst was a commercially available copper-chromium catalyst (N2
03: manufactured by JGC Chemical Co., Ltd.) Hydrolysis and analysis were performed in the same manner as in Example 2 except that the amount was changed to 2 g. As a result, the hydrogen absorption rate was 0.863 mol / hr, and the filtration time was 3.
It was 2 minutes.

【0030】実施例3 〔触媒の調製〕実施例1において、炭酸アンモニウム溶
液を10重量%炭酸ナトリウム水溶液460mlに、硝
酸銅及び硝酸亜鉛溶液を硝酸銅0.12モル及び硝酸亜
鉛0.28モルを水400mlに溶解した溶液にそれぞ
れ変えたことのほかは、実施例1と同様に触媒を調製し
て分析した。触媒の調製条件及び得られた結果を表1に
示す。 〔カルボン酸エステルの水素化分解〕上記触媒2gを使
用して実施例2と同様に水素化分解と分析を行った。得
られた結果を表1に示す。
Example 3 [Preparation of catalyst] In Example 1, the ammonium carbonate solution was added to 460 ml of a 10 wt% sodium carbonate aqueous solution, and the copper nitrate and zinc nitrate solutions were added with 0.12 mol of copper nitrate and 0.28 mol of zinc nitrate. A catalyst was prepared and analyzed in the same manner as in Example 1 except that each solution was changed to a solution dissolved in 400 ml of water. Table 1 shows the catalyst preparation conditions and the obtained results. [Hydrolysis of Carboxylic Acid Ester] Using 2 g of the above catalyst, hydrogenolysis and analysis were carried out in the same manner as in Example 2. The results obtained are shown in Table 1.

【0031】比較例2 実施例3において、銅及び亜鉛を含む塩基性炭酸塩(水
素化触媒の前駆体)を水素還元する前に予め空気中で4
50℃で1時間焼成したことのほかは、実施例3と同様
に触媒を調製して水素化分解と分析を行った。触媒の調
製条件及び得られた結果を表1に示す。
Comparative Example 2 In Example 3, the basic carbonate containing copper and zinc (precursor of the hydrogenation catalyst) was reduced to 4 in air in advance before hydrogen reduction.
A catalyst was prepared and hydrocracked and analyzed in the same manner as in Example 3 except that it was calcined at 50 ° C. for 1 hour. Table 1 shows the catalyst preparation conditions and the obtained results.

【0032】比較例3 実施例3において、銅及び亜鉛を含む塩基性炭酸塩(水
素化触媒の前駆体)を空気中で450℃で1時間焼成し
たのみで、その後の水素還元と部分酸化を行わなかった
ことのほかは、実施例3と同様に触媒を調製して水素化
分解と分析を行った。触媒の調製条件及び得られた結果
を表1に示す。
Comparative Example 3 In Example 3, basic carbonate containing copper and zinc (precursor of hydrogenation catalyst) was only calcined in air at 450 ° C. for 1 hour, and subsequent hydrogen reduction and partial oxidation were carried out. A catalyst was prepared and hydrocracked and analyzed in the same manner as in Example 3 except that it was not performed. Table 1 shows the catalyst preparation conditions and the obtained results.

【0033】[0033]

【表1】 [Table 1]

【0034】実施例4 〔触媒の調製〕水200mlを内容積2lのガラス容器
(触媒調製槽)に入れて80℃に保ち、これに硝酸銅
0.25mol及び硝酸亜鉛0.25molを水500
mlに溶解した液と10重量%炭酸ナトリウム水溶液と
を攪拌下同時に滴下した。滴下速度は、炭酸ナトリウム
水溶液が8g/分で、硝酸銅及び硝酸亜鉛水溶液は触媒
調製槽中の溶液のpHが8.0に維持される速度であっ
た。炭酸ナトリウム水溶液を650ml滴下したところ
で両液の滴下を終了し、引き続き攪拌しながら80℃で
1.5時間熟成した。なお、このときpHは8.8まで
上昇した。生成した沈澱を濾過して洗浄し、空気中12
0℃で乾燥した後、70メッシュの篩を通して銅及び亜
鉛を含む塩基性炭酸塩を得た。引き続き、実施例1と同
様に水素還元と部分酸化を行って、得られた触媒を分析
した。触媒の調製条件及び得られた結果を表2に示す。 〔カルボン酸エステルの水素化分解〕上記触媒2gを使
用して実施例2と同様に水素化分解と分析を行った。得
られた結果を表2に示す。
Example 4 [Preparation of catalyst] 200 ml of water was placed in a glass container (catalyst preparation tank) having an internal volume of 2 l and kept at 80 ° C., and 0.25 mol of copper nitrate and 0.25 mol of zinc nitrate were added to 500 of water.
A solution dissolved in ml and a 10 wt% sodium carbonate aqueous solution were simultaneously added dropwise with stirring. The dropping rate was 8 g / min for the aqueous sodium carbonate solution, and for the aqueous solutions of copper nitrate and zinc nitrate, the pH of the solution in the catalyst preparation tank was maintained at 8.0. When 650 ml of an aqueous sodium carbonate solution was added dropwise, the addition of both solutions was completed, and the mixture was then aged at 80 ° C. for 1.5 hours while stirring. At this time, the pH rose to 8.8. The precipitate formed is filtered and washed and then washed in air 12
After drying at 0 ° C, a basic carbonate containing copper and zinc was obtained through a 70-mesh sieve. Subsequently, hydrogen reduction and partial oxidation were carried out in the same manner as in Example 1, and the obtained catalyst was analyzed. Table 2 shows the catalyst preparation conditions and the obtained results. [Hydrolysis of Carboxylic Acid Ester] Using 2 g of the above catalyst, hydrogenolysis and analysis were carried out in the same manner as in Example 2. The obtained results are shown in Table 2.

【0035】比較例4 実施例4において、銅及び亜鉛を含む塩基性炭酸塩(水
素化触媒の前駆体)を水素還元する前に予め空気中で4
50℃で1時間焼成したことのほかは、実施例4と同様
に触媒を調製して水素化分解と分析を行った。触媒の調
製条件及び得られた結果を表2に示す。
Comparative Example 4 In Example 4, the basic carbonate containing copper and zinc (precursor of hydrogenation catalyst) was reduced to 4 in air in advance before hydrogen reduction.
A catalyst was prepared and hydrocracked and analyzed in the same manner as in Example 4 except that the catalyst was calcined at 50 ° C. for 1 hour. Table 2 shows the catalyst preparation conditions and the obtained results.

【0036】実施例5 実施例4において、触媒調製槽中の溶液のpHを6.5
に維持したことのほかは、実施例4と同様に触媒を調製
して水素化分解と分析を行った。なお、炭酸ナトリウム
水溶液の滴下終了後、熟成中に触媒調製槽中の溶液のp
Hは7.6まで上昇した。触媒の調製条件及び得られた
結果を表2に示す。
Example 5 In Example 4, the pH of the solution in the catalyst preparation tank was 6.5.
The catalyst was prepared and hydrocracked and analyzed as in Example 4, except that After the completion of dropping the aqueous solution of sodium carbonate, the p of the solution in the catalyst preparation tank was aged during aging.
H rose to 7.6. Table 2 shows the catalyst preparation conditions and the obtained results.

【0037】実施例6 実施例4において、触媒調製槽中の溶液のpHを9.0
に維持したことのほかは、実施例4と触媒を調製して同
様に水素化分解と分析を行った。なお、炭酸ナトリウム
水溶液の滴下終了後、熟成中に触媒調製槽中の溶液のp
Hは9.3まで上昇した。触媒の調製条件及び得られた
結果を表2に示す。
Example 6 In Example 4, the pH of the solution in the catalyst preparation tank was 9.0.
The catalyst was prepared in the same manner as in Example 4 except that the above conditions were maintained, and hydrocracking and analysis were conducted in the same manner. After the completion of dropping the aqueous solution of sodium carbonate, the p of the solution in the catalyst preparation tank was aged during aging.
H rose to 9.3. Table 2 shows the catalyst preparation conditions and the obtained results.

【0038】実施例7 実施例4において、硝酸銅及び硝酸亜鉛水溶液を硝酸銅
0.10mol及び硝酸亜鉛0.40molを水500
mlに溶解した溶液に代えたことのほかは、実施例4と
同様に触媒を調製して水素化分解と分析を行った。な
お、炭酸ナトリウム水溶液の滴下終了後、熟成中に触媒
調製槽中の溶液のpHは8.6まで上昇した。触媒の調
製条件及び得られた結果を表2に示す。
Example 7 In Example 4, an aqueous solution of copper nitrate and zinc nitrate was added to 0.10 mol of copper nitrate and 0.40 mol of zinc nitrate to 500 parts of water.
A catalyst was prepared and hydrocracked and analyzed in the same manner as in Example 4 except that the solution dissolved in ml was replaced. The pH of the solution in the catalyst preparation tank rose to 8.6 during aging after the completion of the dropwise addition of the sodium carbonate aqueous solution. Table 2 shows the catalyst preparation conditions and the obtained results.

【0039】実施例8 実施例4において、硝酸銅及び硝酸亜鉛水溶液を硝酸銅
0.15mol及び硝酸亜鉛0.35molを水500
mlに溶解した溶液に代えたことのほかは、実施例4と
同様に触媒を調製して水素化分解と分析を行った。な
お、炭酸ナトリウム水溶液の滴下終了後、熟成中に触媒
調製槽中の溶液のpHは8.5まで上昇した。触媒の調
製条件及び得られた結果を表2に示す。
Example 8 In Example 4, 0.15 mol of copper nitrate and zinc nitrate aqueous solution and 0.35 mol of zinc nitrate were added to 500 parts of water.
A catalyst was prepared and hydrocracked and analyzed in the same manner as in Example 4 except that the solution dissolved in ml was replaced. Note that the pH of the solution in the catalyst preparation tank rose to 8.5 during aging after the completion of dropping the aqueous sodium carbonate solution. Table 2 shows the catalyst preparation conditions and the obtained results.

【0040】実施例9 実施例4において、硝酸銅及び硝酸亜鉛水溶液を硝酸銅
0.20mol及び硝酸亜鉛0.30molを水500
mlに溶解した溶液に代えたことのほかは、実施例4と
同様に触媒を調製して水素化分解と分析を行った。な
お、炭酸ナトリウム水溶液の滴下終了後、熟成中に触媒
調製槽中の溶液のpHは8.7まで上昇した。触媒の調
製条件及び得られた結果を表2に示す。
Example 9 In Example 4, 0.20 mol of copper nitrate and zinc nitrate aqueous solution and 0.30 mol of zinc nitrate were added to 500 parts of water.
A catalyst was prepared and hydrocracked and analyzed in the same manner as in Example 4 except that the solution dissolved in ml was replaced. Note that the pH of the solution in the catalyst preparation tank rose to 8.7 during aging after the completion of dropping the aqueous sodium carbonate solution. Table 2 shows the catalyst preparation conditions and the obtained results.

【0041】実施例10 実施例4において、硝酸銅及び硝酸亜鉛水溶液を硝酸銅
0.30mol及び硝酸亜鉛0.20molを水500
mlに溶解した溶液に代えたことのほかは、実施例4と
同様に触媒を調製して水素化分解と分析を行った。な
お、炭酸ナトリウム水溶液の滴下終了後、熟成中に触媒
調製槽中の溶液のpHは8.9まで上昇した。触媒の調
製条件及び得られた結果を表2に示す。
Example 10 In Example 4, an aqueous solution of copper nitrate and zinc nitrate was added to 0.30 mol of copper nitrate and 0.20 mol of zinc nitrate to 500 parts of water.
A catalyst was prepared and hydrocracked and analyzed in the same manner as in Example 4 except that the solution dissolved in ml was replaced. Note that the pH of the solution in the catalyst preparation tank rose to 8.9 during the aging after the completion of the dropwise addition of the aqueous sodium carbonate solution. Table 2 shows the catalyst preparation conditions and the obtained results.

【0042】実施例11 実施例4において、触媒調製槽の温度を60℃に変えた
ことのほかは、実施例4と同様に触媒を調製して水素化
分解と分析を行った。なお、炭酸ナトリウム水溶液の滴
下終了後、熟成中に触媒調製槽中の溶液のpHは8.8
まで上昇した。触媒の調製条件及び得られた結果を表2
に示す。
Example 11 A catalyst was prepared and hydrocracked and analyzed in the same manner as in Example 4 except that the temperature of the catalyst preparation tank was changed to 60 ° C. The pH of the solution in the catalyst preparation tank was 8.8 during the aging after the completion of the dropwise addition of the sodium carbonate aqueous solution.
Rose to. The catalyst preparation conditions and the results obtained are shown in Table 2.
Shown in.

【0043】実施例12 実施例4において、触媒調製槽の温度をリフラックス温
度に変えたことのほかは、実施例4と同様に触媒を調製
して水素化分解と分析を行った。なお、炭酸ナトリウム
水溶液の滴下終了後、熟成中に触媒調製槽中の溶液のp
Hは9.5まで上昇した。触媒の調製条件及び得られた
結果を表2に示す。
Example 12 A catalyst was prepared and hydrocracked and analyzed in the same manner as in Example 4 except that the temperature of the catalyst preparation tank was changed to the reflux temperature. After the completion of dropping the aqueous solution of sodium carbonate, the p of the solution in the catalyst preparation tank was aged during aging.
H rose to 9.5. Table 2 shows the catalyst preparation conditions and the obtained results.

【0044】実施例13 実施例4において、硝酸銅及び硝酸亜鉛水溶液を硫酸銅
0.25mol及び硫酸亜鉛0.25molを水500
mlに溶解した溶液に代えたことのほかは、実施例4と
同様に触媒を調製して水素化分解と分析を行った。な
お、炭酸ナトリウム水溶液の滴下終了後、熟成中に触媒
調製槽中の溶液のpHは8.8まで上昇した。触媒の調
製条件及び得られた結果を表2に示す。
Example 13 In Example 4, an aqueous solution of copper nitrate and zinc nitrate was added to 0.25 mol of copper sulfate and 0.25 mol of zinc sulfate to 500 parts of water.
A catalyst was prepared and hydrocracked and analyzed in the same manner as in Example 4 except that the solution dissolved in ml was replaced. The pH of the solution in the catalyst preparation tank rose to 8.8 during the aging after the completion of the dropping of the sodium carbonate aqueous solution. Table 2 shows the catalyst preparation conditions and the obtained results.

【0045】[0045]

【表2】 [Table 2]

【0046】実施例14 〔触媒の調製〕実施例1において、銅及び亜鉛を含む塩
基性炭酸塩(水素化触媒の前駆体)の水素還元を、窒素
ガスで希釈した水素ガス(水素濃度:2容量%)を12
l/hrの流量で流しながら、30℃/hrの速度で2
80℃まで昇温してこの温度で1時間保持して還元した
後、窒素気流中で室温まで冷却したことのほかは、実施
例1と同様に触媒を調製して分析した。触媒の調製条件
及び得られた結果を表3に示す。 〔カルボン酸エステルの水素化分解〕上記触媒2gを使
用して実施例2と同様に水素化分解と分析を行った。得
られた結果を表3に示す。
Example 14 [Preparation of catalyst] In Example 1, hydrogen reduction of a basic carbonate containing copper and zinc (precursor of hydrogenation catalyst) with hydrogen gas diluted with nitrogen gas (hydrogen concentration: 2) Capacity%) 12
2 at a rate of 30 ° C / hr while flowing at a flow rate of 1 / hr
A catalyst was prepared and analyzed in the same manner as in Example 1 except that the temperature was raised to 80 ° C., the temperature was maintained for 1 hour to reduce the temperature, and then the temperature was cooled to room temperature in a nitrogen stream. Table 3 shows the catalyst preparation conditions and the obtained results. [Hydrolysis of Carboxylic Acid Ester] Using 2 g of the above catalyst, hydrogenolysis and analysis were carried out in the same manner as in Example 2. The results obtained are shown in Table 3.

【0047】実施例15〜19 実施例14において、銅及び亜鉛を含む塩基性炭酸塩
(水素化触媒の前駆体)の水素還元を、表2に示される
水素濃度の水素ガス、昇温速度及び温度で実施したこと
のほかは、実施例14と同様に触媒を調製して水素化分
解と分析を行った。触媒の調製条件及び得られた結果を
表3に示す。
Examples 15 to 19 In Example 14, hydrogen reduction of a basic carbonate (precursor of hydrogenation catalyst) containing copper and zinc was carried out by using hydrogen gas having a hydrogen concentration shown in Table 2 and a heating rate and A catalyst was prepared and hydrocracked and analyzed as in Example 14, except that it was carried out at temperature. Table 3 shows the catalyst preparation conditions and the obtained results.

【0048】[0048]

【表3】 [Table 3]

【0049】実施例20 〔触媒の調製〕実施例4において、銅及び亜鉛を含む塩
基性炭酸塩(水素化触媒の前駆体)の水素還元を、窒素
で希釈した水素ガス(水素濃度:2容量%)を12l/
hrの流量で流しながら、30℃/hrの速度で350
℃まで昇温してこの温度で1時間保持して還元した後、
窒素気流中で室温まで冷却したことのほかは、実施例4
と同様に触媒を調製して分析した。触媒の調製条件及び
得られた結果を表4に示す。 〔カルボン酸エステルの水素化分解〕上記触媒2gを使
用して実施例2と同様に水素化分解と分析を行った。得
られた結果を表4に示す。
Example 20 [Preparation of catalyst] In Example 4, hydrogen reduction of a basic carbonate containing copper and zinc (precursor of hydrogenation catalyst) with hydrogen was diluted with nitrogen (hydrogen concentration: 2 vol. %) 12 l /
350 at a rate of 30 ° C / hr while flowing at a flow rate of hr
After heating up to ℃ and holding at this temperature for 1 hour to reduce,
Example 4 except that it was cooled to room temperature in a nitrogen stream.
A catalyst was prepared and analyzed in the same manner as in. Table 4 shows the catalyst preparation conditions and the obtained results. [Hydrolysis of Carboxylic Acid Ester] Using 2 g of the above catalyst, hydrogenolysis and analysis were carried out in the same manner as in Example 2. The results obtained are shown in Table 4.

【0050】実施例21〜25 実施例20において、銅及び亜鉛を含む塩基性炭酸塩
(水素化触媒の前駆体)の水素還元を、表4に示される
水素濃度の水素ガス、昇温速度及び温度で実施したこと
のほかは、実施例21と同様に触媒を調製して水素化分
解と分析を行った。触媒の調製条件及び得られた結果を
表4に示す。
Examples 21 to 25 In Example 20, hydrogen reduction of a basic carbonate (precursor of hydrogenation catalyst) containing copper and zinc was carried out by using hydrogen gas having a hydrogen concentration shown in Table 4, a heating rate and A catalyst was prepared and hydrocracked and analyzed as in Example 21, except that it was carried out at temperature. Table 4 shows the catalyst preparation conditions and the obtained results.

【0051】[0051]

【表4】 [Table 4]

【0052】実施例26 〔触媒の調製〕実施例23において、カルボン酸エステ
ルの水素化分解を次のように行ったことのほかは、実施
例23と同様に触媒を調製して水素化分解と分析を行っ
た。即ち、カルボン酸エステルとしてラウリン酸エチル
100gと、実施例23で調製した触媒2gとを内容積
500mlのSUS製オートクレーブに仕込み、水素ガ
スを25℃で180kg/cm2 (ゲージ圧)まで圧入
した後、攪拌しながら240℃まで加熱し、反応開始時
の水素圧250kg/cm2 (ゲージ圧)で1時間水素
化分解を行った。その結果、水素吸収速度は1.50m
ol/hrで、濾過時間は0.4分であった。また、反
応液の分析も行ったところ、反応液中にはラウリルアル
コールが79.1重量%、エタノールが18.5重量
%、ラウリン酸エチルが1.4重量%含まれていた。得
られた結果を表5に示す。
Example 26 [Preparation of catalyst] In Example 23, a catalyst was prepared in the same manner as in Example 23 except that the hydrogenolysis of the carboxylic acid ester was carried out as follows. Analysis was carried out. That is, 100 g of ethyl laurate as a carboxylic acid ester and 2 g of the catalyst prepared in Example 23 were charged into an SUS autoclave having an internal volume of 500 ml, and hydrogen gas was injected at 25 ° C. to 180 kg / cm 2 (gauge pressure). The mixture was heated to 240 ° C. with stirring, and hydrogenolysis was carried out for 1 hour at a hydrogen pressure of 250 kg / cm 2 (gauge pressure) at the start of the reaction. As a result, the hydrogen absorption rate is 1.50 m
The filtration time was 0.4 minutes at ol / hr. Further, when the reaction solution was analyzed, it was found that the reaction solution contained 79.1% by weight of lauryl alcohol, 18.5% by weight of ethanol, and 1.4% by weight of ethyl laurate. The results obtained are shown in Table 5.

【0053】比較例5 実施例26において、触媒を市販の銅−クロム触媒(N
203:日揮化学製)2gに代え、水素化分解の温度を
260℃に(従って、反応開始時の水素圧はゲージ圧で
260kg/cm2 となる)、その時間を2時間に変え
たことのほかは、実施例26と同様に水素化分解と分析
を行った。その結果、水素吸収速度は0.45mol/
hrで、濾過時間は0.7分であった。また、反応液の
分析も行ったところ、反応液中にはラウリルアルコール
が79.3重量%、エタノールが18.3重量%、ラウ
リン酸エチルが1.1重量%含まれていた。得られた結
果を表5に示す。
Comparative Example 5 In Example 26, the catalyst was a commercially available copper-chromium catalyst (N
203: manufactured by JGC Chemical Co., Ltd.), the temperature of hydrocracking was changed to 260 ° C. (hence the hydrogen pressure at the start of the reaction was 260 kg / cm 2 in gauge pressure), and the time was changed to 2 hours. Otherwise, hydrogenolysis and analysis were performed in the same manner as in Example 26. As a result, the hydrogen absorption rate was 0.45 mol /
At hr, the filtration time was 0.7 minutes. Further, when the reaction solution was analyzed, it was found that the reaction solution contained 79.3% by weight of lauryl alcohol, 18.3% by weight of ethanol and 1.1% by weight of ethyl laurate. The results obtained are shown in Table 5.

【0054】[0054]

【表5】 [Table 5]

【0055】[0055]

【発明の効果】本発明により、従来のアルコール製造用
水素化触媒が有していた活性、濾過性及びハンドリング
に関する問題点を同時に克服した、クロムを含まないア
ルコール製造用水素化触媒を得ることができると共に、
カルボン酸エステルを水素で水素化分解して対応するア
ルコールを高い反応速度で容易に製造することができ
る。本発明のアルコール製造用水素化触媒は、シクロヘ
キサンの酸化反応液から分離されるカルボン酸混合物の
エステル化物を原料として1,6−ヘキサンジオールな
どのジオールを工業的に製造する方法において特に有用
である。
According to the present invention, it is possible to obtain a chromium-free hydrogenation catalyst for alcohol production which simultaneously overcomes the problems of the conventional hydrogenation catalyst for alcohol production, which are related to activity, filterability and handling. While you can
A corresponding alcohol can be easily produced at a high reaction rate by hydrogenolysis of a carboxylic acid ester with hydrogen. INDUSTRIAL APPLICABILITY The hydrogenation catalyst for alcohol production of the present invention is particularly useful in a method of industrially producing a diol such as 1,6-hexanediol using an esterified product of a carboxylic acid mixture separated from a cyclohexane oxidation reaction solution as a raw material. .

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 // C07B 61/00 300 (72)発明者 古崎 真一 山口県宇部市大字小串1978番地の10 宇部 興産株式会社宇部統合事業所内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Reference number within the agency FI Technical indication location // C07B 61/00 300 (72) Inventor Shinichi Furusaki 10 Ube, 1978, Kobegushi, Ube City, Yamaguchi Prefecture Kosan Co., Ltd.Ube Integrated Office

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 可溶性銅塩及び可溶性亜鉛塩を含有する
水溶液と炭酸アルカリ又は炭酸水素アルカリを含有する
水溶液とを混合して得られる銅及び亜鉛を含む塩基性炭
酸塩を水素で還元し、次いで酸素含有ガスで部分酸化す
ることを特徴とするアルコール製造用水素化触媒の製造
法。
1. A basic carbonate containing copper and zinc obtained by mixing an aqueous solution containing a soluble copper salt and a soluble zinc salt with an aqueous solution containing an alkali carbonate or an alkali hydrogen carbonate is reduced with hydrogen, and then, A method for producing a hydrogenation catalyst for alcohol production, which comprises partial oxidation with an oxygen-containing gas.
JP32560994A 1993-12-28 1994-12-27 Method for producing hydrogenation catalyst for alcohol production Expired - Fee Related JP3551511B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32560994A JP3551511B2 (en) 1993-12-28 1994-12-27 Method for producing hydrogenation catalyst for alcohol production

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP33764893 1993-12-28
JP5-337648 1993-12-28
JP32560994A JP3551511B2 (en) 1993-12-28 1994-12-27 Method for producing hydrogenation catalyst for alcohol production

Publications (2)

Publication Number Publication Date
JPH07232068A true JPH07232068A (en) 1995-09-05
JP3551511B2 JP3551511B2 (en) 2004-08-11

Family

ID=26571886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32560994A Expired - Fee Related JP3551511B2 (en) 1993-12-28 1994-12-27 Method for producing hydrogenation catalyst for alcohol production

Country Status (1)

Country Link
JP (1) JP3551511B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2008149648A1 (en) * 2007-06-06 2010-08-19 宇部興産株式会社 Process for producing 1,5-pentanediol and / or 1,6-hexanediol

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2008149648A1 (en) * 2007-06-06 2010-08-19 宇部興産株式会社 Process for producing 1,5-pentanediol and / or 1,6-hexanediol

Also Published As

Publication number Publication date
JP3551511B2 (en) 2004-08-11

Similar Documents

Publication Publication Date Title
CN1021636C (en) Improved aldehyde hydrogenation catalyst and process
US3933930A (en) Hexanediol from cyclohexane
JPH07116518A (en) Copper catalyst
JPH03128334A (en) Production of alcohol
JPH09216850A (en) Production of carboxylic acid ester
JPS6045938B2 (en) Method for producing oxalic acid diester hydrogenation catalyst
JPS6263533A (en) Manufacture of alcohol by hydrogenating carboxylic acid ester
EP0484800B1 (en) Process for producing neopentyl glycol
US5536888A (en) Process for producing diol compounds
US5395989A (en) Process for producing neopentyl glycol
JPH07232069A (en) Preparation of hydrogenation catalyst for preparing alcohol
JP3551511B2 (en) Method for producing hydrogenation catalyst for alcohol production
US3260683A (en) Method of preparing a catalyst composition consisting of the oxides of cobalt and magnesium and the product thereof
JP2859957B2 (en) Method for producing dihydroxyester
US3890381A (en) Method for the preparation of dialkalioxydiacetate
US7994091B2 (en) Method for producing palladium-containing catalyst
JP4479537B2 (en) Methods for preparing copper-containing hydrogenation catalysts and producing alcohols
JP3161578B2 (en) Method for producing diols
JP2003137826A (en) Method for producing 1,3-alkanediol from 3-hydroxyester compound
JP3129547B2 (en) Method for producing glycolate
JPS5949214B2 (en) Process for producing unsaturated carboxylic acids or their esters
JPH06135895A (en) Production of glycolic acid ester
JP3748588B2 (en) Method for producing glycolic acid
JPH10158214A (en) Production of carboxylate
JPH09221452A (en) Production of carboxylate

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040406

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040419

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110514

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120514

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120514

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120514

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees