JPH07231145A - Semiconductor light emitting element and its manufacture - Google Patents

Semiconductor light emitting element and its manufacture

Info

Publication number
JPH07231145A
JPH07231145A JP29702294A JP29702294A JPH07231145A JP H07231145 A JPH07231145 A JP H07231145A JP 29702294 A JP29702294 A JP 29702294A JP 29702294 A JP29702294 A JP 29702294A JP H07231145 A JPH07231145 A JP H07231145A
Authority
JP
Japan
Prior art keywords
layer
semiconductor
light emitting
substrate
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29702294A
Other languages
Japanese (ja)
Other versions
JP3194842B2 (en
Inventor
Hiroshi Wada
浩 和田
Hiroshi Ogawa
洋 小川
Takeshi Kamijo
健 上條
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP29702294A priority Critical patent/JP3194842B2/en
Publication of JPH07231145A publication Critical patent/JPH07231145A/en
Application granted granted Critical
Publication of JP3194842B2 publication Critical patent/JP3194842B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Led Devices (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To provide a semiconductor light emitting element, which enables a low threshold and high-speed modulation, bonding an insulating film such as an SiO2 film, etc., and semiconductor crystals directly with each other thereby using the insulating film as a current constriction layer in place of p-n junction. CONSTITUTION:An insulating film 12 is grown on the first conductive InP substrate 11, and an etch stop layer such as InGaAs (P), or the like and an InP layer 13 are provided on an another InP substrate, and surface treatment is applied to these wafers, and then the surfaces are brought into contact with each other and are heat-treated, whereby those are bonded. After this, the another InP substrate and the InGaAs (P) etch stop layer are removed by etching, and further the InP layer 13 and the insulating film 12 are removed to make stripe shapes, thereon a necessary layer structure is made, whereby a semiconductor light emitting element is manufactured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光通信や光情報処理の
分野で使用される半導体発光素子、特にキャリア閉じ込
め型構造に係る半導体発光素子及びその製造方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor light emitting device used in the fields of optical communication and optical information processing, and more particularly to a semiconductor light emitting device having a carrier confinement type structure and a manufacturing method thereof.

【0002】[0002]

【従来の技術】この種の半導体発光素子として、伊藤良
一、中村道治共編、「半導体レーザ」(1991年)培
風館 p103ー108、に開示されるものがあった。
この中でも、BH(buried heterostr
ucture)構造と呼ばれるものや、VSB(vgr
ooved substrate buried he
terostructure)構造と呼ばれるものが主
に実用化されている。これらは、屈折率導波ストライプ
構造の中でも特にヘテロ接合によりキャリアの閉じ込め
も行われる構造である。
2. Description of the Related Art As a semiconductor light emitting device of this type, there is one disclosed in "Semiconductor Laser" (1991) Baifukan p103-108, edited by Ryoichi Ito and Michiharu Nakamura.
Among these, BH (Buried heterostr
structure), VSB (vgr)
oversubscribed burried he
What is called a "structure" structure has been mainly put into practical use. These are structures in which the carrier is also confined by a heterojunction, among the refractive index waveguide stripe structures.

【0003】動作原理は両構造とも同様で、p型及びn
型両電極間にp型電極の方が高電位になるように電圧を
かけることにより、活性層に注入された電子及び正孔
が、再結合発光を起こし、レーザ発振を得ることができ
る。ここで、活性層の外側両側には、pn接合からなる
電流狭窄層が設けられており、上述のレーザ駆動電圧を
印加すると、pn接合界面は逆バイアスされるため、電
流はほとんど流れない。これを利用して、活性層にのみ
電流を閉じ込める機能を持った、低いしきい値電流、高
効率動作の半導体発光素子を実現している。
The operating principle is the same for both structures, p-type and n-type.
By applying a voltage between the mold electrodes so that the p-type electrode has a higher potential, electrons and holes injected into the active layer cause recombination emission, and laser oscillation can be obtained. Here, a current confinement layer made of a pn junction is provided on both outer sides of the active layer, and when the above-mentioned laser drive voltage is applied, the pn junction interface is reverse biased, so that almost no current flows. Utilizing this, a semiconductor light emitting device having a low threshold current and a high efficiency operation, which has a function of confining current only in the active layer, is realized.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、以上に
述べた従来の半導体発光素子の層構造では、次に述べる
ような欠点があった。
However, the layer structure of the conventional semiconductor light emitting device described above has the following drawbacks.

【0005】(1)逆バイアスされたpn接合の電流狭
窄層による電流阻止はもともと完全ではなく、特に逆バ
イアスの印加電圧が高くなると、かなりの電流が活性層
からpn接合を通じて流れ出てしまう。
(1) The current blocking by the current-confining layer of the reverse-biased pn junction is not perfect from the beginning, and a considerable amount of current flows out from the active layer through the pn-junction, especially when the reverse bias applied voltage becomes high.

【0006】このリーク電流の増加は、しきい値電流の
上昇を招いてしまう。また、電流ー光出力特性曲線が飽
和傾向になる等、印加電圧を上げても光出力の効率が悪
くなるという悪影響を及ぼしてしまう。
This increase in leak current causes an increase in threshold current. In addition, the current-light output characteristic curve tends to be saturated, and even if the applied voltage is increased, the light output efficiency is deteriorated.

【0007】(2)逆バイアスされたpn接合は、それ
自体が接合容量となっており、そのため、印加電流の変
化に即応したレーザの高速変調が不可能になってしま
う。
(2) The reverse-biased pn junction has its own junction capacitance, which makes it impossible to perform high-speed modulation of the laser in response to changes in the applied current.

【0008】上記の(1)及び(2)の理由から、絶縁
性に優れ、かつ、接合容量の少ない半導体発光素子が望
まれている。
For the reasons (1) and (2) above, there is a demand for a semiconductor light emitting device which is excellent in insulation and has a small junction capacitance.

【0009】[0009]

【課題を解決する手段】本発明は上記問題点を解決する
ために、半導体発光素子において、第1導電型半導体基
体と、前記第1導電型基体上に所定形状に設けられた活
性層と、前記第1導電型基体上の前記活性層両側に設け
られ、絶縁膜を含む電流狭窄層と、前記活性層上及び前
記電流狭窄層上に設けられた第2導電型半導体層とを備
えたものであり、また、第1導電型半導体基板の主表面
に絶縁物が形成された第1基板体を準備する工程と、半
導体基板の主表面に半導体単結晶層が形成された第2基
板体を準備する工程と、前記第1及び第2基板体の主表
面同志を接着させることにより一体化する工程と、前記
一体化した基板体を前記第2基板体の裏面側よりエッチ
ングすることにより前記半導体単結晶層を露出させる工
程と、前記半導体単結晶層及び前記絶縁膜を所定形状に
エッチング除去することにより前記第1導電型半導体基
板を露出させる工程と、前記露出した第1半導体基板上
に活性層を形成する工程とにより製造するものである。
In order to solve the above-mentioned problems, the present invention provides a semiconductor light emitting device, wherein a first conductivity type semiconductor substrate and an active layer provided on the first conductivity type substrate in a predetermined shape are provided. A current confinement layer provided on both sides of the active layer on the first conductivity type substrate and including an insulating film, and a second conductivity type semiconductor layer provided on the active layer and the current confinement layer. And a step of preparing a first substrate body having an insulator formed on the main surface of the first conductivity type semiconductor substrate, and a second substrate body having a semiconductor single crystal layer formed on the main surface of the semiconductor substrate. The step of preparing, the step of unifying the main surfaces of the first and second substrate bodies by adhering them to each other, and the step of etching the integrated substrate body from the back surface side of the second substrate body to form the semiconductor Exposing the single crystal layer, and the semiconductor It is manufactured by a step of exposing the first conductive type semiconductor substrate by etching and removing the crystal layer and the insulating film into a predetermined shape, and a step of forming an active layer on the exposed first semiconductor substrate. .

【0010】[0010]

【作用】本発明によれば、上記したように、酸化シリコ
ン等の絶縁膜を半導体単結晶層に直接接着する方法を用
いることにより、pn接合の代わりに絶縁膜を電流狭窄
層として用いた。この製造方法に基づいて製造すること
により、絶縁膜によってリーク電流を防ぎ、接合容量の
少ない、よって低いしきい値電流でかつ高速変調可能
な、電流狭窄層を持つ半導体発光素子となる。
According to the present invention, as described above, the insulating film made of silicon oxide or the like is directly bonded to the semiconductor single crystal layer, so that the insulating film is used as the current confinement layer instead of the pn junction. By manufacturing according to this manufacturing method, a semiconductor light emitting device having a current confinement layer, which prevents a leak current by an insulating film, has a small junction capacitance, and thus has a low threshold current and is capable of high-speed modulation is obtained.

【0011】[0011]

【実施例】以下、本発明の実施例について図面を参照し
ながら詳細に説明する。
Embodiments of the present invention will now be described in detail with reference to the drawings.

【0012】図1及び図2は、本発明による半導体発光
素子の構造を示したものであり、それぞれ従来のBH及
びVSB構造を改良した構造となっている。
1 and 2 show a structure of a semiconductor light emitting device according to the present invention, which is a structure obtained by improving the conventional BH and VSB structures, respectively.

【0013】なお、化学式の数字は下付き半角文字で示
すべきものであるが、便宜上単なる半角文字で示すもの
とする。
It should be noted that the numbers in the chemical formulas should be indicated by subscript half-width characters, but for convenience, they will be indicated by simple half-width characters.

【0014】図1に示されるように、発光領域となる活
性層として機能するInGaAsまたはInGaAsP
層15は、クラッド層として機能する第1導電型InP
基板11及び第1導電型InP層14上にストライプ状
に設けられている。基板11上であってInGaAs
(P)層15の両側に設けられた絶縁膜12は、電流狭
窄層として機能する。InGaAs(P)層15上に設
けられた第2導電型InP層16は、クラッド層として
機能する。
As shown in FIG. 1, InGaAs or InGaAsP which functions as an active layer which becomes a light emitting region.
The layer 15 is a first conductivity type InP that functions as a cladding layer.
The stripes are provided on the substrate 11 and the first conductivity type InP layer 14. InGaAs on the substrate 11
The insulating films 12 provided on both sides of the (P) layer 15 function as current confinement layers. The second conductivity type InP layer 16 provided on the InGaAs (P) layer 15 functions as a clad layer.

【0015】図2は、図1に示したBH構造の発光素子
をVSB構造に適用した例である。図2において、In
GaAs(P)層15は、V字型溝内に設けられたクラ
ッド層としての第1導電型InP層14と、第2導電型
InP層16との間であって、絶縁膜12のほぼ真横に
設けられている。
FIG. 2 shows an example in which the light emitting device having the BH structure shown in FIG. 1 is applied to the VSB structure. In FIG.
The GaAs (P) layer 15 is located between the first conductivity type InP layer 14 and the second conductivity type InP layer 16 as a clad layer provided in the V-shaped groove, and is substantially right next to the insulating film 12. It is provided in.

【0016】第1実施例 図3(a)〜(d)及び図4(e)〜(g)に本発明の
第1実施例による半導体発光素子の製造工程を示す。以
下の説明は、図に対応させて項分けして記載するもので
ある。
First Embodiment FIGS. 3 (a) to 3 (d) and FIGS. 4 (e) to 4 (g) show a manufacturing process of a semiconductor light emitting device according to a first embodiment of the present invention. The following description is divided into items corresponding to the drawings.

【0017】(a)第1導電型InP基板11上にSi
O2等の絶縁膜12を通常の化学気相成長法(CVD)
等で0.1μm〜0.5μm程度の厚みに成長させる。
(A) Si on the first conductivity type InP substrate 11
The insulating film 12 made of O2 or the like is formed by a normal chemical vapor deposition method (CVD)
Etc. to a thickness of about 0.1 μm to 0.5 μm.

【0018】(b)別のInP基板21上にエッチスト
ップ層として機能するInGaAsまたはInGaAs
P層22(厚みは、0.1μm程度)、半導体単結晶で
あるInP層13(厚みは、1μm程度)を有機金属気
相成長法(MOCVD)等の通常の結晶成長法で、順次
結晶成長させたウエハを用意する。
(B) InGaAs or InGaAs functioning as an etch stop layer on another InP substrate 21.
The P layer 22 (thickness is about 0.1 μm) and the InP layer 13 (thickness is about 1 μm) which is a semiconductor single crystal are sequentially grown by a normal crystal growth method such as metal organic chemical vapor deposition (MOCVD). The prepared wafer is prepared.

【0019】(c)次に、直接接着を以下の手順で行
う。(a)及び(b)で準備された二つのウエハの表面
を例えばH2SO4:H2O2:H2O=3:1:1の混合
液を用いて30秒程度洗浄し、水洗を5分程度行う。ス
ピン乾燥させた後、直ちに室温大気中で両ウエハを位置
合わせをして接触させる。このとき、これらのウエハ
は、前述の表面処理(硫酸系溶液で洗浄・水洗する工
程)によって両ウエハ上の絶縁膜12及び半導体単結晶
層であるInP層13表面にOH基が吸収されているた
め、これらの表面を接触させることにより、表面に吸収
されたOH基同志が両ウエハ間で水素結合を形成し、位
置ずれの起こらない程度に接着させることができる。
(C) Next, direct bonding is performed by the following procedure. The surfaces of the two wafers prepared in (a) and (b) are washed with a mixed solution of H2SO4: H2O2: H2O = 3: 1: 1 for about 30 seconds, and washed with water for about 5 minutes. Immediately after spin drying, both wafers are aligned and brought into contact with each other in the air at room temperature. At this time, in these wafers, OH groups are absorbed on the surfaces of the insulating film 12 and the InP layer 13 which is the semiconductor single crystal layer on both wafers by the above-mentioned surface treatment (steps of washing and washing with a sulfuric acid solution). Therefore, when these surfaces are brought into contact with each other, the OH groups absorbed on the surfaces form hydrogen bonds between the two wafers, and the wafers can be bonded to each other to the extent that positional displacement does not occur.

【0020】この接着したウエハに30g/cm2程度
の押圧力を加えてアニール炉の中にいれ、水素雰囲気中
において450℃〜700℃程度の温度で30分程度熱
処理を行う。この熱処理により、水素結合の脱水縮合反
応が起こり、接着強度が強化される。この熱処理を経る
ことで、以後の工程及びデバイス化に耐えうるに充分な
接着強度になる。
A pressing force of about 30 g / cm 2 is applied to the bonded wafer, and the wafer is placed in an annealing furnace and heat-treated in a hydrogen atmosphere at a temperature of about 450 ° C. to 700 ° C. for about 30 minutes. By this heat treatment, a dehydration condensation reaction of hydrogen bonds occurs and the adhesive strength is strengthened. Through this heat treatment, the adhesive strength becomes sufficient to withstand the subsequent steps and device fabrication.

【0021】(d)直接接着されたウエハのInP基板
21を均一にエッチングさせるため、100μm程度の
厚みになるまでBrーCH3OH等を使って、化学エッ
チングを行い、HClでInGaAs(P)エッチスト
ップ層22が露出されるまでエッチングを行う。HCl
は、InPに対する選択エッチャントであり、InGa
As(P)はエッチングされない。このため、InGa
As(P)エッチストップ層22が露出されたところ
で、エッチングが自動的に終了する。最初にBrーCH
3OHを使ってエッチングを行うのは、HClでは均一
にエッチングを行うのが困難なためである。この後、I
nGaAs(P)エッチストップ層22をH2SO4:H
2O:H2O2=3:1:1でエッチングを行い取り除
く。
(D) In order to uniformly etch the InP substrate 21 of the directly bonded wafer, chemical etching is performed using Br-CH3OH or the like until the thickness is about 100 μm, and the InGaAs (P) etch stop is performed with HCl. Etch until layer 22 is exposed. HCl
Is a selective etchant for InP, InGa
As (P) is not etched. Therefore, InGa
The etching automatically ends when the As (P) etch stop layer 22 is exposed. Br-CH first
The reason why 3OH is used for etching is that it is difficult to perform uniform etching with HCl. After this, I
The nGaAs (P) etch stop layer 22 is formed of H2SO4: H.
2O: H2O2 = 3: 1: 1 is etched and removed.

【0022】(e)通常のホトリソグラフィー及びエッ
チング法を用いてInP層13及び絶縁膜12を幅1μ
m〜2μmのストライプ状に除去する。 (f)通常の結晶成長法等を用いて、第1導電型InP
層14、活性層として機能するノンドープのInGaA
s又はInGaAsP層15、第2導電型InP層1
6、キャップ層として機能する第2導電型InGaAs
層17を順次成長させる。 (g)第1導電型電極18及び第2導電型電極19の蒸
着を行う。
(E) The width of the InP layer 13 and the insulating film 12 is set to 1 μm by using the usual photolithography and etching method.
Stripped in a m-2 μm pattern. (F) First conductivity type InP using a normal crystal growth method or the like
Layer 14, undoped InGaA that functions as active layer
s or InGaAsP layer 15, second conductivity type InP layer 1
6. Second conductivity type InGaAs that functions as a cap layer
Layer 17 is grown in sequence. (G) The first conductivity type electrode 18 and the second conductivity type electrode 19 are deposited.

【0023】第2実施例 第2実施例における製造工程の内(a)〜(e)までは
第1実施例と同様であるため省略する。図5(f)〜
(h)及び図6(i)〜(j)に第2実施例における製
造工程の図を示す。
Second Embodiment Since the manufacturing steps (a) to (e) in the second embodiment are the same as those in the first embodiment, the description thereof will be omitted. FIG. 5 (f)-
FIGS. 6 (h) and 6 (i) to 6 (j) are diagrams of the manufacturing process in the second embodiment.

【0024】(f)絶縁膜12に対する選択エッチャン
トである、例えば緩衝フッ酸溶液(HF(49%):N
H4F(40%)=1:4の混合液)を用いて絶縁膜1
2のみを0.05μm〜0.1μm程度サイドエッチング
する。 (g)ウエハを水素雰囲気中において650℃〜700
℃程度の温度で30分〜60分程度熱処理を施す。この
ときカーボンボート32内にウエハを置き、少し距離を
おいて(〜100μm程度)他のInP基板31で覆
う。これは、ウエハの表面(InP基板11及びInP
層13)から熱によってリン(P)が気化しウエハ表面
から離脱することにより表面荒れが起こることを防ぐた
めである。InP基板31で覆うことにより形成される
ウエハとの空間部分はInP基板31からもリンが気化
されて飽和状態となるため、表面荒れを起こす程のリン
の離脱は起こらなくなる。 (h)(g)工程における熱処理によって、InP層1
3がマストランスポートを起こし絶縁膜12はInP層
13によって覆われる。
(F) A selective etchant for the insulating film 12, for example, a buffered hydrofluoric acid solution (HF (49%): N
Insulating film 1 using H4F (40%) = 1: 4 mixture)
Only 2 is side-etched by about 0.05 μm to 0.1 μm. (G) Wafer in a hydrogen atmosphere at 650 ° C. to 700 ° C.
Heat treatment is performed at a temperature of about C for about 30 to 60 minutes. At this time, the wafer is placed in the carbon boat 32 and covered with another InP substrate 31 with a small distance (about 100 μm). This is the surface of the wafer (InP substrate 11 and InP
This is because phosphorus (P) is vaporized by heat from the layer 13) and is removed from the surface of the wafer to prevent surface roughness. Phosphorus is vaporized from the InP substrate 31 to a saturated state in the space formed with the InP substrate 31 so that the space between the wafer and the InP substrate 31 is saturated. The InP layer 1 is formed by the heat treatment in the steps (h) and (g).
3 causes mass transport, and the insulating film 12 is covered with the InP layer 13.

【0025】(i)第1実施例同様、通常の結晶成長法
等を用いて、第1導電型InP層14、活性層として機
能するノンドープのInGaAs又はInGaAsP層
15、第2導電型InP層16、キャップ層として機能
する第2導電型InGaAs層17を順次成長させる。 (j)第1実施例同様、第1導電型電極18及び第2導
電型電極19の蒸着を行う。
(I) Similar to the first embodiment, the first conductivity type InP layer 14, the non-doped InGaAs or InGaAsP layer 15 functioning as an active layer, and the second conductivity type InP layer 16 are formed by using a normal crystal growth method or the like. , A second conductivity type InGaAs layer 17 functioning as a cap layer is sequentially grown. (J) As in the first embodiment, the first conductivity type electrode 18 and the second conductivity type electrode 19 are deposited.

【0026】絶縁膜上に半導体単結晶層を成長させるこ
とは不可能であり絶縁膜に接する部分は半導体の結晶成
長が行われにくいが、この第2実施例においては絶縁膜
12を薄いInP層13で覆うことにより結晶成長が良
好に行われるという効果を持つものである。また、単に
InP層14を結晶成長させることを考えた場合、絶縁
膜12を何らかの半導体層で覆えば足りるが、第2実施
例においては絶縁膜12上に直接接着されたInP層1
3を用いることにより容易にかつ確実に絶縁膜12を覆
うことができ、サイドエッチングの加減により薄さを制
限しやすいという効果を持つものである。
Although it is impossible to grow a semiconductor single crystal layer on the insulating film and it is difficult for the semiconductor crystal to grow in the portion in contact with the insulating film, in the second embodiment, the insulating film 12 is formed as a thin InP layer. Covering with 13 has an effect that crystal growth is favorably performed. Further, when considering simply growing the InP layer 14 by crystal growth, it suffices to cover the insulating film 12 with some semiconductor layer. In the second embodiment, the InP layer 1 directly bonded onto the insulating film 12 is used.
By using No. 3, the insulating film 12 can be easily and surely covered, and the thickness can be easily limited by adjusting the side etching.

【0027】また、上述の実施例において、半導体レー
ザを取り上げたが、本発明の半導体発光素子とはこれに
とどまらず、同様なキャリア閉じ込め型で実現されうる
発光ダイオードや、進行波型光増幅器なども含むもので
ある。
Further, although the semiconductor laser is taken up in the above-mentioned embodiments, the semiconductor light emitting device of the present invention is not limited to this, and a light emitting diode which can be realized by the same carrier confinement type, a traveling wave type optical amplifier, etc. It also includes.

【0028】また、上記実施例において、表面処理をす
る洗浄溶液を硫酸系溶液としたが、絶縁膜及び半導体単
結晶層表面に水酸基を吸収させるためのものであるた
め、これに限らず硝酸系の溶液としても同様の(両ウエ
ハの表面を親水性にする)効果が期待できる。また、過
酸化水素水、水を加えてあるのは、過酸化水素水を加え
ることで水酸基の供給を増やし、水を加えることで硫酸
のエッチング効果を薄めるためである。これ以外にも、
同様の効果(水酸基を吸収させ、かつ、悪影響を及ぼさ
ない)を持つ溶液等であれば、上記実施例に限る必要は
なく、この後に行う水洗についても、ウエハ表面に付着
する余計な成分を取り除き、水酸基の吸収を促進する効
果があると思われるものであれば他の方法であってもよ
い。
In the above embodiment, the cleaning solution for surface treatment is a sulfuric acid-based solution. However, the cleaning solution is not limited to this because it is for absorbing hydroxyl groups on the surfaces of the insulating film and the semiconductor single crystal layer. The same effect (making the surfaces of both wafers hydrophilic) can be expected with the solution of. Further, the reason why hydrogen peroxide solution and water are added is to increase the supply of hydroxyl groups by adding hydrogen peroxide solution and to dilute the etching effect of sulfuric acid by adding water. Besides this,
It is not necessary to limit to the above-mentioned example as long as it is a solution or the like having a similar effect (which absorbs a hydroxyl group and does not have a bad influence), and even in the case of washing with water thereafter, unnecessary components adhering to the wafer surface are removed. Other methods may be used as long as they are expected to have the effect of promoting the absorption of hydroxyl groups.

【0029】このほか、熱処理の過程において水素雰囲
気中としたのは、水素は水酸に対して還元剤の働きを持
つため、結合している水酸基同志が還元され、接着部分
から水となって抜けることにより、接着を強化するため
である。この還元作用を促進するため、30分程度の熱
処理の場合、450℃程度以上の熱を必要とする。ただ
し、熱による品質の劣化を防ぐためには700℃以上に
するのは好ましくない。
In addition, in the heat treatment process, a hydrogen atmosphere was used. Since hydrogen acts as a reducing agent for hydroxy, the bonded hydroxyl groups are reduced and the bonded portion becomes water. This is because the adhesion is strengthened by coming off. In order to accelerate this reducing action, heat treatment of about 30 minutes requires heat of about 450 ° C. or higher. However, in order to prevent deterioration of quality due to heat, it is not preferable to set the temperature to 700 ° C. or higher.

【0030】また、上記実施例において、成長させる絶
縁膜の厚さを0.1μm〜0.5μm程度としたが、好ま
しくは0.3μm〜0.5μm程度である。これは、この
絶縁膜の厚さにより接合容量及び絶縁性が決定されるた
め、絶縁性のためには厚みがある程よいが、絶縁膜を厚
くし過ぎるとひびを生じやすくなるなどの影響があるた
めである。
In the above embodiment, the thickness of the insulating film to be grown is set to about 0.1 μm to 0.5 μm, but it is preferably about 0.3 μm to 0.5 μm. This is because the junction capacitance and the insulating property are determined by the thickness of the insulating film, so the thicker the insulating film, the better. However, if the insulating film is too thick, cracks are likely to occur. This is because.

【0031】以上のように、従来は絶縁膜上に半導体単
結晶層を成長させることは不可能であったが、本発明の
実施例ではSiO2等の絶縁膜12と、半導体単結晶で
あるInP層13とを直接接着させることにより、電流
狭窄層として絶縁膜12を用いることを可能にした。
As described above, conventionally, it was impossible to grow a semiconductor single crystal layer on an insulating film, but in the embodiment of the present invention, the insulating film 12 such as SiO 2 and InP which is a semiconductor single crystal are formed. By directly adhering to the layer 13, the insulating film 12 can be used as the current constriction layer.

【0032】よって、従来の半導体レーザでは、15m
A程度のしきい値電流であったが、本発明の実施例によ
り製造された半導体レーザでは10mA以下のしきい値
電流を記録した。
Therefore, in the conventional semiconductor laser, 15 m
Although the threshold current was about A, the semiconductor laser manufactured according to the example of the present invention recorded a threshold current of 10 mA or less.

【0033】また、印加電圧を高くした場合において
も、リーク電流を極めて低く保つことができるため、光
出力が飽和する事を防ぎ、同時に、レーザのしきい値電
流が高くなる事を防ぐ。このことは、消費電力を低く抑
さえ、高温での動作も可能とするものである。
Further, even when the applied voltage is increased, the leak current can be kept extremely low, so that the optical output is prevented from being saturated, and at the same time, the threshold current of the laser is prevented from becoming high. This enables low power consumption and high temperature operation.

【0034】また、pn接合の電流狭窄層よりも接合容
量が1/10〜1/3程度減少するため、印加電流に即
応した高速変調に優れたレーザを提供することができ
る。従来、高速変調帯域は1GHz以下に限られていた
が、本発明による半導体レーザでは5GHz〜10GH
z程度まで対応が可能になると考えられる。
Further, since the junction capacitance is reduced by about 1/10 to 1/3 of that of the current confinement layer of the pn junction, it is possible to provide a laser which is excellent in high speed modulation in response to an applied current. Conventionally, the high speed modulation band was limited to 1 GHz or less, but in the semiconductor laser according to the present invention, it is 5 GHz to 10 GH.
It is thought that it will be possible to handle up to about z.

【0035】[0035]

【発明の効果】以上、詳細に説明したように、本発明に
よれば半導体発光素子において電流狭窄層として薄い絶
縁膜を含む層としたので、電流狭窄層におけるリーク電
流の防止及び接合容量を小さくできる。また、本発明の
製造方法によれば、半導体単結晶層と絶縁膜との直接接
着を可能とし、前記半導体発光素子を容易に製造するこ
とができる。
As described above in detail, according to the present invention, since the semiconductor light emitting device has the current confinement layer including the thin insulating film, the leakage current is prevented and the junction capacitance is reduced in the current confinement layer. it can. Further, according to the manufacturing method of the present invention, the semiconductor single crystal layer and the insulating film can be directly bonded, and the semiconductor light emitting device can be easily manufactured.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例による半導体発光素子構造を示
す断面図である。
FIG. 1 is a sectional view showing a semiconductor light emitting device structure according to an embodiment of the present invention.

【図2】本発明によるその他の半導体発光素子構造を示
す断面図である。
FIG. 2 is a cross-sectional view showing another semiconductor light emitting device structure according to the present invention.

【図3】本発明の第1実施例による製造工程(その1)
を示す断面図である。
FIG. 3 is a manufacturing process (No. 1) according to the first embodiment of the present invention.
FIG.

【図4】本発明の第1実施例による製造工程(その2)
を示す断面図である。
FIG. 4 is a manufacturing process (No. 2) according to the first embodiment of the present invention.
FIG.

【図5】本発明の第2実施例による製造工程(その1)
を示す断面図である。
FIG. 5 is a manufacturing process (No. 1) according to a second embodiment of the present invention.
FIG.

【図6】本発明の第2実施例による製造工程(その2)
を示す断面図である。
FIG. 6 is a manufacturing process (No. 2) according to the second embodiment of the present invention.
FIG.

【符号の説明】[Explanation of symbols]

11:第1導電型InP基板 12:絶縁膜 13:InP層 14:第1導電型InP層 15:InGaAs(P)層 16:第2導電型InP層 17:第2導電型InGaAs(P)層 18:第1導電型電極 19:第2導電型電極 21:InP基板 22:InGaAs(P)層 11: First conductivity type InP substrate 12: Insulating film 13: InP layer 14: First conductivity type InP layer 15: InGaAs (P) layer 16: Second conductivity type InP layer 17: Second conductivity type InGaAs (P) layer 18: First conductivity type electrode 19: Second conductivity type electrode 21: InP substrate 22: InGaAs (P) layer

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 第1導電型半導体基体と、 前記第1導電型半導体基体上に所定形状に設けられた活
性層と、 前記第1導電型半導体基体上の前記活性層両側に設けら
れ、絶縁膜を含む電流狭窄層と、 前記活性層上及び前記電流狭窄層上に設けられた第2導
電型半導体層とを備えてなることを特徴とする半導体発
光素子。
1. A first conductive type semiconductor substrate, an active layer provided in a predetermined shape on the first conductive type semiconductor substrate, and an insulating layer provided on both sides of the active layer on the first conductive type semiconductor substrate. A semiconductor light emitting device comprising: a current confinement layer including a film; and a second conductivity type semiconductor layer provided on the active layer and the current confinement layer.
【請求項2】 前記電流狭窄層は前記活性層両側に半導
体単結晶層を介して設けられていることを特徴とする請
求項1記載の半導体発光素子。
2. The semiconductor light emitting device according to claim 1, wherein the current confinement layer is provided on both sides of the active layer with a semiconductor single crystal layer interposed therebetween.
【請求項3】 前記絶縁膜の厚さは、0.1μm〜0.5
μmであることを特徴とする請求項1または2記載の半
導体発光素子。
3. The insulating film has a thickness of 0.1 μm to 0.5 μm.
3. The semiconductor light emitting device according to claim 1, wherein the semiconductor light emitting device has a thickness of μm.
【請求項4】 第1の半導体基板の主表面に絶縁膜が形
成された第1基板体を準備する工程と、 第2の半導体基板の主表面に半導体単結晶層が形成され
た第2基板体を準備する工程と、 前記第1及び第2基板体の主表面同志を接着させること
により一体化する工程と、 前記一体化した基板体の前記第2基板体の裏面側をエッ
チングすることにより前記半導体単結晶層を露出させる
工程と、 前記半導体単結晶層及び前記絶縁膜を所定形状にエッチ
ングすることにより前記第1の半導体基板を露出させる
工程と、 前記露出した第1の半導体基板上に活性層を形成する工
程とを備えたことを特徴とする半導体発光素子の製造方
法。
4. A step of preparing a first substrate body having an insulating film formed on a main surface of a first semiconductor substrate, and a second substrate having a semiconductor single crystal layer formed on a main surface of a second semiconductor substrate. A step of preparing a body; a step of adhering the main surfaces of the first and second substrate bodies to each other to form an integrated body; and a step of etching the back surface side of the second substrate body of the integrated board body. Exposing the semiconductor single crystal layer, exposing the first semiconductor substrate by etching the semiconductor single crystal layer and the insulating film into a predetermined shape, and exposing the first semiconductor substrate on the exposed first semiconductor substrate. A method of manufacturing a semiconductor light emitting device, comprising the step of forming an active layer.
【請求項5】 前記活性層を形成する工程の前に、前記
半導体基板を露出させる工程により露出する前記絶縁膜
を半導体層で覆う工程を備えたことを特徴とする請求項
4記載の半導体発光素子の製造方法。
5. The semiconductor light emitting device according to claim 4, further comprising a step of covering the insulating film exposed by the step of exposing the semiconductor substrate with a semiconductor layer before the step of forming the active layer. Device manufacturing method.
【請求項6】 前記半導体層で覆う工程は、前記絶縁膜
にサイドエッチングを施した後、熱処理を行うことによ
り前記絶縁膜を前記半導体単結晶層で覆うことを特徴と
する請求項5記載の半導体発光素子の製造方法。
6. The step of covering with the semiconductor layer, wherein the insulating film is covered with the semiconductor single crystal layer by performing side etching on the insulating film and then performing heat treatment. Method for manufacturing semiconductor light emitting device.
【請求項7】 前記第1及び第2基板体を一体化するに
際し、前記絶縁膜または前記半導体単結晶表面に水酸基
を吸収させた後、前記第1及び第2基板体の主表面同志
を接触させて熱処理することを特徴とする請求項4〜6
いずれか1項に記載の半導体発光素子の製造方法。
7. When integrating the first and second substrate bodies, after absorbing a hydroxyl group on the surface of the insulating film or the semiconductor single crystal, the main surfaces of the first and second substrate bodies are brought into contact with each other. The heat treatment is performed by allowing the heat treatment.
The method for manufacturing a semiconductor light emitting device according to any one of claims.
【請求項8】 前記第2基板体において、前記半導体単
結晶層は、前記半導体基板の主表面にエッチストップ層
を介して設けられていることを特徴とする請求項4〜6
いずれか1項に記載の半導体発光素子の製造方法。
8. The second substrate body, wherein the semiconductor single crystal layer is provided on the main surface of the semiconductor substrate via an etch stop layer.
The method for manufacturing a semiconductor light emitting device according to any one of claims.
【請求項9】 前記接触させて熱処理する工程は、水素
雰囲気中で熱処理を行うことを特徴とする請求項7また
は8記載の半導体発光素子の製造方法。
9. The method of manufacturing a semiconductor light emitting device according to claim 7, wherein the step of heat-treating by contacting is performed in a hydrogen atmosphere.
JP29702294A 1993-12-24 1994-11-30 Semiconductor light emitting device and method of manufacturing the same Expired - Fee Related JP3194842B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29702294A JP3194842B2 (en) 1993-12-24 1994-11-30 Semiconductor light emitting device and method of manufacturing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP5-327371 1993-12-24
JP32737193 1993-12-24
JP29702294A JP3194842B2 (en) 1993-12-24 1994-11-30 Semiconductor light emitting device and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH07231145A true JPH07231145A (en) 1995-08-29
JP3194842B2 JP3194842B2 (en) 2001-08-06

Family

ID=26560962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29702294A Expired - Fee Related JP3194842B2 (en) 1993-12-24 1994-11-30 Semiconductor light emitting device and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3194842B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6730990B2 (en) 2000-06-30 2004-05-04 Seiko Epson Corporation Mountable microstructure and optical transmission apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6730990B2 (en) 2000-06-30 2004-05-04 Seiko Epson Corporation Mountable microstructure and optical transmission apparatus

Also Published As

Publication number Publication date
JP3194842B2 (en) 2001-08-06

Similar Documents

Publication Publication Date Title
JP4274504B2 (en) Semiconductor thin film structure
US20080283852A1 (en) Light-emitting device and a method for producing the same
CN115133397B (en) Ridge waveguide semiconductor laser and preparation method thereof
US5781577A (en) Semiconductor laser
JP3194842B2 (en) Semiconductor light emitting device and method of manufacturing the same
KR19980058397A (en) RWG laser diode and its manufacturing method
JPH10335756A (en) Manufacture of semiconductor laser
JPS63178574A (en) Manufacture of semiconductor laser device
JP3501676B2 (en) Method for manufacturing semiconductor laser device
JP2001313381A (en) Semiconductor wafer and semiconductor device using the same, and method of manufacturing the semiconductor device
JPH11340558A (en) Ridge waveguide semiconductor laser and its manufacture
EP0713275B1 (en) Method for fabricating a semiconductor laser diode
JP3716039B2 (en) Semiconductor device and manufacturing method thereof
JPH0377391A (en) Semiconductor laser
KR20060067111A (en) Fabrication method of monolithic integrated semiconductor optical device
JP2783240B2 (en) Semiconductor laser device
JP2626570B2 (en) Method for manufacturing semiconductor laser device
JP2000058957A (en) Semiconductor laser device and manufacture thereof
JPS6331187A (en) Semiconductor laser
JPS63120487A (en) Photoelectron integrated circuit
JPH0220085A (en) Semiconductor laser device
JPH01297877A (en) Optoelectronic integrated circuit and manufacture thereof
JPH11330618A (en) Manufacture of semiconductor laser element
JPH0613703A (en) Semiconductor laser device and manufacture thereof
JPH07162083A (en) Semiconductor laser device and its manufacture

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010515

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090601

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090601

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100601

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110601

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120601

Year of fee payment: 11

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120601

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees