JPH07230899A - Plasma processing device - Google Patents

Plasma processing device

Info

Publication number
JPH07230899A
JPH07230899A JP6021257A JP2125794A JPH07230899A JP H07230899 A JPH07230899 A JP H07230899A JP 6021257 A JP6021257 A JP 6021257A JP 2125794 A JP2125794 A JP 2125794A JP H07230899 A JPH07230899 A JP H07230899A
Authority
JP
Japan
Prior art keywords
vacuum container
plasma
gas
reaction gas
processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6021257A
Other languages
Japanese (ja)
Inventor
Kiyoshi Takahashi
高橋  清
Yoko Tsuri
陽子 釣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kokusai Electric Corp
Original Assignee
Kokusai Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Electric Corp filed Critical Kokusai Electric Corp
Priority to JP6021257A priority Critical patent/JPH07230899A/en
Publication of JPH07230899A publication Critical patent/JPH07230899A/en
Pending legal-status Critical Current

Links

Landscapes

  • Plasma Technology (AREA)
  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To heighten insulating performance and processing performance, and reduce time to clean a device by restraining a particle increase, by insulating a part between an electrode and a vacuum vessel by plural void layers and a shielding plate, and flowing reaction gas from a narrow clearance on an electrode surface. CONSTITUTION:A vacuum vessel 1 and a cathode 2 to which high frequency electric power of a plasma processing device is supplied are insulated by plural void layers 9 such as two layers and a shielding plate 8 to form the layers 9. On the other hand, reaction gas introduced from the atmosphere side flows into the vessel 1 from a narrow clearance 33 on a surface of the cathode 2 by using plasma. Cleaning dilute gas is flowed to this reaction gas passage at cleaning time, and exhaust speed is adjusted through a baffle plate 25 of an exhaust part 24. In this insulating shield unnecessary constitution, a plasma processing device by which insulating performance and plasma processing performance are heightened and a particle increase is restrained and time for cleaning is reduced, is formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はプラズマ発生機構を内蔵
した真空容器内に反応ガスを流し、真空容器を被処理物
を処理する圧力に保つよう真空排気を行いながら、真空
容器内に発生したプラズマを利用して被処理物を処理す
る装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is generated in a vacuum container in which a reaction gas is flown in a vacuum container having a plasma generating mechanism and the vacuum container is evacuated to maintain a pressure for processing an object to be processed. The present invention relates to an apparatus for processing an object to be processed using plasma.

【0002】[0002]

【従来の技術】従来装置は、図1を参照して説明する
と、導電性の真空容器1にカソード2とこれに対向して
アノード3を内蔵し、真空容器1内に反応ガス又は反応
ガスと希釈ガスを流し、真空容器1内をアノード3上の
被処理物13を処理する圧力に保つように排気口12か
ら真空排気を行いながらアノード3に対しカソード2に
高周波電力を供給して真空容器1内にプラズマを発生さ
せ、そのプラズマを利用して被処理物13を処理する構
成になっている。
2. Description of the Related Art A conventional apparatus will be described with reference to FIG. 1, in which a cathode 2 and an anode 3 facing the cathode 2 are built in a conductive vacuum container 1, and a reaction gas or a reaction gas is stored in the vacuum container 1. A vacuum gas is supplied by supplying a high-frequency power to the cathode 2 with respect to the anode 3 while performing vacuum exhaust from the exhaust port 12 so that a diluent gas is flown and the inside of the vacuum container 1 is maintained at a pressure for processing the object 13 to be processed on the anode 3. Plasma is generated in the chamber 1, and the object to be processed 13 is processed using the plasma.

【0003】高周波電力が供給されるカソード2の絶縁
構造は、図7(A)に示すようにカソード2と金属の
シールド29間に約1mmの空隙30を設けた構造か又
は図7(B)に示すようにカソード2と真空容器1間
に誘電率が約3.8の石英、約7〜10のセラミック
ス、約2のテフロン等の絶縁物31を挿設した構造にな
っている。
The insulating structure of the cathode 2 to which high-frequency power is supplied is either a structure in which a gap 30 of about 1 mm is provided between the cathode 2 and the metal shield 29 as shown in FIG. 7 (A), or FIG. 7 (B). As shown in FIG. 3, an insulator 31 such as quartz having a dielectric constant of approximately 3.8, ceramics having a dielectric constant of approximately 7 to 10 and Teflon having a dielectric constant of approximately 2 is inserted between the cathode 2 and the vacuum container 1.

【0004】反応ガス又は反応ガスと希釈ガスを真空容
器内に流す電極ガス吹出し構造は、図7(C)に示す
ようにプラズマと接触するカソード2表面に多くの穴3
2を電極内部を貫通して穿設し、該各穴32から真空容
器内にガス吹出しを図る構造であり、反応ガスと希釈ガ
スはカソード2のガス導入口で混合されて電極内に導入
されるか又はガス供給システム側で混合される構成にな
っている。
As shown in FIG. 7C, the electrode gas blowing structure for flowing the reaction gas or the reaction gas and the dilution gas into the vacuum container has a large number of holes 3 on the surface of the cathode 2 in contact with the plasma.
No. 2 penetrates the inside of the electrode and blows out gas into the vacuum container from each hole 32. The reaction gas and the diluent gas are mixed at the gas introduction port of the cathode 2 and introduced into the electrode. Alternatively, the gas supply system side mixes them.

【0005】又真空容器内の排気構造は、図7(D)
に示すように排気口12に直接排気装置を取付けて排気
を行う構造とするか又は図7(E)に示すように真空
容器1内にカソード2とアノード3間のプラズマ発生部
26と仕切られてアノード3の背面側に非プラズマ発生
部27を設け、仕切壁に少数の流れ口28を設けて排気
口12より排気する構造になっている。更にプラズマ
発生部26の容積と非プラズマ発生部27の容積が同等
か非プラズマ発生部27の容積の方が小さい容積関係に
なっている。
The exhaust structure in the vacuum container is shown in FIG.
As shown in FIG. 7, an exhaust device is directly attached to the exhaust port 12 to exhaust the gas, or as shown in FIG. 7E, the vacuum chamber 1 is partitioned from the plasma generating portion 26 between the cathode 2 and the anode 3. A non-plasma generating portion 27 is provided on the back side of the anode 3, and a small number of flow ports 28 are provided in the partition wall to exhaust gas from the exhaust port 12. Further, the volume of the plasma generating portion 26 and the volume of the non-plasma generating portion 27 are equal to each other, or the volume of the non-plasma generating portion 27 is smaller.

【0006】[0006]

【発明が解決しようとする課題】しかしながら上記の
電極絶縁構造では、(a)カソード2とシールド29間
の浮遊静電容量が大となり、高周波電流が大きくなる。
このために耐絶縁電圧が高周波整合器の出力電圧の低下
によって放電開始電圧以下となることがある。(b)空
隙30内のカソード2及びシールド29面に凹凸がある
と、その部分の電界が大きくなり、空隙30内で放電を
起す。又空隙30を一定にするため製作が困難で、かつ
高価になる。(c)シールド29端がプラズマと接する
ために、空隙30内にプラズマが侵入し、ホロカソード
効果が発生するため供給される高周波電力が低い値に制
限される。(d)プラズマによって励起された反応ガス
が空隙30に侵入し、カソード2及びシールド29表面
に反応生成物が堆積し、パーティクル増加の原因とな
る。又清掃が困難なために装置の稼働率が非常に小さ
い。(e)カソード2が加熱されるとカソードの線熱膨
張による伸びによって空隙30を一定にすることができ
ない。又上記の電極絶縁構造では、(a)石英絶縁物
の場合、加工が困難で破損しやすく、高価である。
(b)セラミックス絶縁物の場合、加工が困難で破損し
やすく高価である。又誘電率が大きいためにカソード2
と真空容器1間の静電容量を減らすために、この間の厚
さを大きくする必要がある。又熱伝導率も大きいために
ホットカソードにした場合の熱損失が大きくなる。
(c)テフロン絶縁物の場合、テフロンからのアウトガ
スによって被処理物がアウトガスの汚染を受ける。使用
温度が低いためカソードの温度が温度制限される。
However, in the above electrode insulating structure, (a) the stray capacitance between the cathode 2 and the shield 29 becomes large, and the high frequency current becomes large.
For this reason, the withstand voltage may fall below the discharge start voltage due to a decrease in the output voltage of the high-frequency matching box. (B) If the surfaces of the cathode 2 and the shield 29 in the void 30 have irregularities, the electric field at that portion increases, and a discharge occurs in the void 30. Further, since the voids 30 are constant, it is difficult and expensive to manufacture. (C) Since the end of the shield 29 is in contact with the plasma, the plasma enters the gap 30 and the horocathode effect is generated, so that the supplied high frequency power is limited to a low value. (D) The reaction gas excited by the plasma enters the gap 30, and the reaction products are deposited on the surfaces of the cathode 2 and the shield 29, which causes an increase in particles. Moreover, since the cleaning is difficult, the operation rate of the device is very small. (E) When the cathode 2 is heated, the void 30 cannot be made constant due to the expansion due to the linear thermal expansion of the cathode. Further, in the above-mentioned electrode insulating structure, in the case of (a) the quartz insulator, it is difficult to process, is easily damaged, and is expensive.
(B) Ceramic insulators are difficult to process, easily damaged, and expensive. Also, because of its large dielectric constant, cathode 2
In order to reduce the capacitance between the vacuum container 1 and the vacuum container 1, it is necessary to increase the thickness between them. Further, since the thermal conductivity is also high, the heat loss becomes large when the hot cathode is used.
(C) In the case of a Teflon insulator, the outgas from the Teflon causes the object to be treated to be contaminated with the outgas. Since the operating temperature is low, the temperature of the cathode is temperature limited.

【0007】上記の電極ガス吹出し構造では、(a)
穴32の数が少ないと穴32から出るガスの速度が被処
理物13に到達するまでに十分に拡散されないために穴
32から出た反応ガスの影響のために被処理物13の処
理の均一性が悪くなる。(b)穴径が小さいとプラズマ
に励起された反応ガスが穴32を塞ぐように堆積するた
め頻繁な清掃を必要とする。(c)穴径が大きいと、穴
32の中にプラズマが侵入し、ホロカソード効果による
プラズマ集中現象が起きるため電極に供給される高周波
電力量を多く供給することができない。又、(d)反応
ガスと希釈ガスの混合ガス流量に応じたガス穴数が必要
であり、被処理物の搬送時には反応ガス及び希釈ガス流
を停止する必要がある。再度処理圧力を保つために長い
時間を必要とする。(e)反応ガスとクリーニングガス
を同一穴から流すと、その残留ガスが被処理物を汚染す
る。このため清掃のためのパージガスを繰返し長時間流
すため装置の処理量が低下する。
In the above electrode gas blowing structure, (a)
If the number of the holes 32 is small, the velocity of the gas exiting the holes 32 is not sufficiently diffused before reaching the object 13 to be processed, so that the processing of the object 13 is uniform due to the influence of the reaction gas exiting from the holes 32. The sex becomes worse. (B) If the hole diameter is small, the reaction gas excited by the plasma is deposited so as to block the hole 32, so frequent cleaning is required. (C) When the hole diameter is large, plasma enters the hole 32 and a plasma concentration phenomenon occurs due to the hollow cathode effect, so that a large amount of high frequency power supplied to the electrodes cannot be supplied. Further, (d) the number of gas holes is required according to the flow rate of the mixed gas of the reaction gas and the diluent gas, and it is necessary to stop the flow of the reaction gas and the diluent gas when the object to be processed is transported. It takes a long time to maintain the processing pressure again. (E) When the reaction gas and the cleaning gas flow through the same hole, the residual gas contaminates the object to be processed. Therefore, since the purge gas for cleaning is repeatedly flowed for a long time, the throughput of the apparatus is reduced.

【0008】上記の排気構造では、プラズマによって
励起された反応ガスは真空容器1内を衝突,反射されな
がら排気口12に到達する。このため真空容器1内全面
に反応生成物が堆積し、その清掃時間に多大な時間を費
す。又真空容器内に反応ガス流の淀み部分ができ、この
淀み部分に反応生成物のパウダーが溜りパーティクル増
加の原因となる。又、上記の排気構造では、反応ガス
がコンダクタンスの小さな流れ口28のため、流れ口周
辺のガス流速が早くなり、この流速が被処理物近くまで
及ぶため流速分布の乱れによる処理量の均一性が悪くな
る。又、プラズマ発生部26のプラズマがこの流れ口2
8を通過するときにプラズマ及び励起ガスが集中するた
め、気中反応ガスを起しパウダーとなってプラズマ発生
部26に飛散しパーティクル増加の原因となる。この気
中反応を減らすには電極に供給する高周波電力量を減ら
す必要があり、これは処理量の低下となる。更に上記
の構成になっている場合においてプラズマに流れがある
場合、プラズマ密度分布がプラズマ発生部26より流れ
の方向にづれることは公知である。このために非プラズ
マ発生部27の容積が小さいと、プラズマ発生部26で
発生しなかった気中反応が非プラズマ発生部27で起き
パーティクル増の原因となる。又、排気口12の上に邪
魔板が備えられていないとき、排気口内ではプラズマの
消滅及び励起した反応ガスの基底状態へのエネルギーの
変換が激しく行われているため、排気口内壁には多量の
反応生成物が堆積する。通常は真空排気によって結合力
の弱い堆積物は排気側に流れているが、処理圧力の調整
中に排気側に用意された可変コンダクタンスバルブの開
閉によって真空容器1内に堆積物が飛散して来てパーテ
ィクル増加の原因となる。かくして上記従来のプラズマ
処理装置にあっては、絶縁性能,処理性能等の性能が低
下し、パーティクルの増大を招き、装置の清掃に多大の
時間を要することにより稼働率が低下するという課題が
ある。
In the above exhaust structure, the reaction gas excited by the plasma reaches the exhaust port 12 while colliding and reflecting inside the vacuum container 1. For this reason, reaction products are deposited on the entire surface of the vacuum container 1, and it takes a lot of time to clean the reaction products. In addition, a stagnation portion of the reaction gas flow is formed in the vacuum container, and powder of the reaction product accumulates in this stagnation portion, which causes an increase in particles. Further, in the above exhaust structure, since the reaction gas has a small conductance at the flow port 28, the gas flow velocity around the flow port becomes fast, and since this flow velocity reaches near the object to be processed, the flow rate distribution is disturbed and the throughput is uniform. Becomes worse. In addition, the plasma of the plasma generation unit 26 is supplied to the flow port 2
Since the plasma and the excitation gas are concentrated when passing through 8, the reaction gas in the air is generated and becomes powder to be scattered in the plasma generating portion 26, which causes increase of particles. In order to reduce this air reaction, it is necessary to reduce the amount of high frequency power supplied to the electrodes, which results in a reduction in the throughput. Further, in the case of the above structure, when there is a flow of plasma, it is known that the plasma density distribution is deviated from the plasma generation unit 26 in the flow direction. For this reason, if the volume of the non-plasma generating portion 27 is small, an aerial reaction that has not occurred in the plasma generating portion 26 will occur in the non-plasma generating portion 27, causing an increase in particles. Further, when the baffle plate is not provided on the exhaust port 12, since the extinction of the plasma and the conversion of the energy of the excited reaction gas to the ground state are performed violently inside the exhaust port, a large amount of the inner wall of the exhaust port is present. The reaction product of is deposited. Normally, deposits having a weak binding force flow to the exhaust side by vacuum exhaust, but the deposits scatter in the vacuum container 1 by opening and closing a variable conductance valve provided on the exhaust side during adjustment of the processing pressure. And increase the number of particles. Thus, in the above-mentioned conventional plasma processing apparatus, there is a problem that performance such as insulation performance, processing performance, etc. is deteriorated, particles are increased, and a large amount of time is required for cleaning the apparatus, thereby lowering the operating rate. .

【0009】[0009]

【課題を解決するための手段】本発明装置は、上記の課
題を解決するため、図1に示すように高周波電力が供給
されるカソード2と真空容器1との間の絶縁を、複数の
空隙層9と空隙層9をつくる遮蔽板8で構成することに
より該電極絶縁構造の放電開始電圧を大きくでき、浮遊
静電容量も減少でき、絶縁性能を高めることができると
共にパーティクルの増大を抑制でき、装置の清掃に時間
を要さず、稼働率を高めることができることになる。
In order to solve the above-mentioned problems, the apparatus of the present invention provides a plurality of gaps for insulation between the cathode 2 and the vacuum container 1 to which high-frequency power is supplied, as shown in FIG. By forming the layer 9 and the shielding plate 8 forming the void layer 9, the discharge starting voltage of the electrode insulating structure can be increased, the floating capacitance can be reduced, the insulating performance can be improved, and the increase of particles can be suppressed. Therefore, it does not take time to clean the device, and the operation rate can be increased.

【0010】図2に示すように電極ガス吹出し構造を、
カソード2表面のガス吹出し取付板19と外側ガス貫通
金具21との幅の狭い隙間33から真空容器1内に反応
ガスを流す構成にすることにより隙間33から反応ガス
を十分に拡散でき、直径0.2mm以下に相当する幅寸
法の隙間を容易に得ることができて、処理性能を高める
ことができると共にガス吹出し取付板19及び外側ガス
貫通金具21等を取外すことで、容易に清掃でき、稼働
率を向上できることになる。
As shown in FIG. 2, the electrode gas blowing structure is
By making the reaction gas flow into the vacuum container 1 through the narrow gap 33 between the gas blowing attachment plate 19 on the surface of the cathode 2 and the outer gas penetrating metal fitting 21, the reaction gas can be sufficiently diffused from the gap 33, and the diameter 0 It is possible to easily obtain a gap having a width dimension corresponding to 0.2 mm or less, to improve the processing performance, and to easily clean and operate by removing the gas outlet mounting plate 19 and the outer gas penetrating metal fitting 21. The rate can be improved.

【0011】又、電極ガス吹出し構造として被処理物の
処理時に電極表面から反応ガス以外に常時希釈ガスを流
し、それぞれの流れる系路を分離することにより真空容
器内の微粒子を流れの方向に移動させると共に熱運動に
よる上面への飛散防止に役立つためパーティクルの増大
を抑制できることになる。又、真空容器内のクリーニン
グ時には、反応ガス系路に希釈ガスを,希釈ガス系路に
クリーニングガスを流すことによりガスクリーニングが
終了してからのクリーニングガスの残留量を大幅に低減
でき、該クリーニングガスの残留量を短時間で除去でき
ることになり、稼働率の向上に寄与できることになる。
Further, as an electrode gas blowing structure, a diluting gas other than the reaction gas is always flowed from the electrode surface when processing the object to be treated, and the respective flow paths are separated to move the fine particles in the vacuum container in the flow direction. In addition to helping to prevent the particles from scattering to the upper surface due to the thermal motion, it is possible to suppress the increase of particles. Further, at the time of cleaning the inside of the vacuum container, the residual amount of the cleaning gas after the gas cleaning is completed can be greatly reduced by flowing the diluent gas through the reaction gas system passage and the cleaning gas through the dilution gas system passage. The residual amount of gas can be removed in a short time, which can contribute to the improvement of the operating rate.

【0012】図3に示すように被処理物の周辺部の排気
コンダクタンスを大きくして反応済ガスを速く排気し、
真空容器壁側に行くに従って排気コンダクタンスを小さ
くして反応ガスを遅く排気することによって流れの淀み
に停滞する反応生成物を少なくできることになり、パー
ティクルの増大を抑制し、清掃時間を短縮できて稼働率
を高め得ることになる。又、真空容器1内のプラズマ発
生部の容積よりも非プラズマ発生部の容積を大きくする
ことにより非プラズマ発生部での気中反応が起きにくく
なり、パーティクルの増大を抑制できると共に被処理物
上の反応ガスの流れを均一にでき、処理性能も向上でき
ることになる。更に排気口12の上にガスの流れを邪魔
する邪魔板25を設けることにより排気配管からの反応
生成物の飛散を防ぎ、真空容器1内への反応生成物の侵
入を防止できることになる。
As shown in FIG. 3, the exhaust conductance in the peripheral portion of the object to be processed is increased to quickly exhaust the reacted gas,
By decreasing the exhaust conductance and exhausting the reaction gas late as it goes to the wall of the vacuum container, it is possible to reduce the reaction products that stagnate in the stagnation of the flow, suppress the increase of particles and shorten the cleaning time and operate. You can increase the rate. Further, by making the volume of the non-plasma generating portion larger than the volume of the plasma generating portion in the vacuum container 1, it becomes difficult for an aerial reaction to occur in the non-plasma generating portion, and it is possible to suppress the increase of particles and to suppress the object to be processed. The flow of the reaction gas can be made uniform, and the processing performance can be improved. Further, by providing the baffle plate 25 which obstructs the gas flow on the exhaust port 12, it is possible to prevent the reaction products from scattering from the exhaust pipe and prevent the reaction products from entering the vacuum container 1.

【0013】[0013]

【実施例】図1は本発明装置における電極絶縁構造を示
す縦断面図である。接地された導電性の真空容器1内に
カソード2,アノード3が設置されていて、カソード2
には高周波電源4より直流阻止コンデンサ5を介して高
周波電力が供給される。カソード側面はカソード側面絶
縁物7を挟んで金属製のカソードシールド板6によって
シールドされている。カソード2と真空容器1内壁間は
空隙層9が遮蔽板8によって分割されている。高周波電
力が供給されるカソード入力部14の真空側はカソード
入力絶縁物11で覆われ、大気側は大気側絶縁及び真空
シール10によって絶縁と真空シールが行われている。
アノード3には被処理物13が置かれ、真空容器内に反
応ガスが導入され、被処理物13の処理する圧力にする
ように排気口12から真空排気される。カソード2に高
周波電力が供給されると、カソード2,アノード3間に
プラズマが発生し、被処理物13は目的の処理が行われ
る。
1 is a vertical sectional view showing an electrode insulating structure in a device of the present invention. A cathode 2 and an anode 3 are installed in an electrically conductive vacuum container 1 which is grounded.
High frequency power is supplied from the high frequency power supply 4 through the DC blocking capacitor 5. The cathode side surface is shielded by a metal cathode shield plate 6 with a cathode side surface insulator 7 interposed therebetween. A space layer 9 is divided by the shielding plate 8 between the cathode 2 and the inner wall of the vacuum chamber 1. The vacuum side of the cathode input unit 14 to which high-frequency power is supplied is covered with the cathode input insulator 11, and the atmosphere side is insulated and vacuum sealed by the atmosphere side insulation and the vacuum seal 10.
An object 13 to be processed is placed on the anode 3, a reaction gas is introduced into a vacuum container, and the exhaust port 12 is evacuated to a pressure for processing the object 13. When high-frequency power is supplied to the cathode 2, plasma is generated between the cathode 2 and the anode 3, and the object 13 to be processed is subjected to the intended processing.

【0014】図5は一般的な放電開始電圧(火花電圧で
示されている)と圧力×電極間距離との関係を示す。供
給される高周波電力の周波数,電極の寸法,形状及び材
質等によって放電開始電圧は変わる。本発明の空隙層9
を電極2,3間の放電開始電圧よりも十分に高い放電開
始電圧の距離にすることによって、電極2,3間では放
電し、空隙層9では放電しないことがわかる。しかしな
がら空隙層9の距離が短かいため、1個の空隙層9では
電極の浮遊静電容量が大きくなること、1個の空隙層9
の信頼性が低いことから、複数にすることによって放電
開始電圧が大きくとれ、浮遊静電容量も減少する。この
ようにカソード2と真空容器1との間の絶縁構造を複数
の空隙層9と空隙層9をつくる遮蔽板8で構成すること
により真空の静電容量が他の絶縁物の静電容量よりも
少ないために絶縁層の厚みを薄くできるため真空容器の
寸法を小さくできる。絶縁層体からのアウトガスの放
出が少ない。電極からの熱損失が少ない。絶縁層の
重量が軽くなるので、電極が蓋と一体のものでは蓋開閉
動作を容易に行える。低価格で製作でき、破損しにく
い。特に絶縁性能を高めることができると共にパーティ
クルの増大を抑制でき、装置の清掃に時間を要さず、稼
働率を高めることができることになる。
FIG. 5 shows a relationship between a general discharge starting voltage (indicated by a spark voltage) and pressure × distance between electrodes. The discharge start voltage varies depending on the frequency of the supplied high frequency power, the size, shape and material of the electrodes. Void layer 9 of the present invention
It can be seen that by making the distance of the discharge start voltage sufficiently higher than the discharge start voltage between the electrodes 2 and 3, discharge occurs between the electrodes 2 and 3 but not in the void layer 9. However, since the distance between the void layers 9 is short, the floating capacitance of the electrode increases with one void layer 9.
, The discharge start voltage can be increased and the floating capacitance can be reduced. In this way, by forming the insulating structure between the cathode 2 and the vacuum container 1 with the plurality of void layers 9 and the shielding plate 8 forming the void layers 9, the vacuum capacitance is higher than that of other insulators. Since the insulating layer is thin, the thickness of the insulating layer can be reduced, so that the size of the vacuum container can be reduced. Less outgassing from the insulating layer. Little heat loss from the electrodes. Since the weight of the insulating layer is reduced, the lid opening / closing operation can be easily performed when the electrode is integrated with the lid. It can be manufactured at a low price and is not easily damaged. In particular, it is possible to improve the insulation performance, suppress the increase of particles, do not require time to clean the device, and increase the operation rate.

【0015】図6は電極(カソード)から反応ガスが吹
出すときの吹出し穴径と、カソードに供給される高周波
電力密度(高周波電力/プラズマに接するカソード面
積)との関係を実験した結果から示す。ここで 電極(カソード)穴数 721個 電極サイズ 2000cm2 電極間距離 3cm 電極材質 アルミニウム 圧力 0.3 Torr 流量 N2 , 100 SCCM である。 異常放電とは1個〜複数の穴に他の穴よりプラズマ密度
が非常に大きくなったことを示すもので、穴径が直径
0.2mm以下で通常のプラズマ処理装置では十分に適
用できる高周波電力密度である。しかしながら直径0.
2mm以下の多数の穴あけ加工は困難であることと、穴
に反応生成物が堆積し穴が塞がり、その清掃が非常に難
かしい。本発明では図2に示すようにカソード2表面の
ガス吹出し取付板19と外側ガス貫通金具21との隙間
33から真空容器1内に反応ガスを流す構成にすること
によって隙間33から反応ガスを十分に拡散でき、直径
0.2mm以下に相当する幅寸法の隙間を容易に製作で
きるので、正常設定領域の範囲が広くなり、高密度の高
周波電力をカソードに供給でき、処理性能を高めること
ができると共にガス吹出し取付板19及び外側ガス貫通
金具21等を取外し可能なため容易に清掃ができ稼働率
を向上できることになる。
FIG. 6 shows experimental results on the relationship between the diameter of the blowout hole when the reaction gas blows out from the electrode (cathode) and the high frequency power density supplied to the cathode (high frequency power / cathode area in contact with plasma). . Here, the number of electrode (cathode) holes is 721, the electrode size is 2000 cm 2, the distance between the electrodes is 3 cm, the electrode material is aluminum, the pressure is 0.3 Torr, the flow rate is N 2 , and 100 SCCM. Abnormal discharge indicates that the plasma density in one or more holes is much higher than other holes, and the high-frequency power that can be applied to ordinary plasma processing equipment with a hole diameter of 0.2 mm or less. Is the density. However, diameter 0.
It is difficult to drill a large number of holes having a diameter of 2 mm or less, and reaction products are accumulated in the holes to block the holes, which makes it very difficult to clean the holes. In the present invention, as shown in FIG. 2, the reaction gas is sufficiently supplied from the gap 33 by making the reaction gas flow into the vacuum container 1 through the gap 33 between the gas blow-out mounting plate 19 on the surface of the cathode 2 and the outer gas penetration fitting 21. Since it can be diffused into the space and a gap having a width corresponding to a diameter of 0.2 mm or less can be easily manufactured, the range of the normal setting region is widened, high-density high-frequency power can be supplied to the cathode, and the processing performance can be improved. At the same time, the gas blow-out mounting plate 19, the outer gas penetrating metal fitting 21 and the like can be removed, so that the cleaning can be easily performed and the operation rate can be improved.

【0016】図2において15は内側導入口で、ガスシ
ール板18に固定されている。16は内側導入口15に
同心配置された外側導入口で、電極カバー17に取付け
られている。ガスシール板18に内側ガス貫通金具20
が固定されており、該金具20に同心状に外側ガス貫通
金具21が配置されてガスシール板18とガス吹出し取
付板19に挟着されている。22は電極枠である。被処
理物の処理時には、真空容器に被処理物を搬入してアノ
ード上に置き、反応ガスと希釈ガスを別々の系路を経て
電極面から流出する。反応ガスは内側導入口15と外側
導入口16との間に導入し、電極内に流れる。そしてガ
スシール板18によって拡散し、内側ガス貫通金具20
とガスシール板18の穴との隙間を通り内側ガス貫通金
具20と外側ガス貫通金具21との隙間を通って電極間
内に流れだす。一方、希釈ガスは内側導入口15の中心
から導入し、ガスシール板18とガス吹出し取付板19
の間に流れる。そしてガス吹出し取付板19と外側ガス
貫通金具21との隙間を通って電極間内に流れだす。そ
して処理圧力を調圧して電極に高周波電力を供給すれ
ば、電極間にプラズマが発生する。プラズマが発生する
と整合器が作動して規定の高周波電力が電極に供給され
る。そして被処理物が処理される。処理が終了すると高
周波電力及び反応ガス,希釈ガスの供給が停止され被処
理物は搬出される。このプロセスで処理圧力の調圧時間
がかなりの多くの時間を占めている。本発明では被処理
物の処理を行なうプロセス時に常時希釈ガスを流すこと
によってこの処理圧力の調圧時間を大幅に短縮できるこ
と、又希釈ガスを流すことによって真空容器内の微粒子
を流れの方向に移動させると共に熱運動による上面への
飛散防止に役立つためパーティクル増加が非常に少な
い。又真空容器内のクリーニング時には反応ガス系路に
希釈ガスを希釈ガス系路にクリーニングガスを流すこと
によって、ガスクリーニングが終了してからのクリーニ
ングガスの残留量を大幅に低減できるため、クリーニン
グガスの残留量を減らすに要する時間が短縮できる。
In FIG. 2, reference numeral 15 denotes an inner inlet port, which is fixed to the gas seal plate 18. Reference numeral 16 denotes an outer introduction port that is concentrically arranged with respect to the inner introduction port 15 and is attached to the electrode cover 17. Inner gas penetrating fitting 20 on gas seal plate 18
The outer gas penetrating metal fitting 21 is concentrically arranged on the metal fitting 20 and is sandwiched between the gas seal plate 18 and the gas blow-out mounting plate 19. 22 is an electrode frame. At the time of processing the object to be processed, the object to be processed is carried into a vacuum container and placed on the anode, and the reaction gas and the diluent gas flow out from the electrode surface through separate system paths. The reaction gas is introduced between the inner introduction port 15 and the outer introduction port 16 and flows into the electrode. Then, the gas seal plate 18 diffuses the gas and the inner gas penetrating fitting 20
And through the hole of the gas seal plate 18 and through the gap between the inner gas penetrating fitting 20 and the outer gas penetrating fitting 21 to flow into the space between the electrodes. On the other hand, the dilution gas is introduced from the center of the inner introduction port 15, and the gas seal plate 18 and the gas blow-off mounting plate 19 are introduced.
Flowing between. Then, the gas blows out through the gap between the mounting plate 19 and the outer gas penetrating metal fitting 21 into the space between the electrodes. When the processing pressure is adjusted and high frequency power is supplied to the electrodes, plasma is generated between the electrodes. When plasma is generated, the matching device is activated to supply the prescribed high frequency power to the electrodes. Then, the object to be processed is processed. When the processing is completed, the supply of high-frequency power, reaction gas, and dilution gas is stopped, and the object to be processed is unloaded. In this process, the processing pressure adjustment time occupies a considerable amount of time. In the present invention, it is possible to greatly reduce the pressure adjusting time of the processing pressure by constantly flowing the diluting gas during the process of treating the object to be treated, and to move the fine particles in the vacuum container in the flow direction by flowing the diluting gas. The particle increase is very small because it helps prevent scattering to the upper surface due to thermal motion. Further, when cleaning the inside of the vacuum container, the residual amount of the cleaning gas after the gas cleaning can be significantly reduced by flowing the diluent gas through the reaction gas system path and the cleaning gas through the diluent gas system path. The time required to reduce the residual amount can be shortened.

【0017】このように被処理物の処理時に反応ガスと
希釈ガスとを分離して流し、常時、希釈ガスを流すこと
によって処理圧力に到達する迄の調圧時間を大幅に短縮
できるため被処理物のスループットが大となると共に、
常時希釈ガスを流すことによって真空容器内の微粒子が
排気され、又熱運動による微粒子の上面方向への飛散が
流れにより抑制されるためにパーティクルの増大が抑制
され、かつ被処理物上への微粒子の落下が軽減されるこ
とになる。又、反応ガスを流すときは、反応ガス系路に
反応ガスを流しクリーニングガス系路(希釈ガス系路)
に希釈ガスを流すためクリーニングガス系路が反応ガス
によって汚されず、クリーニングガスを流すときは希釈
ガス系路にクリーニングガスを流し、反応ガス系路に希
釈ガスを流すため、クリーニングガスが反応ガス系路に
侵入しないために、クリーニングガスの吸着は真空容器
内のみとなり、真空容器内は吸着ガスが容易に脱離し易
い構造になっているため、クリーニングガスの残留分を
容易に短時間に軽減でき、クリーニングによるダウンタ
イムが少なくなって装置の稼働率が大幅に向上すること
になる。
Thus, the reaction gas and the diluting gas are separately flowed during the processing of the object to be processed, and the diluting gas is always flowed, so that the pressure adjusting time until the processing pressure is reached can be greatly shortened. As the throughput of goods increases,
The fine particles in the vacuum container are exhausted by constantly flowing the dilution gas, and the increase in the number of particles is suppressed because the flow of particles suppresses the scattering of the particles toward the upper surface due to thermal motion, and the particles on the object to be processed are suppressed. Will be reduced. Further, when the reaction gas is flown, the reaction gas is flown through the reaction gas system path and the cleaning gas system path (dilution gas system path) is supplied.
Since the cleaning gas system passage is not polluted by the reaction gas because the dilution gas is supplied to the cleaning gas, the cleaning gas is supplied to the dilution gas system passage when the cleaning gas is supplied, and the cleaning gas is supplied to the reaction gas system passage when the cleaning gas is supplied to the reaction gas system passage. Since it does not enter the passage, the cleaning gas is adsorbed only inside the vacuum container, and the structure inside the vacuum container makes it easy for the adsorbed gas to be easily desorbed, so the residual amount of cleaning gas can be easily reduced in a short time. As a result, the downtime due to cleaning is reduced and the operating rate of the device is greatly improved.

【0018】図3は本発明装置における反応ガスの排気
構造を示す縦断面図である。反応済のガスはすみやかに
プラズマ発生部から排気しないと、気中に存在する反応
生成物が次第に大きく成長することが知られている。本
発明では被処理物の周辺部の排気コンダクタンスを大き
くして反応済ガスをすみやかに排気するとともに、真空
容器壁側に行くに従って排気コンダクタンスを小さくし
て反応ガスを遅く排気することによって反応ガスの層流
を作って流れの淀みに停滞する反応生成物を少なくして
いる。反応ガスはカソード2内に導入され、カソード
2,アノード3間に流れ出ると真空容器1の壁側に拡散
する。そして内側と外側に流れのコンダクタンスの差が
つけられた排気プレート23を通り排気部24に流れで
る。反応ガスは排気部24から排気口12から真空排気
される。
FIG. 3 is a vertical sectional view showing the structure for exhausting the reaction gas in the apparatus of the present invention. It is known that the reaction products present in the air gradually grow larger unless the reacted gas is promptly exhausted from the plasma generating part. In the present invention, the exhaust gas conductance of the peripheral portion of the object to be treated is increased to exhaust the reacted gas promptly, and the exhaust gas conductance is decreased to exhaust the reaction gas late as the exhaust gas conductance is reduced toward the vacuum vessel wall side. Laminar flow is created to reduce the amount of reaction products that are stagnant at the stagnation of the flow. When the reaction gas is introduced into the cathode 2 and flows out between the cathode 2 and the anode 3, it diffuses to the wall side of the vacuum container 1. Then, the gas flows to the exhaust portion 24 through the exhaust plate 23 having a difference in conductance between the inside and the outside. The reaction gas is evacuated from the exhaust unit 24 through the exhaust port 12.

【0019】このように被処理物周辺の排気コンダクタ
ンスが大きいため反応済ガスがすみやかに排気され、反
応生成物の成長を抑制できるとともに、反応済ガスによ
る被処理物の端への悪影響を防ぐことができる。又、真
空容器壁側の反応ガスの流速が遅いため、壁に衝突する
流れが弱いため乱流が発生せず、流れの淀みができな
い。このため微粒子の停滞をなくすことができる。即
ち、流れの淀みに停滞する反応生成物を少なくできるこ
とになり、パーティクルの増大を抑制し、清掃時間を短
縮できて稼働率を高め得ることになる。又、真空容器1
内のプラズマ発生部の容積よりも非プラズマ発生部の容
積を大きくする構成にする。
As described above, since the exhaust conductance around the object to be processed is large, the reacted gas is quickly exhausted, the growth of the reaction product can be suppressed, and the adverse effect of the reacted gas on the end of the object to be processed is prevented. You can Moreover, since the flow velocity of the reaction gas on the wall side of the vacuum container is slow, the flow impinging on the wall is weak, so that turbulent flow does not occur and the flow cannot stagnant. For this reason, it is possible to eliminate the stagnation of fine particles. That is, it is possible to reduce the amount of reaction products that are stagnant at the stagnation of the flow, suppress the increase of particles, shorten the cleaning time, and increase the operating rate. Also, the vacuum container 1
The volume of the non-plasma generating portion is made larger than the volume of the plasma generating portion therein.

【0020】アノード3,カソード2間の容積をプラズ
マ発生部26,排気部とプラズマ発生部以外の容積を非
プラズマ発生部27の容積とし、真空容器1内でのプラ
ズマの消滅が少なければ、反応ガスの流れから非プラズ
マ発生部27でのプラズマ密度が大きくなって、この容
積内で気中反応を起すことがある。プラズマ発生部26
の容積より非プラズマ発生部27の容積を大きくすれば
気中反応が起きにくくなる。又、非プラズマ発生部27
の容積が小さいと排気口の取付け位置によって被処理物
上の反応ガスの流れを均一にすることができないが、容
積を大きくすることによって均一な流れをつくることが
容易であり、処理性能を向上できることになる。更に図
3に示すように排気口12の上にガスの流れを邪魔する
邪魔板25を設けることにより排気配管からの反応生成
物の飛散を防ぎ、真空容器1内への反応生成物の侵入を
防止できることになる。本発明は、図4に示すように上
記図1の電極絶縁構造、図2の電極ガス吹出し構造及び
図3の排気構造を採用してプラズマ処理装置を構成して
もよい。
The volume between the anode 3 and the cathode 2 is defined as the plasma generating portion 26, and the volume other than the exhaust portion and the plasma generating portion is defined as the non-plasma generating portion 27. If the disappearance of plasma in the vacuum container 1 is small, the reaction occurs. Due to the flow of gas, the plasma density in the non-plasma generating portion 27 increases, and an air reaction may occur in this volume. Plasma generator 26
If the volume of the non-plasma generating part 27 is made larger than the volume of the above, the reaction in the air becomes difficult to occur. In addition, the non-plasma generator 27
If the volume is small, the flow of the reaction gas on the object cannot be made uniform depending on the mounting position of the exhaust port, but it is easy to make a uniform flow by increasing the volume, improving the processing performance. You can do it. Further, as shown in FIG. 3, a baffle plate 25 for obstructing the flow of gas is provided on the exhaust port 12 to prevent the reaction products from scattering from the exhaust pipe and prevent the reaction products from entering the vacuum container 1. It can be prevented. In the present invention, as shown in FIG. 4, the plasma processing apparatus may be configured by adopting the electrode insulating structure of FIG. 1, the electrode gas blowing structure of FIG. 2 and the exhaust structure of FIG.

【0021】[0021]

【発明の効果】上述のように本発明によれば、絶縁性
能、処理性能等の性能を高めることができ、パーティク
ルの増大を抑制できると共に装置の清掃に時間を要せ
ず、稼働率を高めることができる。
As described above, according to the present invention, it is possible to improve the performance such as the insulation performance and the processing performance, suppress the increase of particles, and do not require the time for cleaning the apparatus, and improve the operation rate. be able to.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明装置における電極絶縁構造を示す縦断面
図である。
FIG. 1 is a vertical sectional view showing an electrode insulating structure in a device of the present invention.

【図2】本発明装置における電極ガス吹出し構造を示す
縦断面図である。
FIG. 2 is a vertical sectional view showing an electrode gas blowing structure in the device of the present invention.

【図3】本発明装置における排気構造を示す縦断面図で
ある。
FIG. 3 is a vertical sectional view showing an exhaust structure in the device of the present invention.

【図4】本発明装置の他の実施例を示す縦断面図であ
る。
FIG. 4 is a vertical sectional view showing another embodiment of the device of the present invention.

【図5】火花電圧と圧力×電極間距離との関係を示す図
である。
FIG. 5 is a diagram showing a relationship between spark voltage and pressure × distance between electrodes.

【図6】電極の穴径と高周波電力密度との関係を示す図
である。
FIG. 6 is a diagram showing a relationship between a hole diameter of an electrode and a high frequency power density.

【図7】(A)〜(E)は従来装置における電極絶縁構
造、電極ガス吹出し構造及び排気構造の説明図である。
7A to 7E are explanatory views of an electrode insulating structure, an electrode gas blowing structure and an exhaust structure in a conventional device.

【符号の説明】[Explanation of symbols]

1 真空容器 2 カソード 3 アノード 4 高周波電源 6 カソードシールド板 7 カソード側面絶縁物 8 遮蔽板 9 空隙層 10 大気側絶縁及び真空シール 11 カソード入力部絶縁物 12 排気口 13 被処理物 14 カソード入力部 15 内側導入口 16 外側導入口 17 電極カバー 18 ガスシール板 19 ガス吹出し取付板 20 内側ガス貫通金具 21 外側ガス貫通金具 23 排気プレート 24 排気部 25 邪魔板 26 プラズマ発生部 27 非プラズマ発生部 28 流れ口 33 隙間 1 Vacuum Container 2 Cathode 3 Anode 4 High Frequency Power Supply 6 Cathode Shield Plate 7 Cathode Side Insulator 8 Shielding Plate 9 Void Layer 10 Atmosphere Side Insulation and Vacuum Seal 11 Cathode Input Insulator 12 Exhaust Port 13 Workpiece 14 Cathode Input 15 Inner introduction port 16 Outer introduction port 17 Electrode cover 18 Gas seal plate 19 Gas blowout mounting plate 20 Inner gas penetration metal fitting 21 Outer gas penetration metal fitting 23 Exhaust plate 24 Exhaust part 25 Baffle plate 26 Plasma generation part 27 Non-plasma generation part 28 Flow opening 33 Gap

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 電極を内蔵した真空容器内に反応ガスを
流し、真空容器内を被処理物を処理する圧力に保つよう
に真空排気を行いながら、電極に高周波電力を供給して
真空容器内にプラズマを発生させ、そのプラズマを利用
して被処理物を処理する装置において、高周波電力が供
給される電極と真空容器との間の絶縁を複数の空隙層と
空隙層をつくる遮蔽板で構成することを特徴とするプラ
ズマ処理装置。
1. A high-frequency power is supplied to an electrode while supplying a high-frequency power to the electrode while evacuating the inside of the vacuum container to a pressure for processing an object by flowing a reaction gas into the vacuum container containing the electrode. In a device for generating plasma in a vacuum and processing an object using the plasma, the insulation between an electrode to which high-frequency power is supplied and a vacuum container is constituted by a plurality of void layers and a shield plate forming the void layers. A plasma processing apparatus characterized in that.
【請求項2】 真空容器に内蔵された電極内に大気側か
ら反応ガスを導入し、その電極表面から真空容器内に反
応ガスを流し、真空容器内を被処理物を処理する圧力に
保つように真空排気を行いながら電極に高周波電力を供
給して真空容器内にプラズマを発生させ、そのプラズマ
を利用して被処理物を処理する装置において、電極表面
の幅の狭い隙間から反応ガスを流すことを特徴とするプ
ラズマ処理装置。
2. A reaction gas is introduced from the atmosphere side into an electrode contained in a vacuum container, and the reaction gas is caused to flow from the electrode surface into the vacuum container so that the inside of the vacuum container is maintained at a pressure for processing an object to be processed. High-frequency power is supplied to the electrodes while vacuum evacuation is performed to generate plasma in the vacuum container, and in the device that uses the plasma to process the object to be processed, the reaction gas is flowed through the narrow gap on the electrode surface. A plasma processing apparatus characterized by the above.
【請求項3】 真空容器に内蔵された電極内に大気側か
ら反応ガスと希釈ガスを導入し、その電極表面から真空
容器内に反応ガスと希釈ガスを流し、真空容器内を被処
理物を処理する圧力に保つように真空排気を行いなが
ら、電極に高周波電力を供給して真空容器内にプラズマ
を発生させ、そのプラズマを利用して被処理物を処理す
る装置において、電極表面から反応ガスの流れる部分と
希釈ガスが流れる部分を分離することを特徴とするプラ
ズマ処理装置。
3. A reaction gas and a diluent gas are introduced from the atmosphere side into an electrode contained in a vacuum container, the reaction gas and the diluent gas are caused to flow from the electrode surface into the vacuum container, and an object to be treated is introduced into the vacuum container. While evacuating to maintain the pressure for processing, supply high-frequency power to the electrodes to generate plasma in the vacuum container, and use the plasma to process the object to be processed. A plasma processing apparatus, characterized in that a portion in which the gas flows and a portion in which the diluent gas flows are separated.
【請求項4】 反応ガスの代りに希釈ガスを、希釈ガス
の代りにクリーニングガスを流すことを特徴とする請求
項3のプラズマ処理装置。
4. The plasma processing apparatus according to claim 3, wherein a diluent gas is flown in place of the reaction gas and a cleaning gas is flown in place of the diluent gas.
【請求項5】 プラズマ発生機構を内蔵した真空容器内
に反応ガスを流し、真空容器内を被処理物の処理する圧
力に保つように真空排気を行いながら、真空容器内に発
生したプラズマを利用して被処理物を処理する装置にお
いて被処理物周辺の排気速度を速くし、真空容器壁側の
排気速度を遅くすることを特徴とするプラズマ処理装
置。
5. The plasma generated in the vacuum container is used while the reaction gas is flown into the vacuum container containing the plasma generation mechanism and the vacuum container is evacuated to maintain the pressure for processing the object to be processed. In the apparatus for processing the object to be processed, the plasma processing apparatus is characterized in that the exhaust speed around the object is increased and the exhaust speed on the vacuum container wall side is decreased.
【請求項6】 プラズマ発生機構を内蔵した真空容器内
に反応ガスを流し、真空容器内を被処理物を処理する圧
力を保つように真空排気を行いながら、真空容器内に発
生したプラズマを利用して被処理物を処理する装置にお
いて真空容器内のプラズマ発生部の容積よりも非プラズ
マ発生部の容積を大きくすることを特徴とするプラズマ
処理装置。
6. The plasma generated in the vacuum container is used while a reaction gas is flown into the vacuum container having a plasma generation mechanism and the vacuum container is evacuated to maintain a pressure for processing an object to be processed. In the apparatus for processing an object to be processed, the volume of the non-plasma generating section is made larger than the volume of the plasma generating section in the vacuum container.
【請求項7】 プラズマ発生機構を内蔵した真空容器内
に反応ガスを流し、真空容器内を被処理物を処理する圧
力に保つように真空排気を行いながら、真空容器内に発
生したプラズマを利用して被処理物を処理する装置にお
いて、真空容器内の排気口の上にガスの流れを邪魔する
邪魔板を設けることを特徴とするプラズマ処理装置。
7. The plasma generated in the vacuum container is used while the reaction gas is flown into the vacuum container containing the plasma generation mechanism and the vacuum container is evacuated to maintain the pressure for processing the object to be processed. In the apparatus for processing an object to be processed, a plasma processing apparatus is characterized in that a baffle plate that obstructs the flow of gas is provided on the exhaust port in the vacuum container.
JP6021257A 1994-02-18 1994-02-18 Plasma processing device Pending JPH07230899A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6021257A JPH07230899A (en) 1994-02-18 1994-02-18 Plasma processing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6021257A JPH07230899A (en) 1994-02-18 1994-02-18 Plasma processing device

Publications (1)

Publication Number Publication Date
JPH07230899A true JPH07230899A (en) 1995-08-29

Family

ID=12050044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6021257A Pending JPH07230899A (en) 1994-02-18 1994-02-18 Plasma processing device

Country Status (1)

Country Link
JP (1) JPH07230899A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0814495A2 (en) * 1996-06-20 1997-12-29 Applied Materials, Inc. Adjusting DC bias voltage in plasma chamber
KR100368200B1 (en) * 1999-07-27 2003-01-24 마츠시다 덴코 가부시키가이샤 Electrode for plasma generation, plasma treatment apparatus using the electrode, and plasma treatment with the apparatus
JP2007115453A (en) * 2005-10-19 2007-05-10 Hitachi High-Technologies Corp Charged particle beam device
JP4557400B2 (en) * 2000-09-14 2010-10-06 キヤノン株式会社 Method for forming deposited film
CN111455350A (en) * 2020-04-07 2020-07-28 沈阳拓荆科技有限公司 Spray plate device with radio frequency guided from spray plate

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5891350A (en) * 1994-12-15 1999-04-06 Applied Materials, Inc. Adjusting DC bias voltage in plasma chambers
US6221782B1 (en) 1994-12-15 2001-04-24 Applied Materials, Inc. Adjusting DC bias voltage in plasma chamber
US6513452B2 (en) 1994-12-15 2003-02-04 Applied Materials Inc. Adjusting DC bias voltage in plasma chamber
EP0814495A2 (en) * 1996-06-20 1997-12-29 Applied Materials, Inc. Adjusting DC bias voltage in plasma chamber
EP0814495A3 (en) * 1996-06-20 1998-08-12 Applied Materials, Inc. Adjusting DC bias voltage in plasma chamber
KR100368200B1 (en) * 1999-07-27 2003-01-24 마츠시다 덴코 가부시키가이샤 Electrode for plasma generation, plasma treatment apparatus using the electrode, and plasma treatment with the apparatus
JP4557400B2 (en) * 2000-09-14 2010-10-06 キヤノン株式会社 Method for forming deposited film
JP2007115453A (en) * 2005-10-19 2007-05-10 Hitachi High-Technologies Corp Charged particle beam device
CN111455350A (en) * 2020-04-07 2020-07-28 沈阳拓荆科技有限公司 Spray plate device with radio frequency guided from spray plate

Similar Documents

Publication Publication Date Title
US6506685B2 (en) Perforated plasma confinement ring in plasma reactors
JP5328685B2 (en) Plasma processing apparatus and plasma processing method
KR100495783B1 (en) Parallel plate apparatus for in-situ vacuum line cleaning for substrate processing equipment
TW323387B (en)
JP4393844B2 (en) Plasma film forming apparatus and plasma film forming method
KR100856654B1 (en) Plasma processing device
US7048869B2 (en) Plasma processing apparatus and a plasma processing method
KR100272849B1 (en) Chemical vapor deposition apparatus
JP5248370B2 (en) Shower head and plasma processing apparatus
JPH07335626A (en) Plasma processing device and method
JP4369264B2 (en) Plasma deposition method
TW201621973A (en) Plasma processing device
US11309167B2 (en) Active gas generation apparatus and deposition processing apparatus
JP2008235611A (en) Plasma processing equipment and method for processing plasma
JP2004356430A (en) Plasma treatment apparatus
US20040159638A1 (en) Clean process for an electron beam source
JPH07230899A (en) Plasma processing device
KR100262883B1 (en) Plasma cleaning method
JP2004319871A (en) Processor, processing method and plasma processor
JP3077516B2 (en) Plasma processing equipment
JP2019160714A (en) Plasma processing apparatus
JPH09223672A (en) Method and device for plasma treatment
CN112017936B (en) Plasma processing apparatus
JPH11297676A (en) Electronic device manufacturing apparatus
JP2956640B2 (en) Plasma processing equipment