JPH07230699A - Semiconductor memory - Google Patents

Semiconductor memory

Info

Publication number
JPH07230699A
JPH07230699A JP6020984A JP2098494A JPH07230699A JP H07230699 A JPH07230699 A JP H07230699A JP 6020984 A JP6020984 A JP 6020984A JP 2098494 A JP2098494 A JP 2098494A JP H07230699 A JPH07230699 A JP H07230699A
Authority
JP
Japan
Prior art keywords
power supply
supply line
fuse
common power
divided
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6020984A
Other languages
Japanese (ja)
Other versions
JP3354267B2 (en
Inventor
Yoichi Suzuki
洋一 鈴木
Makoto Segawa
真 瀬川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP02098494A priority Critical patent/JP3354267B2/en
Publication of JPH07230699A publication Critical patent/JPH07230699A/en
Application granted granted Critical
Publication of JP3354267B2 publication Critical patent/JP3354267B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • For Increasing The Reliability Of Semiconductor Memories (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To prevent voltage drop at a remote side from a power source supply end and to surely perform operation in each memory cell in the direction of a row by dividing a common power source line and connecting them through a power source voltage supplying means performing an amplifying function. CONSTITUTION:Divided points of divided power source lines 2a, 2b to which a common power source line 2 is divided are connected to a power source voltage supplying means 11. The means 11 is constituted by connecting a CMOS inverter 11a and 11b in cascade, a PMOS transistor is arranged at a power source Vcc side, and a Vcc level is obtained at an output end of the CMOS inverter. A potential holding means 12 is connected to a power source line 2a between a fuse 4 connected to a supply terminal 3 of the Vcc and a memory cell 1. The Vcc level is continuously supplied to the means 12 from the terminal 3 through the fuse 4 in a state in which the fuse 4 is not cut, and a node 12b is made a ground level. On the other hand, when a defect of leakage is detected in either of the cell 1, the fuse 4 is cut, and a defective cell is substituted with a redundant cell.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、不良メモリセルを救済
する冗長セルを有する半導体メモリに関するもので、特
にスタンバイ時の電流の低減化が要求されるメモリに使
用されるものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor memory having a redundant cell for relieving a defective memory cell, and is particularly used for a memory which requires a reduction in standby current.

【0002】[0002]

【従来の技術】半導体メモリにおいては、待機時(スタ
ンバイ時)の電流消費の低減化が要求される場合が多
い。即ちメモリセルにおいては、正常に動作して機能的
な問題ないが、リーク電流が、許容値よりも多く流れる
場合がある。この様なメモリセルが存在すると、スタン
バイ時の電流が増加してしまうので、不良メモリセルと
みなして不使用とし、冗長メモリセルと切り替えるのが
望ましい。
2. Description of the Related Art In semiconductor memories, it is often required to reduce current consumption during standby (standby). That is, in the memory cell, there is a case where the leakage current flows more than the allowable value although it operates normally and there is no functional problem. If such a memory cell exists, the standby current will increase, so it is desirable to consider it as a defective memory cell and disuse it, and switch it to a redundant memory cell.

【0003】図7は、この様な不都合を防止する従来の
手段を示す。図7において、1は、行方向に並んだメモ
リセル、2は、セルよう共通電源線、3は、電源電圧V
ccを共通電源線2に供給する電源端子、4はヒューズ
である。
FIG. 7 shows a conventional means for preventing such an inconvenience. In FIG. 7, 1 is a memory cell arranged in the row direction, 2 is a common power supply line like a cell, 3 is a power supply voltage V
Power supply terminals 4 for supplying cc to the common power supply line 2 are fuses.

【0004】ここで、許容値以上にリーク電流が生じる
メモリセルを、テスタを用いて発見し、その不良とみな
せるメモリセルと電源端子3との間に接続されているレ
ーザ・ヒューズ4を溶断することによって、リーク経路
を断つことにより、予備(冗長)のメモリセルに置き換
えている。また近時、メモリ容量の増大化が行われてお
り、そのようなために共通電源線2の配線抵抗が大きく
なると、各メモリセル1への電源電圧供給が、端子3か
ら遠距離になるにしたがって低下するため、動作マージ
ンの低下をおこし、問題である。つまり、近時メモリ容
量が大容量化されており、共通電源線2が長尺化される
ことからも問題である。
Here, a memory cell in which a leak current exceeding a permissible value is generated is found by using a tester, and the laser fuse 4 connected between the memory cell and the power supply terminal 3 which can be regarded as a defect is blown. As a result, the leak path is cut off and replaced with a spare (redundant) memory cell. Recently, the memory capacity has been increased. Therefore, if the wiring resistance of the common power supply line 2 increases, the power supply voltage to each memory cell 1 becomes far from the terminal 3. As a result, the operating margin is reduced, which is a problem. That is, there is a problem in that the memory capacity has recently been increased and the common power supply line 2 is lengthened.

【0005】[0005]

【発明が解決しようとする課題】本発明は、上記実情に
鑑みてなされたもので、メモリセルがマトリクス状に配
置されたメモリセル・アレイを有する半導体メモリにお
いて、行方向に並ぶメモリセルへ電源供給する共通電源
線の配線抵抗の増大による電源電圧の低下およびチップ
サイズの増大を招くことなく、リーク電流が許容値より
も大きいメモリセルを冗長セルへ置き換え可能で、かつ
安定した動作を期待できるようにしたものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and in a semiconductor memory having a memory cell array in which memory cells are arranged in a matrix, power is supplied to the memory cells arranged in the row direction. It is possible to replace a memory cell with a leak current larger than the allowable value with a redundant cell and to expect a stable operation without lowering the power supply voltage and increasing the chip size due to an increase in the wiring resistance of the common power supply line to be supplied. It was done like this.

【0006】[0006]

【課題を解決するための手段と作用】本発明は、メモリ
セルがマトリクス状に配置されたメモリセル・アレイを
有する半導体メモリにおいて、行方向にある複数のメモ
リセルへ共通に電源を供給する形でN(Nは1以上の整
数)分割され、一端側から他端側へ電源を供給する共通
電源線と、この共通電源線をN分割して得られる各分割
電源線の隣接相互間にそれぞれ介在され、前記電源の供
給を行う一端側から見て近い方に隣接した分割電源線か
らの電圧を増幅することにより得た電源電圧レベルを、
前記電源の供給端から見て遠い方に隣接した分割電源線
へ供給させる電源電圧供給手段と、前記共通電源線の一
端側の電源供給端とこの電源供給端から数えて1番目に
位置した分割電源線との間に介在されたヒューズと、こ
のヒューズを切断して後、前記共通電源線を接地電位に
保持する電位保持手段と、前記ヒューズの切断後、その
ヒューズを切断した行の代りに用いる冗長セルとを具備
したことを特徴とする半導体メモリである。
According to the present invention, in a semiconductor memory having a memory cell array in which memory cells are arranged in a matrix, power is commonly supplied to a plurality of memory cells in a row direction. Is divided into N (N is an integer of 1 or more), and a common power supply line for supplying power from one end side to the other end side and each divided power supply line obtained by dividing this common power supply line by N are respectively adjacent to each other. The power supply voltage level obtained by amplifying the voltage from the divided power supply line which is interposed and is adjacent to the near side as seen from the one end side for supplying the power supply,
A power supply voltage supply means for supplying the adjacent divided power supply lines farther from the power supply end, a power supply end on one end side of the common power supply line, and a division located first from the power supply end. A fuse interposed between the power supply line and a potential holding means for holding the common power supply line at the ground potential after cutting the fuse, and a line after the fuse is cut, instead of the line where the fuse is cut. A semiconductor memory comprising a redundant cell to be used.

【0007】即ち本発明は、共通電源線をN分割して、
その分割点の境目毎にそれらをつなぐごとく、増副作用
を行う電源電圧供給手段を設け、該手段から見て電源供
給端に近い方の分割電源線からの降下電源電圧を降下前
の電源電圧まで上昇させて、電源供給端から遠い側の電
圧低下を防止することにより、行方向に渡る各メモリセ
ルへの供給電源電圧を高く保持する。このため、各メモ
リセルでの動作が確実となり、かつ動作の過渡応答にお
いても電源の変動をおさえることができ、しかもヒュー
ズ切断後は、共通電源線を接地電位に保持し続けるよう
にして、ヒューズを切断した共通電源線のフローティン
グ状態をなくするなどのことから、動作の安定化を期待
できる。また、複数本の行選択線については、1本の共
通電源線、1個のヒューズの使用で済ませるので、チッ
プ占有面積を縮小化が可能となると共に、切断すべきヒ
ューズの数が極少となって、信頼性が向上する。このこ
とは、近時の大容量メモリ化のもとでは、一本の共通電
源線、行選択線に付随するメモリセル数が多くなるた
め、もしヒューズの数が多くなって、ヒューズの切断回
数が多くなると、信頼性が低下することからもいえるこ
とである。
That is, the present invention divides the common power supply line into N,
A power supply voltage supply means for increasing the side effect is provided so as to connect them at each boundary of the division points, and the power supply voltage drop from the divided power supply line closer to the power supply end as seen from the means is increased to the power supply voltage before the drop. By raising the voltage and preventing the voltage drop on the side far from the power supply terminal, the power supply voltage to each memory cell in the row direction is kept high. For this reason, the operation in each memory cell is ensured, the fluctuation of the power supply can be suppressed even in the transient response of the operation, and the common power supply line is kept at the ground potential after the fuse is blown. Stabilization of operation can be expected by eliminating the floating state of the common power supply line after disconnecting. Further, for the plurality of row selection lines, one common power supply line and one fuse can be used, so that the area occupied by the chip can be reduced and the number of fuses to be cut is extremely small. Reliability is improved. This is because the number of memory cells attached to a single common power supply line and row selection line increases under the recent trend toward large-capacity memory. This can also be said that the reliability decreases as the number of times increases.

【0008】[0008]

【実施例】以下図面を参照して本発明の実施例を説明す
る。図1は、メモリセルがマトリクス状に配列されたメ
モリセル・アレイにおいて、行方向にあるメモリセルが
付随する共通電源線の1列のみを示したもので、図7の
ものに対応させた場合の例である。このため、図1にお
いて図7のものと対応する箇所には同一符号を付してお
く。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows only one column of a common power supply line accompanied by memory cells in the row direction in a memory cell array in which memory cells are arranged in a matrix. Is an example of. Therefore, in FIG. 1, parts corresponding to those in FIG. 7 are designated by the same reference numerals.

【0009】図1では、共通電源線2を2分割した場合
の例である。その分割電源線2aと2bとの分割点の境
目は、電源電圧供給手段11で接続される。この手段1
1は、ここではCMOSインバータ11a、11bを縦
続接続したものを用いている。CMOSインバータは、
通常、その電源Vcc側にPMOSトランジスタが、配
置されるため、CMOSインバータ出力端に電源Vcc
レベルが得られて、好ましい。
FIG. 1 shows an example in which the common power supply line 2 is divided into two. The boundary between the dividing points of the divided power supply lines 2a and 2b is connected by the power supply voltage supply means 11. This means 1
1 uses here CMOS inverters 11a and 11b connected in cascade. CMOS inverter
Normally, a PMOS transistor is arranged on the side of the power supply Vcc, so that the power supply Vcc is connected to the output terminal of the CMOS inverter.
A level is obtained and it is preferable.

【0010】電源Vccの供給端子3に接続されるヒュ
ーズ4と該ヒューズに一番近いメモリセル1との間の分
割電源線2aには、共通電源線2を接地電位に保持する
電位保持手段12の出力端12aが接続されている。こ
の手段12は、トランジスタ13〜15の部分のフリッ
プフロップ部と、カップリング容量16からなってい
る。この手段12の動作は、ヒューズ4が切断されてい
ない状態では、端子3からヒューズ4を介して電源Vc
c(“1”)レベルが供給され続け、反対側のノード1
2bは“0”レベルになっている。一方、図1のメモリ
セル1のいずれかにリーク不良が検出されたときは、レ
ーザ溶断等によって、ヒューズ4を切断し、冗長セルと
の切り替えを行う。尚、ヒューズ4を切断するときは、
電源Vccの印加は一切なされていない。よって、ヒュ
ーズ4の切断後に電源Vccが再投入されると、容量1
6を介してノード12bが“1”レベルとなり、ノード
12aが“0”つまり接地レベルに保持され続け、共通
電源線2は接地レベルに保持され続けるものである。
On the divided power supply line 2a between the fuse 4 connected to the supply terminal 3 of the power supply Vcc and the memory cell 1 closest to the fuse 4, the potential holding means 12 for holding the common power supply line 2 at the ground potential. Is connected to the output terminal 12a. This means 12 is composed of a flip-flop portion of transistors 13 to 15 and a coupling capacitor 16. The operation of this means 12 is such that, in a state where the fuse 4 is not cut, the power source Vc is supplied from the terminal 3 through the fuse 4.
The c (“1”) level is continuously supplied, and the node 1 on the opposite side is supplied.
2b is at "0" level. On the other hand, when a leak defect is detected in any of the memory cells 1 in FIG. 1, the fuse 4 is cut by laser fusing or the like to switch to the redundant cell. When disconnecting the fuse 4,
No power supply Vcc is applied. Therefore, when the power supply Vcc is turned on again after the fuse 4 is cut off, the capacitance 1
The node 12b goes to "1" level via 6 and the node 12a is kept at "0", that is, the ground level, and the common power supply line 2 is kept at the ground level.

【0011】図2、図3は、図1の構成の作用効果説明
するためのものである。ここで図2(a)は、図1の電
源電圧供給手段11を介在させないもので、いわば従来
例のものに相当する。図2(b)は、図1を等価回路的
に示したものである。ここでLは共通電源線2の長さ、
L/2は、それぞれ分割電源線2a、2bの長さ、iは
共通電源線2を流れる電流、Rは共通電源線の配線抵
抗、Va、Va´は、それぞれ図2(a)、(b)の遠
端側電圧である。図3は、電源線2の抵抗による電圧降
下状態を示している。
2 and 3 are for explaining the operation and effect of the configuration of FIG. Here, FIG. 2A does not include the power supply voltage supply means 11 of FIG. 1, and is equivalent to a conventional example. FIG. 2B shows an equivalent circuit of FIG. Where L is the length of the common power supply line 2,
L / 2 is the length of the divided power supply lines 2a and 2b, i is the current flowing through the common power supply line 2, R is the wiring resistance of the common power supply line, and Va and Va 'are shown in FIGS. 2A and 2B, respectively. ) Is the far-end side voltage. FIG. 3 shows a voltage drop state due to the resistance of the power supply line 2.

【0012】即ち図2(b)に示すように、共通電源線
2を2分割しかつ増幅による電源電圧供給手段11を配
置することにより、手段11で、分割電源線2bにその
始端から末端に向けて、改めてVccを供給できること
により、従来例に比し、図3にも示される如く Va´=Va/2 の電圧降下となり、電圧降下を従来例の半分にできる。
このため、各メモリセル1には、従来例よりも電圧効果
の少ない、比較的高い電源電圧を供給できるものであ
る。またこのため、動作の過渡応答においても、電源の
変動が小となり、動作マージンが向上する。加えて、共
通電源線2を接地レベルに保持しておくため、動作の安
定化も期待できるものである。
That is, as shown in FIG. 2 (b), by dividing the common power supply line 2 into two and arranging a power supply voltage supply means 11 by amplification, the means 11 allows the divided power supply line 2b from its start end to its end. To the contrary, by supplying Vcc again, the voltage drop becomes Va ′ = Va / 2 as shown in FIG. 3 as compared with the conventional example, and the voltage drop can be half that of the conventional example.
Therefore, each memory cell 1 can be supplied with a relatively high power supply voltage with less voltage effect than the conventional example. Therefore, the fluctuation of the power supply is small even in the transient response of the operation, and the operation margin is improved. In addition, since the common power supply line 2 is held at the ground level, stabilization of the operation can be expected.

【0013】図4、図5に、メモリの大容量化および共
通電源線の配線抵抗が上昇したときのメモリセル・アレ
イ(共通電源線1本分)を示す。図4は、本発明を更に
具体化した場合の実施例、図5は、通常の手段を用いて
考えられる共通電源線の電圧降下防止手段(それぞれヒ
ューズ4を介したVcc供給)を用いたものを示す。図
4、図5共に、ここでは本発明において1本化できる共
通電源線をN分割している。
4 and 5 show a memory cell array (for one common power supply line) when the memory capacity is increased and the wiring resistance of the common power supply line is increased. FIG. 4 shows an embodiment in which the present invention is further embodied, and FIG. 5 uses a common power supply line voltage drop prevention means (Vcc supply via fuse 4), which is conceivable using ordinary means. Indicates. 4 and 5, the common power supply line that can be integrated in the present invention is divided into N parts.

【0014】図4、図5において、21、21、…は行
選択回路(ローデコーダ)、22、22、…は行選択線
つまりワード線、23、23、…はN分割された共通電
源線、2、2、…もN分割された電源線を示す。又メモ
リセル1、1、…は、ここではフリップフロップ構成の
スタティック型RAMセルを仮定している。このメモリ
セル1、1、…は、N分割の共通電源線23、23、…
で(図4)、また2、2、…で(図5)それぞれ動作さ
れ、1つのメモリセル1に着目して、行線22につなが
る2本の線の一方は、メモリセル1の記憶データをビッ
ト線(図示せず)に通電するスイッチ(トランスファゲ
ート)(図示せず)を開閉制御するためのもの、上記2
本の線の他方は、上記記憶データとは相補関係にあるデ
ータを、上記ビット線とは相補関係にあるビット線(図
示せず)に通電するスイッチを開閉制御するためのもの
である。
4 and 5, 21, 21, ... Are row selection circuits (row decoders), 22, 22, ... Are row selection lines, that is, word lines, and 23, 23 ,. 2, 2, ... Also indicate power supply lines divided into N. Further, the memory cells 1, 1, ... Are assumed to be static RAM cells having a flip-flop configuration here. The memory cells 1, 1, ... Have common power lines 23, 23 ,.
(FIG. 4), and 2, 2, ... (FIG. 5) respectively, paying attention to one memory cell 1, one of the two lines connected to the row line 22 is stored data of the memory cell 1. For controlling the opening and closing of a switch (transfer gate) (not shown) for energizing a bit line (not shown).
The other of the lines is for controlling the opening / closing of a switch for energizing a bit line (not shown) having a complementary relationship with the stored data and a data having a complementary relationship with the bit line.

【0015】しかして近時、メモリ容量は増大化されて
いるが、図5のものは、大容量メモリであるから、共通
電源線2の数及びそれに伴うヒューズ4の数とか行選択
線22の数が多くなるし、1本の共通電源線、行選択線
の長さも長くなるし、これら線中のメモリセル1の数も
多くなるため、チップ占有面積が増大すると共に、1本
の共通電源線、行選択線中にリーク大のメモリセルが存
在する可能性が大であり、従ってセル・アレイ中の複数
のヒューズ4を溶断する必要性が大となって、信頼性に
問題が生じる。しかし図4のものは、各行選択線22に
ついても共通の共通電源線23は1本とみなすことがで
き、しかもVcc供給端の1個のヒューズ4を切断する
だけでよいから、チップ占有面積の増大も少なく、かつ
ヒューズ切断時の信頼性も向上するものである。
Although the memory capacity has recently been increased, since the memory of FIG. 5 is a large capacity memory, the number of common power supply lines 2 and the number of fuses 4 associated therewith and the number of row selection lines 22 are increased. The number of chips increases, the length of one common power supply line and row selection line also increases, and the number of memory cells 1 in these lines also increases, increasing the chip occupying area and increasing the size of one common power supply. There is a high possibility that a leaky memory cell exists in the line or row selection line. Therefore, it becomes necessary to blow a plurality of fuses 4 in the cell array, which causes a reliability problem. However, in the case of FIG. 4, the common power supply line 23 common to each row selection line 22 can be regarded as one, and moreover, only one fuse 4 at the Vcc supply end is required to be cut off, so that the chip occupation area is reduced. The increase is small, and the reliability at the time of cutting the fuse is also improved.

【0016】図6は、電源供給手段11の異なる実施例
である。この手段11も、前実施例の場合と同様に、共
通電源線23を分割する如く配置され、この線23の手
前で降下しかけた電源電圧を、CMOSインバータ3
1、PMOSトランジスタ32により、Vccまで上昇
させる。
FIG. 6 shows a different embodiment of the power supply means 11. As in the case of the previous embodiment, this means 11 is also arranged so as to divide the common power supply line 23, and the power supply voltage which is about to drop before this line 23 is supplied to the CMOS inverter 3
1. Raise to Vcc by the PMOS transistor 32.

【0017】この図6の場合、図1のインバータ2段の
ものより小規模回路化できるし、PMOSトランジスタ
32を介して電源電圧Vccを電源線23に伝えるか
ら、電圧Vccがトランジスタ32を通っても、そのま
まの電源電圧値を電源線23に伝えることができるもの
である。
In the case of FIG. 6, the circuit can be made smaller than the two-stage inverter of FIG. 1, and since the power supply voltage Vcc is transmitted to the power supply line 23 via the PMOS transistor 32, the voltage Vcc passes through the transistor 32. Also, the power supply voltage value as it is can be transmitted to the power supply line 23.

【0018】[0018]

【発明の効果】以上説明したごとく本発明によれば、メ
モリセルがマトリクス状に配置されたメモリセル・アレ
イを有する半導体メモリにおいて、行方向に並ぶメモリ
セルへ電源供給する共通電源線の配線抵抗の増大による
電源電圧の低下およびチップサイズの増大を招くことな
く、リーク電流が許容値よりも大きいメモリセルを冗長
セルへ置き換え可能で、かつ安定した動作を期待できる
ものである。
As described above, according to the present invention, in a semiconductor memory having a memory cell array in which memory cells are arranged in a matrix, a wiring resistance of a common power supply line for supplying power to memory cells arranged in a row direction. It is possible to replace a memory cell having a leak current larger than an allowable value with a redundant cell and to expect a stable operation, without causing a decrease in power supply voltage and an increase in chip size due to an increase in power consumption.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示す回路構成図。FIG. 1 is a circuit configuration diagram showing an embodiment of the present invention.

【図2】図1の作用効果の説明図。FIG. 2 is an explanatory view of the function and effect of FIG.

【図3】図1の作用効果の説明図。FIG. 3 is an explanatory view of the function and effect of FIG.

【図4】図1をさらに具体化した実施例の回路構成図。FIG. 4 is a circuit configuration diagram of an embodiment in which FIG. 1 is further embodied.

【図5】図4の回路と比較するため、従来例を改良した
回路図。
5 is a circuit diagram in which a conventional example is improved for comparison with the circuit in FIG.

【図6】本発明の異なる実施例の要部の回路図。FIG. 6 is a circuit diagram of a main part of another embodiment of the present invention.

【図7】従来のメモリ回路図。FIG. 7 is a conventional memory circuit diagram.

【符号の説明】[Explanation of symbols]

1…メモリセル、2、23…共通電源線、2a、2b…
分割電源線、3…電源端子、4…ヒューズ、11…電源
電圧供給手段、12…電位保持手段、21…行デコー
ダ、22…行選択線。
1 ... Memory cell, 2, 23 ... Common power supply line, 2a, 2b ...
Divided power supply lines, 3 ... Power supply terminals, 4 ... Fuse, 11 ... Power supply voltage supply means, 12 ... Potential holding means, 21 ... Row decoder, 22 ... Row selection lines.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 27/112 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical indication H01L 27/112

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】メモリセルがマトリクス状に配置されたメ
モリセル・アレイを有する半導体メモリにおいて、行方
向にある複数のメモリセルへ共通に電源を供給する形で
N(Nは1以上の整数)分割され、一端側から他端側へ
電源を供給するメモリセル用の共通電源線と、この共通
電源線をN分割して得られる各分割電源線の隣接相互間
にそれぞれ介在され、前記電源の供給を行う一端側から
見て近い方に隣接した分割電源線からの電圧を増幅する
ことにより得た電源電圧レベルを、前記電源の供給端か
ら見て遠い方に隣接した分割電源線へ供給させる電源電
圧供給手段と、前記共通電源線の一端側の電源供給端と
この電源供給端から数えて1番目に位置した分割電源線
との間に介在されたヒューズと、このヒューズを切断し
て後、前記共通電源線を接地電位に保持する電位保持手
段と、前記ヒューズの切断後、そのヒューズを切断した
行の代りに用いる冗長セルとを具備したことを特徴とす
る半導体メモリ。
1. In a semiconductor memory having a memory cell array in which memory cells are arranged in a matrix, N (N is an integer of 1 or more) is commonly supplied to a plurality of memory cells in a row direction. A common power supply line for a memory cell, which is divided and supplies power from one end side to the other end side, and each divided power supply line obtained by dividing the common power supply line by N are respectively interposed between the common power supply line and the common power supply line. The power supply voltage level obtained by amplifying the voltage from the adjacent divided power supply line closer to the one end side from which power is supplied is supplied to the adjacent divided power supply line farther from the power supply supply end. The fuse interposed between the power supply voltage supply means, the power supply end on the one end side of the common power supply line, and the divided power supply line located first from the power supply end, and the fuse being cut off , The common power The semiconductor memory for the potential holding means for holding the line at the ground potential, after cutting of the fuse, characterized by comprising a redundancy cell used in place of the line cut the fuse.
【請求項2】前記ヒューズの切断は、スタンバイ時のリ
ーク電流が、許容値を越えるメモリセルが存在する共通
電源線について行われる請求項1に記載の半導体メモ
リ。
2. The semiconductor memory according to claim 1, wherein the fuse is blown for a common power supply line in which a memory cell having a leak current in a standby state exceeds an allowable value.
【請求項3】前記共通電源線の分割数とその共通電源線
に付随するメモリセル用の行選択線の数とは対応する請
求項1に記載の半導体メモリ。
3. The semiconductor memory according to claim 1, wherein the number of divisions of the common power supply line corresponds to the number of row selection lines for memory cells associated with the common power supply line.
【請求項4】前記電源電圧供給手段は、PMOSトラン
ジスタを介して電源を分割電源線へ供給する請求項1に
記載の半導体メモリ。
4. The semiconductor memory according to claim 1, wherein the power supply voltage supply means supplies power to the divided power supply lines via PMOS transistors.
【請求項5】前記メモリセルは、フリップフロップ構成
のスタティック型セルである請求項1に記載の半導体メ
モリ。
5. The semiconductor memory according to claim 1, wherein the memory cell is a static cell having a flip-flop configuration.
JP02098494A 1994-02-18 1994-02-18 Semiconductor memory Expired - Fee Related JP3354267B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02098494A JP3354267B2 (en) 1994-02-18 1994-02-18 Semiconductor memory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02098494A JP3354267B2 (en) 1994-02-18 1994-02-18 Semiconductor memory

Publications (2)

Publication Number Publication Date
JPH07230699A true JPH07230699A (en) 1995-08-29
JP3354267B2 JP3354267B2 (en) 2002-12-09

Family

ID=12042424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02098494A Expired - Fee Related JP3354267B2 (en) 1994-02-18 1994-02-18 Semiconductor memory

Country Status (1)

Country Link
JP (1) JP3354267B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6373760B1 (en) 2000-12-08 2002-04-16 Mitsubishi Denki Kabushiki Kaisha Static type semiconductor memory device adopting a redundancy system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6373760B1 (en) 2000-12-08 2002-04-16 Mitsubishi Denki Kabushiki Kaisha Static type semiconductor memory device adopting a redundancy system

Also Published As

Publication number Publication date
JP3354267B2 (en) 2002-12-09

Similar Documents

Publication Publication Date Title
KR970002071B1 (en) Improved method and apparatus for repair of memory by redundancy
US6351140B2 (en) Low current redundancy anti-fuse method and apparatus
EP0031386A1 (en) Semiconductor memory device
JP2731136B2 (en) Redundancy circuit and method for semiconductor memory device
JP2782948B2 (en) Semiconductor memory
JPS59142800A (en) Semiconductor storage device
JPS60170100A (en) Cmos semiconductor integrated circuit
US4829481A (en) Defective element disabling circuit having a laser-blown fuse
KR0157339B1 (en) Fault cell repair circuit of semiconductor memory
JP3821992B2 (en) Redundant decoder enable circuit for semiconductor memory device
US5682105A (en) Bonding option circuit having no pass-through current
US5457656A (en) Zero static power memory device redundancy circuitry
JPH10275898A (en) Semiconductor integrated circuit device
US5390150A (en) Semiconductor memory device with redundancy structure suppressing power consumption
JPH06232373A (en) Semiconductor memory device
EP0480915B1 (en) Defective element disabling circuit having a laser-blown fuse
JP3354267B2 (en) Semiconductor memory
US6337815B1 (en) Semiconductor memory device having redundant circuit
JP2875992B2 (en) Spare decoder circuit and coding method of defective cell address
JP3414496B2 (en) Semiconductor device
KR20080101149A (en) Semiconductor memory device
KR0146630B1 (en) Selection circuit for the memory block of semiconductor device
JPH0373959B2 (en)
KR100487491B1 (en) Redunduncy selecting circuit of semiconductor memory device
JP3545575B2 (en) Semiconductor memory device and defect repair method therefor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070927

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080927

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080927

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090927

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees