JPH07229986A - Core structure for boiling water reactor - Google Patents

Core structure for boiling water reactor

Info

Publication number
JPH07229986A
JPH07229986A JP6020799A JP2079994A JPH07229986A JP H07229986 A JPH07229986 A JP H07229986A JP 6020799 A JP6020799 A JP 6020799A JP 2079994 A JP2079994 A JP 2079994A JP H07229986 A JPH07229986 A JP H07229986A
Authority
JP
Japan
Prior art keywords
core
control rod
channel
fuel
fuel assembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6020799A
Other languages
Japanese (ja)
Inventor
Hiroyuki Yoshida
博之 吉田
Masahiko Kuroki
政彦 黒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP6020799A priority Critical patent/JPH07229986A/en
Publication of JPH07229986A publication Critical patent/JPH07229986A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PURPOSE:To suppress a change in a gap between channel boxes in order to moderate the rise of a neutron flux at the time of an earthquake. CONSTITUTION:A channel spacer 6 for maintaining a water gap A between channel boxes 3 is provided between the channel boxes 3 on the side of insertion of a control rod 2. The width of the water gap A between the channel boxes is made larger in the lower part of a core than in the upper part along the axial direction of a fuel assembly, while the width of a water gap B between the channel boxes on the side of non-insertion of the control rod is made smaller in the lower part of the core than in the upper part along the axial direction of the fuel assembly.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、沸騰水型原子炉(以
下、BWRと記す)の燃料集合体および炉心内部構造体
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel assembly for a boiling water reactor (hereinafter referred to as BWR) and a core internal structure.

【0002】[0002]

【従来の技術】BWRの炉心は、正方格子状に配列され
燃料棒および水ロッドを上下部タイプレートで保持し、
その周囲をチャンネルボックスで囲んで燃料集合体と
し、この燃料集合体を複数本正方格子状に装荷した配置
構造となっている。チャンネルボックスは冷却材の流路
を形成するとともに、隣接するチャンネルボックスの間
の水ギャップには燃料集合体を4体に1本の割合で十字
型制御棒が挿入される。
BWR cores are arranged in a square lattice and hold fuel rods and water rods at the upper and lower tie plates,
The surrounding structure is surrounded by a channel box to form a fuel assembly, and a plurality of the fuel assemblies are loaded in a square lattice. The channel boxes form a flow path for the coolant, and the cross control rods are inserted into the water gap between the adjacent channel boxes at a ratio of one fuel assembly to four fuel assemblies.

【0003】BWR炉心は炉心格子形状の観点から2種
類に大別される。第1は水ギャップ幅が十字型制御棒の
挿入位置と非挿入位置とで等しい、いわゆるC格子形状
のC格子炉心と、第2は上記2つの水ギャップ幅が異な
り、制御棒挿入位置の水ギャップが非挿入位置より広い
形状となっているD格子形状の「D格子炉心」が知られ
ている。
BWR cores are roughly classified into two types from the viewpoint of core lattice shape. The first is a C-lattice core having a so-called C-lattice shape in which the water gap width is the same at the insertion position and the non-insertion position of the cross control rod, and the second is the water at the control rod insertion position where the two water gap widths are different. A "D-lattice core" having a D-lattice shape in which the gap is wider than the non-inserted position is known.

【0004】本発明の対象とする技術は、このD格子炉
心を有するBWRの炉心構造体に関するものである。
The technology targeted by the present invention relates to a core structure of a BWR having this D-lattice core.

【0005】図7はD格子炉心の平面図であり、十字型
制御棒2を囲む4体の燃料集合体1について示してい
る。図中符号3はチャンネルボックス、4はチャンネル
ファスナ、5は上部タイプレート、6はチャンネルスペ
ーサ、Aは制御棒挿入側チャンネル間水ギャップ、Bは
制御棒非挿入側チャンネル間水ギャップである。
FIG. 7 is a plan view of the D-lattice core, showing four fuel assemblies 1 surrounding the cross-shaped control rod 2. In the figure, reference numeral 3 is a channel box, 4 is a channel fastener, 5 is an upper tie plate, 6 is a channel spacer, A is a control rod insertion side inter-channel water gap, and B is a control rod non-insertion side inter-channel water gap.

【0006】D格子炉心は図7に示した制御棒挿入側の
チャンネル間水ギャップAが制御棒2が挿入されない側
の水ギャップBより大きい形状となっている。また、炉
心内での燃料集合体1は図8に示したように燃料集合体
1の下部が炉心支持板8に配置された燃料支持金具(図
示せず)により支持され、上部が短冊状の上部格子板7
で支持される。
The D-lattice core has a shape in which the inter-channel water gap A on the control rod insertion side shown in FIG. 7 is larger than the water gap B on the side where the control rod 2 is not inserted. In addition, as shown in FIG. 8, the fuel assembly 1 in the core has a lower portion of the fuel assembly 1 supported by a fuel support fitting (not shown) arranged on the core support plate 8 and an upper portion of which has a strip shape. Upper lattice plate 7
Supported by.

【0007】燃料支持金具は燃料集合体一体毎にその位
置が確定するが、上部格子板7は燃料集合体が4体入る
大きさで区切られている。そのため、炉心上部での燃料
集合体1の間隙はチャンネルボックス3の上部に取り付
けられた板ばねであるチャンネルファスナ4によって燃
料集合体1が互いに押し合い、一定の間隔を保ちながら
燃料集合体1を垂直に配置する構造となっている。
The position of the fuel support fitting is fixed for each integrated fuel assembly, but the upper lattice plate 7 is divided into four fuel assemblies. Therefore, the gap between the fuel assemblies 1 in the upper part of the core is pushed by the channel fasteners 4 which are leaf springs attached to the upper part of the channel box 3 so that the fuel assemblies 1 are pressed against each other while maintaining a constant interval. It has a structure to be placed.

【0008】BWR燃料集合体は、チャンネルボックス
間水ギャップに近い部分と燃料集合体内部の中性子スペ
クトルを比べると、減速材密度の大きいチャンネルボッ
クス壁近傍では中性子が熱化しやすく出力が出やすい傾
向であるとともに、燃料集合体の内部では、沸騰による
ボイド発生のため中性子が減速されにくく、出力が出に
くい方向となる。
In the BWR fuel assembly, when comparing the neutron spectrum inside the fuel assembly with the portion close to the water gap between the channel boxes, the neutrons tend to be easily heated near the channel box wall where the moderator density is large, and the output tends to be generated. At the same time, inside the fuel assembly, neutrons are less likely to be decelerated due to the generation of voids due to boiling, which makes it difficult to output power.

【0009】したがって、燃料集合体の中央部の燃料棒
濃縮度を水ギャップ近傍の燃料棒の濃縮度より大きく
し、出力分布が過大に歪まないよう一般に設計される。
また、C格子炉心では制御棒挿入側と非挿入側の水ギャ
ップが等しいため、燃料の濃縮度の分布は、対称性をも
った設計が可能である。
Therefore, the fuel rod enrichment in the central portion of the fuel assembly is made larger than that of the fuel rods in the vicinity of the water gap so that the output distribution is not excessively distorted.
Further, in the C-lattice core, the water gaps on the control rod insertion side and the non-insertion side are the same, so that the fuel concentration distribution can be designed with symmetry.

【0010】一方、D格子炉心では、制御棒挿入側と非
挿入側で水ギャップが幅が異なるため、水ギャップの広
い側では中性子の減速効果が狭い側でのそれよりも大き
くなる。従って、D格子炉心用燃料集合体では、水ギャ
ップの広い側に近い燃料棒の濃縮度を水ギャップの狭い
側に近い燃料棒の濃縮度よりも相対的に低くする設計を
採用し、燃料棒の局所出力が過度に大きくならないよう
な濃縮度分布としている。
On the other hand, in the D-lattice core, since the width of the water gap is different between the control rod insertion side and the non-insertion side, the neutron moderating effect is larger on the wide water gap side than on the narrow side. Therefore, in the fuel assembly for the D-lattice core, a design is adopted in which the enrichment of the fuel rod near the wide side of the water gap is relatively lower than the enrichment of the fuel rod near the narrow side of the water gap. The concentration distribution is set so that the local output of does not become excessively large.

【0011】[0011]

【発明が解決しようとする課題】上述したように、D格
子炉心は水ギャップの広い側の燃料棒濃縮度が水ギャッ
プの狭い燃料棒の濃縮度より相対的に低いため、何等か
の原因、例えば地震などで水ギャップの寸法が短時間で
変化し、水ギャップの広い側が初期寸法より狭く、狭い
側が広くなった場合、減速材分布が変化し、水ギャップ
が狭くなった方の燃料棒は出力が低下し、逆に広くなっ
た方の出力は上昇する方向となる。
As described above, in the D-lattice core, the fuel rod enrichment on the side with a wide water gap is relatively lower than the enrichment on the fuel rod with a narrow water gap. For example, when the size of the water gap changes in a short time due to an earthquake, etc., and the wide side of the water gap is narrower than the initial size and the narrow side becomes wider, the moderator distribution changes and the fuel rod with the narrower water gap becomes The output decreases, and conversely the output that has become wider tends to increase.

【0012】この場合、D格子炉心で狭い側の水ギャッ
プの拡大に伴う減速効果増大による出力の上昇と、広い
側の水ギャップの縮小に伴う減速効果減少による出力の
増加を比較すると、相対的に濃縮度が高い燃料棒が配置
されている初期水ギャップが狭い方が、出力変化の感度
が大きいため、出力の増大する効果が大きくなる。
[0012] In this case, comparing the increase in power due to the increase in the deceleration effect due to the expansion of the water gap on the narrow side in the D-lattice core and the increase in the output due to the decrease in the deceleration effect due to the reduction of the water gap on the wide side, the relative The narrower the initial water gap in which the highly concentrated fuel rods are arranged, the greater the sensitivity of the output change, and the greater the effect of increasing the output.

【0013】したがって、D格子炉心の原子炉プラント
では、地震が発生した場合、中性子束の上昇が生じ、ス
クラムに至る可能性がある。
Therefore, in a nuclear reactor plant having a D-lattice core, when an earthquake occurs, the neutron flux may rise and may lead to a scrum.

【0014】一般にボイド率の高い炉心上部と、ボイド
率の低い炉心下部で水ギャップ幅の変動の反応度に対す
る影響は異なる。図9は制御棒非挿入側の水ギャップ幅
が増加した場合の反応度の上昇割合を示している。図
中、ボイド率0%については実線S,ボイド率40%につ
いては破線T、ボイド率70%については一点破線Uで示
している。
In general, the upper part of the core having a high void fraction and the lower part of the core having a low void fraction have different effects on the reactivity due to the fluctuation of the water gap width. FIG. 9 shows the rate of increase in reactivity when the water gap width on the control rod non-insertion side increases. In the figure, a solid line S indicates a void ratio of 0%, a broken line T indicates a void ratio of 40%, and a dashed line U indicates a void ratio of 70%.

【0015】図9から明らかなようにチャンネルボック
ス内のボイド率が高いほど反応度変化に及ぼす影響が大
きい。これは、ボイド率が高いほど減速不足の状態とな
っているため、同じ水ギャップ幅の変化を仮定すると相
対的な減速密度変化が大きくなるためである。したがっ
て、ボイド率の高い炉心の上部の方が炉心下部に比べ中
性子束上昇が大きくなる。
As is clear from FIG. 9, the higher the void ratio in the channel box, the greater the influence on the reactivity change. This is because the higher the void ratio is, the more the deceleration is insufficient, so that the relative change in the deceleration density is large if the same change in the water gap width is assumed. Therefore, the neutron flux increase is larger in the upper part of the core with a higher void fraction than in the lower part of the core.

【0016】とくに、地震時、水ギャップ幅が初期間隔
を保ちながら振動すれば、反応度の増加は起こりにくい
が、燃料集合体の上部支持構造を考えると、上部格子板
7は剛体なので、上部格子板7側すなわち水ギャップの
狭い側の変化は小さいが、チャンネルファスナ4側はバ
ネ構造であるため、水ギャップの広い側の変化は大き
い。したがって、地震時チャンネル間ギャップは、狭い
方はより広くなり、広い側はより狭くなる。
In particular, during an earthquake, if the water gap width oscillates while maintaining the initial gap, the reactivity is unlikely to increase, but considering the upper support structure of the fuel assembly, the upper lattice plate 7 is a rigid body, so The change on the grid plate 7 side, that is, on the side where the water gap is narrow is small, but the change on the side where the water gap is wide is large because the channel fastener 4 side has a spring structure. Therefore, the inter-channel gap during an earthquake becomes wider when it is narrower and narrower when it is wider.

【0017】ボイド率の影響、上部支持構造および燃料
棒濃縮度分布の非対称性から水ギャップ変動の影響は中
性子束の上昇を促す方向となる。一方、C格子炉心で
は、それぞれの水ギャップに面した燃料棒濃縮度に対称
性があるため、水ギャップが広くなった方の燃料棒の出
力上昇と、水ギャップが狭くなった方の燃料棒の出力低
下は相殺されることとなり、スクラムに至りにくい。
Due to the influence of the void fraction, the asymmetry of the upper support structure and the fuel rod enrichment distribution, the influence of the water gap fluctuation tends to promote the increase of the neutron flux. On the other hand, in the C-lattice core, since the fuel rod enrichments facing the respective water gaps have symmetry, the power increase of the fuel rod with the wider water gap and the fuel rod with the narrower water gap are increased. The decrease in output will be offset, and it will be difficult to reach a scrum.

【0018】さらに、BWR燃料集合体は、軸方向ボイ
ド分布の影響により、炉心下部では軸方向出力分布がピ
ークを持つ傾向となるため、炉心下部の濃縮度に比べ炉
心上部の濃縮度を大きくする設計が採用されることがあ
る。
Further, in the BWR fuel assembly, the axial power distribution tends to have a peak in the lower core due to the influence of the axial void distribution, so that the enrichment in the upper core is made larger than that in the lower core. The design may be adopted.

【0019】D格子炉心における燃料集合体1の燃料棒
濃縮度分布の例を図3および図10に示す。図3および図
10は燃料棒を8×8の格子状に配列し、ウォータロッド
Wを2本配置した燃料集合体1の例であり、炉心軸方向
中央部より下部の燃料棒平均濃縮度分布を図3に、炉心
軸方向中央部より上部の燃料棒平均濃縮度分布を図10に
示す。
An example of the fuel rod enrichment distribution of the fuel assembly 1 in the D-lattice core is shown in FIGS. 3 and 10. Figure 3 and Figure
10 is an example of a fuel assembly 1 in which fuel rods are arranged in an 8 × 8 lattice and two water rods W are arranged. The average enrichment distribution of the fuel rods below the central portion in the axial direction of the core is shown in FIG. Fig. 10 shows the average enrichment distribution of fuel rods above the central portion in the axial direction of the core.

【0020】図3および図10の(a)は、燃料集合体の
平面図を示し、(b)は燃料棒番号1〜12のウラン濃縮
度を表図で示す。D格子では、上記燃料集合体断面方向
の濃縮度分布をつけながら、且つ、上下方向の濃縮度分
布を確保する必要があるため、図3および図10に示した
ように複雑な設計とする必要があり、製造上拘束条件と
なっている。
3 (a) and 10 (a) are plan views of the fuel assembly, and FIG. 3 (b) is a table showing the uranium enrichment of fuel rod numbers 1-12. Since it is necessary to secure the enrichment distribution in the vertical direction while providing the enrichment distribution in the cross section direction of the fuel assembly in the D lattice, it is necessary to make a complicated design as shown in FIGS. 3 and 10. There is a constraint on manufacturing.

【0021】本発明は、上記課題を解決するためになさ
れたもので、地震時等のD格子炉心の水ギャップ変動に
よる中性子束の上昇すなわち出力上昇を緩和することに
よりスクラムを回避するとともに、燃料集合体の濃縮度
分布の簡素化、製造上の向上を目的とした沸騰水型原子
炉用炉心構造体を提供することにある。
The present invention has been made to solve the above-mentioned problems, and avoids scrum by mitigating an increase in neutron flux, that is, an increase in output due to fluctuations in the water gap of the D-lattice core during an earthquake, etc. It is an object of the present invention to provide a boiling water reactor core structure for the purpose of simplifying the concentration distribution of the assembly and improving manufacturing.

【0022】[0022]

【課題を解決するための手段】本発明は正方格子状に配
列された燃料棒および水ロッドとを囲む角筒状のチャン
ネルボックスを有する燃料集合体を規則的に多数配列
し、前記各々のチャンネルボックスの4側面のうち、十
字型制御棒の挿入位置に面した2つの側面のチャンネル
ボックス間の水ギャップが十字型制御棒の挿入位置に面
しない2つの側面のチャンネルボックス間の水ギャップ
より大きな格子炉心を持った沸騰水型原子炉用炉心構造
体において、前記制御棒挿入側のチャンネルボックス間
にはチャンネルボックス間のギャップを保持するための
チャンネルスペーサを有し、且つそのチャンネルボック
ス間水ギャップ幅は燃料集合体の軸方向に沿って、炉心
下部の方が炉心上部よりも大きく、制御棒非挿入側のチ
ャンネルボックス間水ギャップの幅は、燃料集合体の軸
方向に沿って炉心下部の方が炉心上部よりも小さくする
ことを特徴とする。
According to the present invention, a large number of fuel assemblies each having a rectangular cylindrical channel box surrounding a fuel rod and a water rod arranged in a square lattice are regularly arranged, and each of the channels is arranged. Of the four sides of the box, the water gap between the channel boxes on the two sides facing the insertion position of the cross control rod is larger than the water gap between the channel boxes on the two sides not facing the insertion position of the cross control rod. In a boiling water nuclear reactor core structure having a lattice core, a channel spacer for maintaining a gap between the channel boxes is provided between the channel boxes on the control rod insertion side, and the water gap between the channel boxes is provided. The width of the lower part of the core is larger than that of the upper part of the core along the axial direction of the fuel assembly. The width of the gap, towards the reactor core lower along the axial direction of the fuel assembly is characterized by smaller than core upper.

【0023】また、本発明は上記発明に係る沸騰水型原
子炉用炉心構造体において、炉心に配列されたそれぞれ
の燃料集合体のチャンネルボックスを制御棒挿入位置に
面した2側面および水平方向の対角線で囲まれる第1の
領域と、制御棒挿入位置に面しない2側面および前記対
角線で囲まれる第2の領域に分割し、前記第1の領域に
含まれる燃料棒の炉心軸方向中央部より下部の平均濃縮
度をe,lw,炉心中央部より上部での平均濃縮度を
e,uw,前記第2の領域に含まれる燃料棒の炉心軸方
向中央部より下部の平均濃縮度e,ln,炉心軸方向中
央部より上部の平均濃縮度e,unとした場合e,lw
<e,uw、e,ln<e,un であり、かつ、 e,un/e,uw ≦ e,ln/e,lw である燃料集合体を装荷したことを特徴とする。
Further, in the core structure for a boiling water reactor according to the above invention, the present invention has two side surfaces facing the control rod insertion position of the channel box of each fuel assembly arranged in the core and in the horizontal direction. It is divided into a first region surrounded by a diagonal line, two side faces that do not face the control rod insertion position, and a second region surrounded by the diagonal line, and from a central portion in the axial direction of the core of the fuel rods included in the first region. The average enrichment of the lower part is e, lw, the average enrichment above the central part of the core is e, uw, the average enrichment of the fuel rods included in the second region below the central part in the axial direction of the core e, ln , Average enrichment e, un above the central part in the axial direction of the core e, lw
<E, uw, e, ln <e, un, and e, un / e, uw ≤ e, ln / e, lw are loaded.

【0024】[0024]

【作用】本発明は、地震時の中性子束の上昇を緩和する
ため、チャンネル間ギャップの変動すなわち減速材分布
の変動を抑制するものである。
The present invention suppresses fluctuations in the inter-channel gap, that is, fluctuations in moderator distribution, in order to mitigate the increase in neutron flux during an earthquake.

【0025】地震時の水ギャップ幅の変動を小さくする
手段としては、炉心中央部に振動による振幅を抑制する
構造材を設けることが望ましいが、制御棒の挿入性の確
保、燃料の交換性を確保するためには得策ではない。
As a means for reducing the fluctuation of the water gap width at the time of an earthquake, it is desirable to provide a structural material for suppressing the amplitude due to the vibration in the central part of the core, but it is necessary to secure the insertability of the control rod and the exchangeability of the fuel. It is not a good idea to secure it.

【0026】そこで、本発明は、中性子束の上昇が従来
の炉内構造に起因する振動の形状、ボイド率との相関に
着目し、最小限の構造変更で、かつ、既設プラントの大
幅な改造なしに、上記の課題を解決する。
In view of this, the present invention focuses on the correlation between the increase in neutron flux and the shape of vibration caused by the conventional reactor internal structure, and the void fraction, and makes a minimum structural change and makes a large modification of the existing plant. Without solving the above problems.

【0027】本発明は、炉心上部での振動を抑制するこ
とがより効果的であることを重視し、制御棒挿入側のチ
ャンネル間水ギャップを炉心下部より炉心上部の方が小
さくなるようにし、また、制御棒非挿入側のチャンネル
間水ギャップは、炉心下部より炉心上部の方が大きくな
るようする。
The present invention emphasizes that it is more effective to suppress vibrations in the upper core, and makes the water gap between channels on the control rod insertion side smaller in the upper core than in the lower core. The water gap between channels on the control rod non-insertion side should be larger in the upper core than in the lower core.

【0028】制御棒挿入側のチャンネル間水ギャップ
は、炉心下部より炉心上部の方が小さくなっているた
め、従来のD格子炉心の場合に比べ制御棒挿入側に設け
られたチャンネルファスナは、チャンネルによって、よ
りいっそう押しつけられることとなり、振動による水ギ
ャップの変動をより小さくすることができる。従って、
振動時における中性子束の上昇は、緩和される。
Since the water gap between channels on the control rod insertion side is smaller in the upper part of the core than in the lower part of the core, the channel fasteners provided on the control rod insertion side are smaller than those in the conventional D-lattice core. This makes it possible to reduce the fluctuation of the water gap due to vibration due to the pressing force. Therefore,
The rise in neutron flux during vibration is mitigated.

【0029】[0029]

【実施例】本発明に係る沸騰水型原子炉用炉心構造体の
実施例を図面を参照して説明する。図1は、本発明に係
る第1の実施例の炉心構造体を十字型制御棒2を囲む4
体の燃料集合体1について平面図で示し、図2は図1を
側面から見た立面図で示している。
EXAMPLE An example of a core structure for a boiling water reactor according to the present invention will be described with reference to the drawings. FIG. 1 shows a core structure of a first embodiment according to the present invention, in which a cross-shaped control rod 2 is surrounded by 4
The body fuel assembly 1 is shown in a plan view and FIG. 2 is a side elevational view of FIG.

【0030】図1および図2においてはぞれぞれのチャ
ンネルボックス3の4側面のうち、十字型制御棒2の挿
入位置に面しない他の2側面、つまり上部格子板7側
に、突起9を設けた例を示している。
In FIGS. 1 and 2, of the four side surfaces of each channel box 3, the other two side surfaces that do not face the insertion position of the cross-shaped control rod 2, that is, the upper lattice plate 7 side, have a protrusion 9 An example in which is provided is shown.

【0031】すなわち、突起9は図2に示したように高
さ位置として、上部格子板7と接する位置に設けられて
いる。なお、図中、Aは制御棒挿入側チャンネル間水ギ
ャップを示し、Bは制御棒非挿入側チャンネル間水ギャ
ップを示している。
That is, the projection 9 is provided at a height position as shown in FIG. 2 at a position in contact with the upper grid plate 7. In the figure, A indicates a water gap between channels on the control rod insertion side, and B indicates a water gap between channels on the control rod non-insertion side.

【0032】従って、制御棒挿入側のチャンネル間水ギ
ャップAは、炉心支持板8から上部格子板7へ向けて狭
くなっており、従来のD格子炉心の場合と比較して、チ
ャンネルファスナ4は上部格子板7内でより押しつけら
れることとなる。その結果、地震時等における制御棒挿
入側への振動が小さくなる。
Therefore, the inter-channel water gap A on the control rod insertion side is narrowed from the core support plate 8 to the upper lattice plate 7, and the channel fastener 4 is smaller than that in the conventional D lattice core. It will be pressed further in the upper lattice plate 7. As a result, the vibration to the control rod insertion side at the time of an earthquake becomes small.

【0033】なお、本実施例において、突起9はチャン
ネルボックス3の各側面に2箇所設けているが、突起9
の箇数は2箇に限ることはなく、単数もしくは3箇以上
設けることによっても同様の効果が得られる。
In this embodiment, the protrusions 9 are provided at two places on each side surface of the channel box 3, but the protrusions 9
The number of is not limited to two, and the same effect can be obtained by providing a single number or three or more.

【0034】つぎに、本発明の第2の実施例について説
明する。この第2の実施例は前記第1の実施例に従属さ
れるべきものである。すなわち、図3および図4は図1
に対応したように燃料棒8×8の格子状に配列し、ウォ
ータロッドWを2本配列した燃料集合体の例である。
Next, a second embodiment of the present invention will be described. This second embodiment is to be subordinate to the first embodiment. That is, FIG. 3 and FIG.
Is an example of a fuel assembly in which two water rods W are arranged in a grid of 8 × 8 fuel rods.

【0035】本第2の実施例における炉心軸方向中央部
より下部燃料棒平均濃縮度分布を図3に示し、炉心軸方
向中央部より上部の燃料棒平均濃縮度分布を図4に示
す。図3および図4の(a)は本実施例の平面図を示
し、(b)は、燃料棒番号1〜12および1〜9のウラン
濃縮度を示す。
The average enrichment distribution of the lower fuel rods from the central portion in the axial direction of the core in the second embodiment is shown in FIG. 3, and the average enrichment distribution of the fuel rods from the central portion in the axial direction of the core is shown in FIG. 3 and 4 (a) are plan views of this embodiment, and FIG. 3 (b) shows the uranium enrichment of fuel rod numbers 1-12 and 1-9.

【0036】本第2の実施例によれば、燃料棒の間隔
は、燃料棒の下部においては従来の図10で示したD格子
炉心と同じ間隔が保たれるため、炉心軸方向中央部より
下部の平均濃縮度は図3(b)に示した通りである。
According to the second embodiment, the distance between the fuel rods is the same as that of the conventional D-lattice core shown in FIG. 10 in the lower portion of the fuel rods, so that the distance from the central portion in the axial direction of the core is increased. The average enrichment of the lower part is as shown in FIG.

【0037】すなわち、制御棒挿入側のコーナーに位置
している燃料棒番号12の燃料棒と、制御棒非挿入側のコ
ーナーに位置している燃料棒番号10の燃料棒とを結ぶ対
角線に交直する対角線Cを境界として、対角線Cから制
御棒側の領域に属する燃料棒の平均濃縮度(e,lw)
を、対角線Cから制御棒非挿入側の領域に属する燃料棒
の平均濃縮度(e,ln)より低くしている。
That is, the fuel rod of fuel rod No. 12 located at the corner on the control rod insertion side and the fuel rod of fuel rod No. 10 located at the corner on the control rod non-insertion side are connected to each other on a diagonal line. The average enrichment (e, lw) of the fuel rods belonging to the region on the control rod side from the diagonal line C with the diagonal line C as the boundary
Is lower than the average enrichment (e, ln) of the fuel rods belonging to the region on the control rod non-insertion side from the diagonal line C.

【0038】一方、燃料棒の上部においては、制御棒挿
入側のチャンネル間水ギャップが従来のD格子炉心より
狭くなり、また、制御棒非挿入側のチャンネル間ギャッ
プは、従来のD格子炉心より広がっているため、炉心上
部での水ギャップの制御棒挿入側と非挿入側との差は、
従来のD格子炉心より少なくなって、例えば、概略等し
くなっている。
On the other hand, in the upper part of the fuel rod, the inter-channel water gap on the control rod insertion side becomes narrower than that of the conventional D-lattice core, and the inter-channel gap on the control rod non-insertion side becomes smaller than that of the conventional D-lattice core. Since it has spread, the difference between the control rod insertion side and non-insertion side of the water gap in the upper core is
It is less than the conventional D-lattice core, and is, for example, approximately equal.

【0039】従って、図4に示したように炉心軸方向中
央部から上部の平均濃縮度は、対角線Dを境界として対
角線Dから制御棒挿入側の領域に属する燃料棒の平均濃
縮度(e,uw)と、対角線Dから制御棒非挿入側の領
域に属する燃料棒の平均濃縮度(e,un)との比e,
un/e,uwを燃料棒下部における制御棒挿入側と制
御棒非挿入側の比e,ln/e,lw以下となるように
することができる。
Therefore, as shown in FIG. 4, the average enrichment from the central portion to the upper portion in the axial direction of the core is the average enrichment of fuel rods belonging to the region on the control rod insertion side from the diagonal D with the diagonal D as the boundary (e, uw) to the average enrichment (e, un) of the fuel rods belonging to the control rod non-insertion side from the diagonal line D, e,
It is possible to set un / e, uw to be equal to or less than the ratio e, ln / e, lw between the control rod insertion side and the control rod non-insertion side in the lower portion of the fuel rod.

【0040】すなわち、e,un/e uw≦e,ln
/e,lw…となる。その結果、水ギャップ変動時にお
ける中性子束の上昇を従来のD格子炉心より抑えること
ができる。
That is, e, un / e uw ≦ e, ln
/ E, lw ... As a result, an increase in neutron flux when the water gap changes can be suppressed more than in the conventional D lattice core.

【0041】また、燃料棒の上部においては、濃縮度種
類が削減され、従来例では濃縮度種類が図10に示したよ
うに12種類であったのに対し、本実施例では図4に示し
たように9種類になる。従って、本実施例によれば燃料
製造上の簡素化が図れる。
In the upper part of the fuel rod, the enrichment types are reduced, and in the conventional example, there are 12 enrichment types as shown in FIG. 10, whereas in this embodiment the enrichment types are shown in FIG. There are 9 types. Therefore, according to this embodiment, the fuel production can be simplified.

【0042】なお、燃料棒上部と燃料棒下部の濃縮度の
関係は、下部より上部を大きく、すなわち、e,lw<
e,uw,e,ln<e,unとしている。その結果、
軸方向ボイド分布の影響による炉心下部の軸方向出力分
布のピークを緩和することとなる。
The enrichment relationship between the upper portion of the fuel rod and the lower portion of the fuel rod is larger in the upper portion than in the lower portion, that is, e, lw <
e, uw, e, ln <e, un. as a result,
The peak of the axial power distribution in the lower part of the core due to the influence of the axial void distribution will be relaxed.

【0043】なお、制御棒挿入側のチャンネル間水ギャ
ップを、炉心下部の方が炉心上部よりも大きくし、か
つ、制御棒非挿入側のチャンネル間水ギャップは炉心下
部の方が炉心上部より大きくする方法としては、本実施
例に限られない。
The inter-channel water gap on the control rod insertion side is larger in the lower core than in the upper core, and the inter-channel water gap in the control rod non-insertion side is larger in the lower core than in the upper core. The method for doing so is not limited to this embodiment.

【0044】つぎに図5および図6により本発明に係る
第3の実施例を説明する。本第3の実施例は前記第1の
実施例に準じたもので、図5は図2と同様に燃料集合体
1を側面から見た概念図である。すなわち、第3の実施
例では十字型制御棒挿入位置に面しない2側面に、チャ
ンネルボックス3の肉厚の厚い肉厚部3aを有してい
る。
Next, a third embodiment according to the present invention will be described with reference to FIGS. The third embodiment is based on the first embodiment, and FIG. 5 is a conceptual view of the fuel assembly 1 as viewed from the side like FIG. That is, in the third embodiment, the thick wall portion 3a of the channel box 3 is provided on the two side surfaces that do not face the cross-shaped control rod insertion position.

【0045】図5の上記格子板の高さGにおけるチャン
ネルボックスの断面図を図6に示す。図6において、E
は制御棒挿入側を示し、Fは制御棒非挿入側を示してい
る。制御棒非挿入側Fに面するチャンネル3の側面は肉
厚部3aを有している。
FIG. 6 shows a sectional view of the channel box at the height G of the lattice plate shown in FIG. In FIG. 6, E
Indicates the control rod insertion side, and F indicates the control rod non-insertion side. The side surface of the channel 3 facing the control rod non-insertion side F has a thick portion 3a.

【0046】本第3の実施例における作用効果は第1の
実施例と同様に、地震時に中性子束の上昇を緩和できチ
ャンネルボックス間ギャップの変動を抑制し、もって、
制御棒挿入側への振動が小さくなる。
Similar to the first embodiment, the effect of the third embodiment is that the increase in neutron flux can be mitigated at the time of earthquake and the fluctuation of the gap between the channel boxes can be suppressed.
Vibration to the control rod insertion side is reduced.

【0047】なお、第1の実施例でチャンネル3の側面
に突起9を設ける代わりに、上部格子板7に突起を設け
ることによっても同様の効果が得られる。さらに第1の
実施例と第3の実施例において第2の実施例を従属し付
加することによって、その効果をいっそう高めることが
できる。
The same effect can be obtained by providing the upper lattice plate 7 with projections instead of providing the projections 9 on the side surfaces of the channels 3 in the first embodiment. Furthermore, by substituting and adding the second embodiment to the first and third embodiments, the effect can be further enhanced.

【0048】[0048]

【発明の効果】本発明によれば地震時の振幅が小さくな
ることにより、水ギャップ幅の初期値からの変動が小さ
くなり、中性子束の上昇が緩和される。その結果スクラ
ムを回避する確率が高くなり、運転性能の向上に寄与す
る。
According to the present invention, since the amplitude at the time of earthquake becomes small, the fluctuation of the water gap width from the initial value becomes small and the rise of the neutron flux is alleviated. As a result, the probability of avoiding scrum increases, which contributes to improved driving performance.

【0049】また、従来のD炉心格子の燃料設計で必要
とされる制御棒非挿入側の濃縮度を高める設計が緩和さ
れるため、地震時に水ギャップ幅の変動があっても、制
御棒非挿入側水ギャップに面した燃料棒の濃縮度が低減
できるため、反応度変化、中性子束変化が小さくなり、
不要なスクラム確率が小さくなる。
Further, since the design for increasing the enrichment on the non-insertion side of the control rod, which is required in the fuel design of the conventional D core lattice, is relaxed, even if the water gap width changes during an earthquake, Since the enrichment of the fuel rod facing the insertion side water gap can be reduced, reactivity changes and neutron flux changes are reduced,
The unnecessary scrum probability is reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る沸騰水型原子炉用炉心構造体の第
1の実施例を示す平面図。
FIG. 1 is a plan view showing a first embodiment of a boiling water nuclear reactor core structure according to the present invention.

【図2】第1図を側面から見た概念的立面図。FIG. 2 is a conceptual elevational view of FIG. 1 seen from the side.

【図3】(a)は第2の実施例における燃料集合体の下
部を示す横断面図、(b)は(a)における炉心軸方向
中央部より下部の燃料棒平均濃縮度分布を示す表図。
3 (a) is a cross-sectional view showing a lower portion of a fuel assembly in the second embodiment, and FIG. 3 (b) is a table showing a fuel rod average enrichment distribution below a central portion in a core axis direction in FIG. 3 (a). Fig.

【図4】(a)は第2の実施例における燃料集合体の上
部を示す横断面図、(b)は(a)における炉心軸方向
中央部より上部の燃料棒平均濃縮度分布を示す表図。
FIG. 4A is a cross-sectional view showing an upper portion of the fuel assembly in the second embodiment, and FIG. 4B is a table showing a fuel rod average enrichment distribution above the central portion in the axial direction of the core in FIG. 4A. Fig.

【図5】本発明に係る沸騰水型原子炉用炉心構造体の第
3の実施例を側面から見た概念的立面図。
FIG. 5 is a conceptual elevational view of a third embodiment of the boiling water nuclear reactor core structure according to the present invention as seen from the side.

【図6】図5の高さGにおけるチャンネルボックスを示
す横断面図。
6 is a cross-sectional view showing the channel box at the height G in FIG.

【図7】従来のD格子炉心の制御棒を囲む4体の燃料集
合体について示す平面図。
FIG. 7 is a plan view showing four fuel assemblies surrounding a control rod of a conventional D-lattice core.

【図8】従来のD格子炉心の炉心構造体を一部切欠して
示す斜視図。
FIG. 8 is a perspective view showing a core structure of a conventional D-lattice core partially cut away.

【図9】図7における水ギャップ幅の変動とボイド率お
よび反応度上昇割合の関係を示す曲線図。
9 is a curve diagram showing the relationship between the variation of the water gap width and the void rate and the reactivity increase rate in FIG. 7.

【図10】(a)は従来のD格子炉心の燃料集合体を示
す横断面図、(b)は(a)における炉心軸方向中央部
より上部の燃料棒平均濃縮度分布を示す表図。
10 (a) is a cross-sectional view showing a fuel assembly of a conventional D-lattice core, and FIG. 10 (b) is a table showing a fuel rod average enrichment distribution above the central portion in the axial direction of the core in FIG. 10 (a).

【符号の説明】[Explanation of symbols]

1…燃料集合体、2…十字型制御棒、3…チャンネルボ
ックス、3a…チャンネル肉厚部、4…チャンネルファ
スナ、5…上部タイプレート、6…チャンネルスペー
サ、7…上部格子板、8…炉心支持板、9…突起、10…
下部タイプレート、A…制御棒挿入側チャンネル間水ギ
ャップ、B…制御棒非挿入側チャンネル間水ギャップ、
C,D…対角線、E…制御棒挿入側、F…制御棒非挿入
側、G…上部格子板の高さ。
DESCRIPTION OF SYMBOLS 1 ... Fuel assembly, 2 ... Cross control rod, 3 ... Channel box, 3a ... Channel thick part, 4 ... Channel fastener, 5 ... Upper tie plate, 6 ... Channel spacer, 7 ... Upper lattice plate, 8 ... Core Support plate, 9 ... Protrusion, 10 ...
Lower tie plate, A ... Water gap between control rod insertion side channels, B ... Water gap between control rod non-insertion channels,
C, D ... Diagonal line, E ... Control rod insertion side, F ... Control rod non-insertion side, G ... Height of upper lattice plate.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 G21C 5/00 GDB A 8908−2G 7/113 GDB G21C 3/34 GDB K 9117−2G 7/10 GDB J ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location G21C 5/00 GDB A 8908-2G 7/113 GDB G21C 3/34 GDB K 9117-2G 7/10 GDB J

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 正方格子状に配列された燃料棒および水
ロッドを囲む角筒状のチャンネルボックスを有する燃料
集合体を規則的に多数配列し、前記各々のチャンネルボ
ックスの4側面のうち、十字型制御棒の挿入位置に面し
た2つの側面のチャンネルボックス間の水ギャップが十
字型制御棒の挿入位置に面しない2つの側面のチャンネ
ルボックス間の水ギャップより大きなD格子炉心を構成
する沸騰水型原子炉用炉心構造体において、前記制御棒
挿入側のチャンネルボックス間にはチャンネルボックス
間のギャップを保持するためのチャンネルスペーサを有
し、かつそのチャンネルボックス間水ギャップ幅は燃料
集合体の軸方向に沿って、炉心下部の方が炉心上部より
も大きく、制御棒非挿入側のチャンネルボックス間水ギ
ャップ幅は燃料集合体の軸方向に沿って炉心下部の方が
炉心上部よりも小さくすることを特徴とする沸騰水型原
子炉用炉心構造体。
1. A fuel assembly having a square tubular channel box surrounding a fuel rod and a water rod arranged in a square lattice is regularly arranged, and a cross is formed among four side surfaces of each channel box. Boiling water forming a D-lattice core in which the water gap between the two side channel boxes facing the insertion position of the mold control rod is larger than the water gap between the two side channel boxes not facing the insertion position of the cross control rod In the core structure for a nuclear reactor, a channel spacer for maintaining a gap between the channel boxes is provided between the channel boxes on the control rod insertion side, and the water gap width between the channel boxes is the axis of the fuel assembly. Along the direction, the lower core is larger than the upper core, and the water gap width between the channel boxes on the control rod non-insertion side is the fuel assembly. A core structure for a boiling water reactor characterized in that the lower part of the core is made smaller than the upper part of the core along the axial direction of the body.
【請求項2】 前記燃料集合体のチャンネルボックスの
内面距離は軸方向に一定で、かつ、前記燃料集合体の軸
心が炉心下部の燃料支持板に対して垂直ではないことを
特徴とする請求項1記載の沸騰水型原子炉用炉心構造
体。
2. The inner surface distance of the channel box of the fuel assembly is constant in the axial direction, and the axis of the fuel assembly is not perpendicular to the fuel support plate below the core. Item 1. A boiling water reactor core structure according to Item 1.
【請求項3】 前記燃料集合体のチャンネルボックス
は、十字型制御棒挿入位置に面しない側のチャンネルボ
ックス肉厚が、上部格子板と接触する高さ位置において
他のチャンネルボックスの大部分の領域よりも厚く形成
され、かつ、制御棒挿入位置に面する側のチャンネルボ
ックス肉厚が軸方向に一定に形成されていることを特徴
とする請求項1記載の沸騰水型原子炉用炉心構造体。
3. The channel box of the fuel assembly has most of the other channel boxes at a height position where the channel box thickness on the side not facing the cross control rod insertion position is in contact with the upper lattice plate. The core structure for a boiling water reactor according to claim 1, characterized in that the channel box is formed thicker than that of the control rod, and the thickness of the channel box on the side facing the control rod insertion position is constant in the axial direction. .
【請求項4】 前記燃料集合体の十字型制御棒挿入位置
に面しないチャンネルボックス側面は、上部格子板と接
触する高さ位置のチャンネルボックス外部に突起を有
し、制御棒挿入位置に面する側のチャンネルボックスは
突起を有しないことを特徴とする請求項1記載の沸騰水
型原子炉用炉心構造体。
4. The side surface of the channel box of the fuel assembly that does not face the cross-shaped control rod insertion position has a protrusion outside the channel box at a height position where it contacts the upper lattice plate and faces the control rod insertion position. The core structure for a boiling water reactor according to claim 1, wherein the side channel box has no protrusion.
【請求項5】 前記チャンネルボックスと接する上部格
子板の少なくとも一部に突起を有することを特徴とする
請求項1記載の沸騰水型原子炉用炉心構造体。
5. The boiling water nuclear reactor core structure according to claim 1, wherein at least a part of the upper lattice plate contacting the channel box has a protrusion.
【請求項6】 炉心に配列されたそれぞれの燃料集合体
のチャンネルボックスを制御棒挿入位置に面した2側面
および水平方向の対角線で囲まれる第1の領域と、制御
棒挿入位置に面しない2側面および前記対角線で囲まれ
る第2の領域に分割し、前記第1の領域に含まれる燃料
棒の炉心軸方向中央部より下部の平均濃縮度をe,l
w,炉心中央部より上部での平均濃縮度をe,uw,前
記第2の領域に含まれる燃料棒の炉心軸方向中央部より
下部の平均濃縮度e,ln,炉心軸方向中央部より上部
の平均濃縮度e,unとした場合e,lw<e,uw、
e,ln<e,un であり、かつ、 e,un/e,uw ≦ e,ln/e,lw である燃料集合体を装荷したことを特徴とする請求項1
ないし5記載の沸騰水型原子炉用炉心構造体。
6. A channel box of each fuel assembly arranged in the core has two side faces facing the control rod insertion position and a first region surrounded by a diagonal line in the horizontal direction, and two regions not facing the control rod insertion position. It is divided into a second region surrounded by the side surface and the diagonal line, and the average enrichment of the fuel rods included in the first region below the central portion in the axial direction of the core is e, l
w, average enrichment above the central part of the core e, uw, average enrichment below the central part of the axial direction of the fuel rods included in the second region e, ln, above the central part of the axial direction of the core If the average enrichment of e, un is e, lw <e, uw,
2. A fuel assembly in which e, ln <e, un and e, un / e, uw≤e, ln / e, lw are loaded.
A core structure for a boiling water reactor according to any one of claims 1 to 5.
JP6020799A 1994-02-18 1994-02-18 Core structure for boiling water reactor Pending JPH07229986A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6020799A JPH07229986A (en) 1994-02-18 1994-02-18 Core structure for boiling water reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6020799A JPH07229986A (en) 1994-02-18 1994-02-18 Core structure for boiling water reactor

Publications (1)

Publication Number Publication Date
JPH07229986A true JPH07229986A (en) 1995-08-29

Family

ID=12037115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6020799A Pending JPH07229986A (en) 1994-02-18 1994-02-18 Core structure for boiling water reactor

Country Status (1)

Country Link
JP (1) JPH07229986A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1120794A1 (en) * 1998-02-17 2001-08-01 General Electric Company Nuclear reactor having large cruciform control rods
JP2021012116A (en) * 2019-07-08 2021-02-04 日立Geニュークリア・エナジー株式会社 Fuel assembly

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1120794A1 (en) * 1998-02-17 2001-08-01 General Electric Company Nuclear reactor having large cruciform control rods
JP2021012116A (en) * 2019-07-08 2021-02-04 日立Geニュークリア・エナジー株式会社 Fuel assembly

Similar Documents

Publication Publication Date Title
US4544522A (en) Nuclear fuel assembly spacer
JPH0313556B2 (en)
US4683113A (en) Nuclear fuel assembly
JPH07229986A (en) Core structure for boiling water reactor
JPH051912B2 (en)
US3994779A (en) Nuclear reactor fuel rod spacer
JPH0588439B2 (en)
JP3676615B2 (en) Fuel assemblies and reactor cores
JPH0437391B2 (en)
JP2013217661A (en) Fuel assembly for boiling-water type reactor and spacer for fuel assembly
JPH04301591A (en) Fuel assembly
JP3009183B2 (en) Reactor core
JPH10197673A (en) Fuel assembly
JP3990013B2 (en) Fuel assemblies and reactor cores
JPS5816157B2 (en) Nenriyousyuugoutai
JPH065320B2 (en) Fuel assembly for boiling water reactor
JPS5826292A (en) Fuel assembly
JP2878530B2 (en) Reactor fuel assemblies
JP3314382B2 (en) Fuel assembly
JP2626841B2 (en) Fuel assembly for boiling water reactor
JPH05164869A (en) Fuel assembly
JPH05215879A (en) Fuel assembly
JP2000111679A (en) Mox fuel assembly
JPH09178873A (en) Fuel assembly
JPH02147889A (en) Fuel assembly for boiling water reactor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040902

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20080917

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080917

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20090917

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090917

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100917

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20100917

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20100917

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20100917

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20110917

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120917

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20130917

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250