JPH09178873A - Fuel assembly - Google Patents

Fuel assembly

Info

Publication number
JPH09178873A
JPH09178873A JP7340309A JP34030995A JPH09178873A JP H09178873 A JPH09178873 A JP H09178873A JP 7340309 A JP7340309 A JP 7340309A JP 34030995 A JP34030995 A JP 34030995A JP H09178873 A JPH09178873 A JP H09178873A
Authority
JP
Japan
Prior art keywords
fuel
rod
assembly
rods
loaded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7340309A
Other languages
Japanese (ja)
Inventor
Kazuya Ishii
一弥 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP7340309A priority Critical patent/JPH09178873A/en
Publication of JPH09178873A publication Critical patent/JPH09178873A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PROBLEM TO BE SOLVED: To smooth the output distribution within a fuel assembly by dividing the fuel assembly inner part into a plurality of areas, and arranging fuel rods having a large radius in the region having a large hydrogen/fuel atomic number ratio. SOLUTION: A square fuel assembly 1 is formed of a system formed of a channel box 2, 28 fuel rods 3, 32 fuel rods 4, and a water rod 5, and having a water/fuel volume ratio of about 3.2 and a soft neutron spectrum. The fuel rods 3, 4 have outer radiuses of about 6.3 and 6.1mm, respectively, and the both are loaded with plutonium fuel. Fissile plutonium enrichment degree is about 3.5 w/o, and natural uranium is enriched therewith. The fuel rods 3 having a large radius are used in the peripheral part which is closed to gap water and apt to be increased in output, so that the neutron spectrum therein is hardened to reduce the output. Consequently, the output peaking within the assembly 1 is minimized by about 1.1%, compared with the case having an uniform radius of fuel rods, and the output distribution is smoothed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、沸騰水型原子炉に
用いる燃料集合体に係り、特にウラン・プルトニウムの
混合酸化物燃料(MOX燃料)を有する燃料集合体内の
出力分布平坦化に好適な燃料集合体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel assembly used in a boiling water reactor, and more particularly to a fuel assembly having a mixed oxide fuel of uranium-plutonium (MOX fuel), which is suitable for flattening the power distribution. Regarding fuel assemblies.

【0002】[0002]

【従来の技術】一般に、沸騰水型原子炉では、チャンネ
ルボックスの中に複数の燃料棒が配置され、チャンネル
ボックスの外には、沸騰していないギャップ水が存在す
る。従って、このギャップ水の周辺では、局所的に中性
子減速の良い状態が生じ、中性子スペクトルが軟らかく
なっている。
2. Description of the Related Art Generally, in a boiling water reactor, a plurality of fuel rods are arranged in a channel box, and non-boiling gap water exists outside the channel box. Therefore, in the vicinity of the gap water, a good state of neutron deceleration occurs locally, and the neutron spectrum is softened.

【0003】一方、核分裂性プルトニウム、例えば239
Puは、熱エネルギ領域(1eV 以下)の核分裂断面
積が、235Uに比べて2倍以上大きい。しかも、239Pu
は、図2に示すように、熱エネルギ領域の核分裂断面積
の、それよりエネルギの高い領域における核分裂断面積
の比が、図3に示した235U に比べて大きい。従って、
現行の熱中性子炉にプルトニウム燃料を用いた場合、ウ
ラン燃料を用いた場合に比べ、ギャップ水に近い周辺部
の燃料棒の出力が大きくなり易い。
On the other hand, fissile plutonium such as 239
Pu has a fission cross section in the thermal energy region (1 eV or less) that is more than twice as large as that of 235 U. Moreover, 239 Pu
As shown in FIG. 2, the ratio of the fission cross section in the thermal energy region to the fission cross section in the higher energy region is larger than that of 235 U shown in FIG. Therefore,
When plutonium fuel is used in the current thermal neutron reactor, the output of fuel rods near the gap water near the gap water tends to be larger than when uranium fuel is used.

【0004】この問題を解決し、出力分布平坦化を実現
する従来の手段として、例えば、特開昭60−147685号公
報を挙げられる。これは、出力のピークが生じ易い周辺
部の燃料棒の核分裂性プルトニウム富化度を他の領域の
燃料棒より低くし、出力分布の平坦化を図るものであ
る。
As a conventional means for solving this problem and realizing flattening of the output distribution, there is, for example, JP-A-60-147685. This is intended to flatten the power distribution by lowering the fissile plutonium enrichment of the fuel rods in the peripheral portion where the output peak is likely to occur, compared with the fuel rods in other regions.

【0005】[0005]

【発明が解決しようとする課題】しかし、上記従来技術
は、中性子スペクトルが硬い燃料集合体の中央部分に相
対的に核分裂性プルトニウム富化度の高い燃料棒を用い
ているため、次のような課題が生じる。すなわち、中央
部分では、中性子スペクトルが硬いため燃焼が進みにく
く、燃焼末期では、核分裂性物質が周辺部より多く残存
しており、また、親物質(例えば238U)の転換によ
り、核分裂性物質(例えば239Pu)が多く生成してい
る。このように、中央部には周辺部より多くの核分裂性
物質が存在するために、燃焼末期では、出力は中央部分
にピークを有する分布となる。また、中央部分に多くの
核分裂性物質が燃え残ることになり、燃料経済性という
観点からは好ましくない。
However, the above prior art uses the fuel rod having a relatively high fissionable plutonium enrichment in the central portion of the fuel assembly having a hard neutron spectrum. Challenges arise. That is, since the neutron spectrum is hard in the central part, combustion is difficult to proceed, and at the end of combustion, more fissionable material remains than in the peripheral part, and due to conversion of the parent material (for example, 238 U), fissile material ( For example, a large amount of 239 Pu) is generated. As described above, since more fissile material exists in the central portion than in the peripheral portion, the output has a distribution having a peak in the central portion at the end of combustion. Further, a large amount of fissile material remains in the central portion, which is not preferable from the viewpoint of fuel economy.

【0006】本発明の目的は、燃料経済性を低下させる
ことなく、燃料集合体内の出力分布の平坦化を図ること
にある。
An object of the present invention is to flatten the power distribution in a fuel assembly without lowering fuel economy.

【0007】[0007]

【課題を解決するための手段】上記目的は、中性子スペ
クトルが軟らかく、燃焼初期に出力の高くなる周辺部
に、他の領域の燃料棒に比べて、半径の大きな燃料棒を
用いることにより達成される。
The above object is achieved by using fuel rods having a larger radius than the fuel rods in other regions in the peripheral portion where the neutron spectrum is soft and the output is high in the early stage of combustion. It

【0008】以下、本発明の作用を説明する。Hereinafter, the operation of the present invention will be described.

【0009】一般に、水素対燃料原子数比が大きくなる
と、燃料原子1個当りの水素原子の割合が大きくなるた
め、中性子は減速され易くなり、結果として中性子スペ
クトルが軟らかくなる。図2,図3に示したように、核
分裂性核種は、熱エネルギ領域で大きな核分裂断面積を
持つので、一般に中性子スペクトルが軟らかくなると燃
焼初期での中性子無限増倍率は増大する。
In general, when the ratio of hydrogen to fuel atoms increases, the ratio of hydrogen atoms per fuel atom increases, so that neutrons are easily decelerated, resulting in a soft neutron spectrum. As shown in FIGS. 2 and 3, the fissionable nuclide has a large fission cross section in the thermal energy region. Therefore, in general, when the neutron spectrum becomes soft, the neutron infinite multiplication factor at the initial stage of combustion increases.

【0010】一方、半径の大きな燃料棒を同じ形状の燃
料集合体で用いると、燃料棒の面積が増加した分だけ減
速材の量が減るために、水素対燃料原子数比が小さくな
る。その結果、中性子スペクトルが硬くなり、燃焼初期
での中性子無限増倍率は小さくなる。
On the other hand, when a fuel rod having a large radius is used in a fuel assembly of the same shape, the amount of moderator is reduced by the increase in the area of the fuel rod, so that the hydrogen-to-fuel atomic number ratio is reduced. As a result, the neutron spectrum becomes hard and the neutron infinite multiplication factor in the early stage of combustion becomes small.

【0011】具体例として、図4に、プルトニウム燃料
における燃料棒半径の相対値と中性子無限増倍率との関
係を示す。但し、被覆管の厚さは、一定としている。な
お、中性子無限増倍率は、基準の燃料棒半径の場合との
差を示している。また、核分裂性プルトニウム富化度
は、3.5w/o である。燃焼初期では、同じ核分裂性
プルトニウム富化度でも、燃料棒半径が5%大きくなる
と、中性子無限増倍率が約3.0%Δk 小さくなる。し
かし、平均の取出燃焼度である30GWd/tでは、そ
の差が約1.2%Δk に縮小する。
As a specific example, FIG. 4 shows the relationship between the relative value of the fuel rod radius in plutonium fuel and the infinite neutron multiplication factor. However, the thickness of the cladding tube is constant. The infinite neutron multiplication factor shows the difference from the case of the standard fuel rod radius. The fissile plutonium enrichment is 3.5 w / o. In the early stage of combustion, the infinite neutron multiplication factor decreases by about 3.0% Δk when the fuel rod radius increases by 5% even with the same fissile plutonium enrichment. However, at the average take-out burnup of 30 GWd / t, the difference is reduced to about 1.2% Δk.

【0012】従って、中性子スペクトルの軟らかい、ギ
ャップ水に近い周辺部に、他の領域に比べ半径の大きな
燃料棒を用いることにより、燃焼を通して出力分布の平
坦化を図ることができる。つまり、燃焼初期で出力が高
くなり、燃焼末期には低くなる傾向のあるギャップ水に
近い周辺部の出力を、その領域の核分裂性プルトニウム
富化度を低くすることなく、燃焼初期で低め、かつ燃焼
末期で高めることが可能となる。また、相対的に中央部
の燃料棒の核分裂性プルトニウム富化度を高くしないの
で、上述のように、燃料経済性を低下させないですむ。
Therefore, by using a fuel rod having a larger radius than other regions in the peripheral portion near the gap water where the neutron spectrum is soft, the output distribution can be flattened through combustion. That is, the output near the gap water, which tends to be high at the early stage of combustion and low at the end of combustion, is lowered at the early stage of combustion without lowering the fissile plutonium enrichment of the region, and It can be increased at the end of combustion. Further, since the fissionable plutonium enrichment of the fuel rod in the central portion is not relatively high, the fuel economy is not reduced as described above.

【0013】[0013]

【発明の実施の形態】以下、本発明の燃料集合体を実施
例を用いて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a fuel assembly according to the present invention will be described with reference to embodiments.

【0014】図1は本発明の燃料集合体の第1の実施例
を示したものである。本実施例では、燃料集合体1は四
角形状をしており、チャンネルボックス2,28本の燃
料棒3,32本の燃料棒4と1本の水ロッド5とから成
っている。また、本燃料集合体の水対燃料体積比は約
3.2 で、中性子スペクトルの軟らかい体系である。燃
料棒3は、燃料棒外半径が6.3mm でプルトニウム燃料
を装荷したもの、燃料棒4は、燃料棒外半径が6.1mm
でプルトニウム燃料を装荷したものである。なお、燃料
棒3,4とも、核分裂性プルトニウム富化度は3.5w
/o で、天然ウランに富化している。
FIG. 1 shows a first embodiment of the fuel assembly according to the present invention. In this embodiment, the fuel assembly 1 has a quadrangular shape and is composed of a channel box 2, 28 fuel rods 3, 32 fuel rods 4 and one water rod 5. The water-to-fuel volume ratio of this fuel assembly is about 3.2, which is a soft system of neutron spectrum. The fuel rod 3 has a fuel rod outer radius of 6.3 mm and is loaded with plutonium fuel. The fuel rod 4 has a fuel rod outer radius of 6.1 mm.
It was loaded with plutonium fuel. Both fuel rods 3 and 4 had a fissile plutonium enrichment of 3.5w.
/ O, enriched in natural uranium.

【0015】本実施例では、ギャップ水に近く、出力が
高くなり易い周辺部の燃料棒に、他の領域に比べ、半径
の大きな燃料棒を用いることにより、そこでの中性子ス
ペクトルを硬くし、出力を低減している。その結果、燃
料棒半径一様の燃料に比べ、燃料集合体内の出力ピーキ
ングが約1.1% 小さくなり、出力分布を改善する効果
がある。また、中央部の核分裂性プルトニウム富化度を
高めないので、燃料経済性を低下させることがない。
In this embodiment, by using a fuel rod having a larger radius as compared with other regions for the fuel rods in the peripheral portion which is close to the gap water and whose output tends to be high, the neutron spectrum there is hardened and the output is increased. Has been reduced. As a result, the output peaking in the fuel assembly is about 1.1% smaller than that of the fuel having a uniform fuel rod radius, which has the effect of improving the power distribution. Also, since the enrichment of fissile plutonium in the central part is not increased, the fuel economy is not reduced.

【0016】図5は本発明の燃料集合体の第2の実施例
を示す断面図である。本実施例の燃料集合体は、40本
の燃料棒3と20本の燃料棒4で構成されている。
FIG. 5 is a sectional view showing a second embodiment of the fuel assembly of the present invention. The fuel assembly of this embodiment is composed of 40 fuel rods 3 and 20 fuel rods 4.

【0017】ところで、水ロッドの中の水は、ギャップ
水同様沸騰していないので、水ロッドの周辺では、局所
的に中性子減速の良い状態が生じている。この点を考慮
して、本実施例では、ギャップ水及び水ロッドの周辺に
は、半径の大きな燃料棒を用いた。その結果、燃料棒半
径一様の燃料に比べ、燃料集合体内の出力ピーキングが
約1.7% 小さくなり、出力分布を改善する効果があ
る。また、中央部の核分裂性プルトニウム富化度を高め
ないので、燃料経済性を低下させることがない。図6は
本発明の燃料集合体の第3の実施例を示す断面図であ
る。本実施例の燃料集合体は、4本の燃料棒6,24本
の燃料棒7,12本の燃料棒8と20本の燃料棒9で構
成されている。燃料棒6は、燃料棒外半径が6.3mmで
濃縮度2.0w/oのウラン燃料を装荷したもの、燃料
棒7は、燃料棒外半径が6.3mm で核分裂性プルトニウ
ム富化度が2.0w/o のプルトニウム燃料を装荷した
もの、燃料棒8は、燃料棒外半径が6.3mmで核分裂性
プルトニウム富化度が4.5w/oのプルトニウム燃料
を装荷したもの、燃料棒9は、燃料棒外半径が6.1mm
で核分裂性プルトニウム富化度が4.5w/o のプルト
ニウム燃料を装荷したものである。なお、プルトニウム
は、天然ウランに富化している。
By the way, since the water in the water rod does not boil like the gap water, a good neutron deceleration state locally occurs around the water rod. In consideration of this point, in this embodiment, fuel rods having a large radius were used around the gap water and the water rod. As a result, the output peaking in the fuel assembly is reduced by about 1.7% as compared with the fuel having a uniform fuel rod radius, which has the effect of improving the output distribution. Also, since the enrichment of fissile plutonium in the central part is not increased, the fuel economy is not reduced. FIG. 6 is a sectional view showing a third embodiment of the fuel assembly of the present invention. The fuel assembly of this embodiment is composed of four fuel rods 6, 24 fuel rods 7, 12 fuel rods 8 and 20 fuel rods 9. The fuel rod 6 was loaded with uranium fuel having an outer radius of 6.3 mm and an enrichment of 2.0 w / o. The fuel rod 7 had an outer radius of 6.3 mm and a fissile plutonium enrichment. Fuel rod 8 loaded with 2.0 w / o plutonium fuel, fuel rod 8 loaded with plutonium fuel with an outer radius of 6.3 mm and a fissile plutonium enrichment of 4.5 w / o, fuel rod 9 Has a fuel rod outer radius of 6.1 mm
It was loaded with plutonium fuel with a fissile plutonium enrichment of 4.5 w / o. Plutonium is enriched in natural uranium.

【0018】本実施例では、出力ピーキング低減のため
に、ギャップ水に近い周辺部の燃料棒の核分裂性プルト
ニウム富化度を下げ、特に出力のピークが生じ易いコー
ナ部には、ウラン燃料を用いた。これにより、周辺部及
び水ロッドに隣接する部分に半径の大きな燃料棒を用い
ている効果と併せて、燃料集合体内の出力分布をより平
坦化できる。
In the present embodiment, in order to reduce the output peaking, the enrichment of fissionable plutonium in the fuel rods in the peripheral portion near the gap water is reduced, and uranium fuel is used especially in the corner portion where the output peak is likely to occur. I was there. As a result, in addition to the effect of using the fuel rod having a large radius in the peripheral portion and the portion adjacent to the water rod, the output distribution in the fuel assembly can be further flattened.

【0019】図7は本発明の燃料集合体の第4の実施例
を示す断面図である。本実施例の燃料集合体は、4本の
燃料棒10,24本の燃料棒3と32本の燃料棒4で構
成されている。燃料棒10は、燃料棒外半径が6.1mm
で濃縮度2.0w/oのウラン燃料を装荷したものであ
る。
FIG. 7 is a sectional view showing a fourth embodiment of the fuel assembly of the present invention. The fuel assembly of this embodiment is composed of four fuel rods 10, 24 fuel rods 3 and 32 fuel rods 4. The fuel rod 10 has a fuel rod outer radius of 6.1 mm.
It was loaded with uranium fuel with an enrichment of 2.0 w / o.

【0020】本実施例では、出力ピーキングが生じ易い
プルトニウム燃料を装荷した燃料棒の平均の半径を、出
力ピーキングが生じにくいウラン燃料を装荷した燃料棒
の平均の半径より大きくすることにより、燃料集合体内
の出力分布を平坦化している。
In this embodiment, by making the average radius of the fuel rod loaded with the plutonium fuel, which is prone to output peaking, larger than the average radius of the fuel rod loaded with the uranium fuel, which is hard to produce output peaking, the fuel assembly The output distribution in the body is flattened.

【0021】[0021]

【発明の効果】本発明によれば、中性子スペクトルの軟
らかい、ギャップ水に近い周辺部、あるいは、水ロッド
に近い部分に、他の領域の燃料棒に比べて、半径の大き
な燃料棒を用いることにより、燃料経済性を低下させる
ことなく、燃料集合体内の出力分布の平坦化を図ること
ができる。
EFFECTS OF THE INVENTION According to the present invention, a fuel rod having a larger radii than the fuel rods in other regions is used in the soft portion of the neutron spectrum, in the peripheral portion close to the gap water, or in the portion close to the water rod. As a result, the output distribution in the fuel assembly can be flattened without lowering fuel economy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の燃料集合体の第1の実施例を示す断面
図。
FIG. 1 is a sectional view showing a first embodiment of a fuel assembly of the present invention.

【図2】中性子エネルギと239Pu の核分裂断面積との
関係を示す特性図。
FIG. 2 is a characteristic diagram showing the relationship between neutron energy and fission cross section of 239 Pu.

【図3】中性子エネルギと235U の核分裂断面積との関
係を示す特性図。
FIG. 3 is a characteristic diagram showing the relationship between neutron energy and 235 U fission cross section.

【図4】プルトニウム燃料の燃料棒半径の相対値と中性
子無限増倍率との関係を示す特性図。
FIG. 4 is a characteristic diagram showing a relationship between a relative value of a fuel rod radius of plutonium fuel and an infinite neutron multiplication factor.

【図5】本発明の燃料集合体の第2の実施例を示す断面
図。
FIG. 5 is a cross-sectional view showing a second embodiment of the fuel assembly of the present invention.

【図6】本発明の燃料集合体の第3の実施例を示す断面
図。
FIG. 6 is a sectional view showing a third embodiment of the fuel assembly of the present invention.

【図7】本発明の燃料集合体の第4の実施例を示す断面
図。
FIG. 7 is a sectional view showing a fourth embodiment of the fuel assembly of the present invention.

【符号の説明】[Explanation of symbols]

1…燃料集合体、2…チャンネルボックス、3,4…燃
料棒、5…水ロッド。
1 fuel assembly, 2 channel box, 3 4 fuel rod, 5 water rod.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】軽水を冷却材兼減速材とする原子炉の炉心
部に装荷され、使用済燃料から再処理して得られたプル
トニウムを燃料の全部または一部として装荷し、複数の
燃料棒から構成される燃料集合体において、前記燃料集
合体内を複数の領域に分けたとき、半径の大きい燃料棒
を、運転時に水素対燃料原子数比が大きい領域に配置し
たことを特徴とする燃料集合体。
1. Plutonium loaded in the core of a nuclear reactor that uses light water as a coolant and moderator and reprocessed from spent fuel is loaded as all or part of the fuel, and a plurality of fuel rods are loaded. In the fuel assembly, the fuel assembly is characterized in that, when the fuel assembly is divided into a plurality of regions, a fuel rod having a large radius is arranged in a region having a large hydrogen to fuel atomic number ratio during operation. body.
【請求項2】請求項1において、前記燃料集合体内の前
記燃料棒を外側から1層目の燃料棒とその他の燃料棒と
に分けたとき、平均の燃料棒半径が外側で大きくなるよ
うに構成した燃料集合体。
2. The fuel rod assembly according to claim 1, wherein when the fuel rods in the fuel assembly are divided into a first-layer fuel rod and other fuel rods from the outside, an average fuel rod radius becomes large on the outside. The configured fuel assembly.
【請求項3】請求項1において、前記燃料集合体内の燃
料棒をチャンネルボックス外側のギャップ水、あるいは
水ロッドに隣接する燃料棒とその他の燃料棒とに分けた
とき、平均の燃料棒半径がチャンネルボックス外側のギ
ャップ水、あるいは水ロッドに隣接する燃料棒で大きく
なるように構成した燃料集合体。
3. The average fuel rod radius according to claim 1, when the fuel rods in the fuel assembly are divided into gap water outside the channel box or fuel rods adjacent to the water rods and other fuel rods. A fuel assembly constructed so that the gap water outside the channel box or the fuel rod adjacent to the water rod becomes larger.
【請求項4】請求項1において、ウラン燃料を装荷した
燃料棒とプルトニウム燃料を装荷した燃料棒が混在する
場合に、プルトニウム燃料を装荷した燃料棒の平均の半
径が、ウラン燃料を装荷した燃料棒の平均の半径より大
きくした燃料集合体。
4. The fuel rod loaded with uranium fuel according to claim 1, wherein when the fuel rod loaded with uranium fuel and the fuel rod loaded with plutonium fuel are mixed, the average radius of the fuel rod loaded with plutonium fuel is Fuel assemblies that are larger than the average radius of the rod.
JP7340309A 1995-12-27 1995-12-27 Fuel assembly Pending JPH09178873A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7340309A JPH09178873A (en) 1995-12-27 1995-12-27 Fuel assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7340309A JPH09178873A (en) 1995-12-27 1995-12-27 Fuel assembly

Publications (1)

Publication Number Publication Date
JPH09178873A true JPH09178873A (en) 1997-07-11

Family

ID=18335718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7340309A Pending JPH09178873A (en) 1995-12-27 1995-12-27 Fuel assembly

Country Status (1)

Country Link
JP (1) JPH09178873A (en)

Similar Documents

Publication Publication Date Title
US5349618A (en) BWR fuel assembly having oxide and hydride fuel
JPH04128688A (en) Fuel assembly and reactor core
JPH051912B2 (en)
JP2510565B2 (en) Reactor fuel assembly
JPH09178873A (en) Fuel assembly
JPH0588439B2 (en)
JPH095469A (en) Fuel assembly
JPH05164869A (en) Fuel assembly
JPH10170674A (en) Fuel assembly
JPH07333374A (en) Fuel assembly
JP3093289B2 (en) Fuel assembly for boiling water reactor
JP2942622B2 (en) Reactor fuel assemblies
JP3318210B2 (en) MOX fuel assembly and core
JPH07159569A (en) Fuel assembly
JPH02232595A (en) Fuel loading of boiling nuclear reactor
JPH0712974A (en) Fuel assembly
JPS5816157B2 (en) Nenriyousyuugoutai
JP2507408B2 (en) Fuel assembly
JPS6361990A (en) Fuel aggregate
JP2942529B2 (en) Fuel assembly
JP3309797B2 (en) Fuel assembly
JPS5826292A (en) Fuel assembly
JPH0675077A (en) Fuel assembly for nuclear reactor
JP2625404B2 (en) Fuel assembly
JPH10170676A (en) Fuel assembly