JPS5826292A - Fuel assembly - Google Patents

Fuel assembly

Info

Publication number
JPS5826292A
JPS5826292A JP56124063A JP12406381A JPS5826292A JP S5826292 A JPS5826292 A JP S5826292A JP 56124063 A JP56124063 A JP 56124063A JP 12406381 A JP12406381 A JP 12406381A JP S5826292 A JPS5826292 A JP S5826292A
Authority
JP
Japan
Prior art keywords
fuel
fuel assembly
assembly
atoms
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56124063A
Other languages
Japanese (ja)
Other versions
JPS6367870B2 (en
Inventor
淳一 山下
孝雄 五十嵐
下重 孝則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP56124063A priority Critical patent/JPS5826292A/en
Publication of JPS5826292A publication Critical patent/JPS5826292A/en
Publication of JPS6367870B2 publication Critical patent/JPS6367870B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、原子炉用燃料棒を複数組込んだ燃料果合体に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a fuel assembly incorporating a plurality of fuel rods for a nuclear reactor.

核分裂性物質を燃料とする発電用原子炉等の燃料棒は、
取扱いの容易さ、原子炉の制御の容易さ等から、複数の
燃料棒を組込んで一体化された燃料集合体とされて原子
炉内に装荷されるのが一般つ 的である。このような燃料集合体の一例を第1図。
Fuel rods for power reactors, etc. that use fissile material as fuel are
For ease of handling and control of the reactor, it is common to incorporate a plurality of fuel rods into an integrated fuel assembly and load it into the reactor. FIG. 1 shows an example of such a fuel assembly.

第2図に示す。歯において燃料集合体10は、チャンネ
ルボックス12内に燃料棒14を第2図に示すように8
行8列の格子状に組込んで構成されている。そして各燃
料棒14の間には、燃料棒スペーサ16′(f−介在さ
せ、燃料棒14は下端が下部タイブレート18に嵌入さ
れ、−L端が上部タイプL/ −ト20との間に圧縮介
在埒れたエクス・くンションスプリング22に当接して
いてチャンネルボックス12内で動かないようにされて
いる。また、チャンネルボックス12の上部側面には、
炉心に装荷するの全容易にするための案内羽根23が設
けられており、チャンネルボックス12の上端には、燃
料集合体10を吊るための保合部24が設けられている
Shown in Figure 2. In the tooth, the fuel assembly 10 has a fuel rod 14 in the channel box 12 as shown in FIG.
It is structured in a grid of 8 rows and 8 columns. A fuel rod spacer 16' (f-) is interposed between each fuel rod 14, and the lower end of the fuel rod 14 is inserted into the lower tie plate 18, and the -L end is compressed between the upper type L/-t 20. It is in contact with the interposed extension spring 22 and is prevented from moving within the channel box 12. Also, on the upper side of the channel box 12,
Guide vanes 23 are provided to facilitate loading into the reactor core, and a retaining portion 24 for suspending the fuel assembly 10 is provided at the upper end of the channel box 12.

上記のような燃料集合体を多数装荷して運転される原子
炉の炉内最高出力は、次の3つのピーキングの積に原子
炉内燃料集合体平均出力を乗じて求められる。この3つ
のピーキングとは、第1が径方向出力ビーキングで、原
子炉内燃料集合体の最高出力と原子炉平均出力との比で
あり、第2が  。
The maximum in-core power of a nuclear reactor operated with a large number of fuel assemblies as described above loaded is determined by multiplying the product of the following three peakings by the average power of the in-reactor fuel assemblies. The three peakings are: the first is the radial power peaking, which is the ratio between the maximum power of the fuel assembly in the reactor and the average reactor power, and the second is the radial power peaking.

軸′方向比カビーキングであって、燃料集合体の上下方
向の最高出力と上下方向平均出力の比であり、第3が局
所出力ビーキングであって、燃料集合体内燃料棒の最高
出力と燃料集合体内燃料棒平均出力との比である。また
、燃料集合体の各燃料棒の出力Pは、燃料棒位置の熱中
性子束をφ、核分裂性物質の核分裂断面積をσf1燃料
棒中の核分裂性物質の原子(以下燃料原子と称す)の濃
度’tNとすれば、 P=φ・σ、−N で与えられる。
The axial ratio peaking is the ratio between the vertical maximum output of the fuel assembly and the vertical average output, and the third is the local power peaking, which is the ratio between the maximum output of the fuel rod in the fuel assembly and the average output in the vertical direction. This is the ratio to the fuel rod average output. In addition, the output P of each fuel rod in the fuel assembly is determined by the thermal neutron flux at the fuel rod position being φ, the fission cross section of the fissile material being σf1, and the fissile material atoms in the fuel rod (hereinafter referred to as fuel atoms) being If the concentration is 'tN, then it is given by P=φ・σ, -N.

さらに、燃料を効率よく燃焼し、燃焼期間を長くするた
めには、燃料集合体のいわゆる無限増倍率を大きくする
必要がある。この無限増倍率を大きくするためには、熱
中性子束の大きな領域では燃料原子の密度(濃度)を太
きくシ、熱中性子束の小さな領域では燃料原子の密度を
小さくした方が効果的であることが知られている。従っ
て、沸騰水型原子炉では、中性子の減速材の不拘−性及
び燃料棒自体の中性子吸収効果等にょシ、熱中性子束は
燃料集合体の周縁部で大きく、中心部で小さくなってい
るため、沸騰水型原子炉用の燃料集合体は、燃料集合体
の周縁部の燃料原子の密度を中心部より大きくすること
が望まれる。そして、燃料集合体の周縁部の燃料原子の
密度を中心部より大きくすることは、前記した燃料棒の
出力Pの式により燃料集合体の周縁部の燃料棒の出力を
大キクシ、中心部の燃料棒の出力を小さくすることにな
り、前記局所出力ビーキングを大きくすることになる。
Furthermore, in order to burn fuel efficiently and extend the combustion period, it is necessary to increase the so-called infinite multiplication factor of the fuel assembly. In order to increase this infinite multiplication factor, it is more effective to increase the density (concentration) of fuel atoms in regions where thermal neutron flux is large, and to decrease the density of fuel atoms in regions where thermal neutron flux is small. It is known. Therefore, in a boiling water reactor, the thermal neutron flux is large at the periphery of the fuel assembly and small at the center, due to the inconsistency of the neutron moderator and the neutron absorption effect of the fuel rods themselves. In a fuel assembly for a boiling water reactor, it is desired that the density of fuel atoms at the periphery of the fuel assembly be greater than that at the center. Increasing the density of fuel atoms at the periphery of the fuel assembly compared to the center means that the output power of the fuel rods at the periphery of the fuel assembly is increased by a large amount, and that of the center is This will reduce the power output of the fuel rods and increase the local power peaking.

ところが、沸騰水型原子炉においては、燃料集合体中の
水に生ずるボイドの影響により、軸方向出力ビーキング
が大きくなるため、局所出力ビーキングを小さくする必
要がある。即ち、沸騰水型原子炉が運転されると、炉内
の温度の−L昇に伴い燃料集合体中の水が沸騰してボイ
ドが発生し、このボイドが燃料集合体の上部に集り、中
性子の減速を妨げて燃料集合体上部の核分裂反応を少な
くシ、他方、燃料集合体下部では中性子が水により減速
されて、核分裂反応に適した熱中性子となって核分裂反
応が大きくなるため、軸方向出力ビーキングが大きくな
る。従って、原子炉の出力は、前記したように3つのピ
ーキングの積に原子炉内燃料集合体平均出力を乗じて求
めるため、軸方向出力ビーキングが大きくなるに従い、
局所出力ビーキングを小さくする必要がある。このため
、従来、沸騰水型原子炉用の燃料集合体では、局所出力
ビーキングを極力小さくするため、各燃料棒の燃料原子
の密度を異ならせ、燃料集合体の中心部には燃料原子の
濃縮度が高い燃料棒を配置し、燃料集合体の周縁部には
燃料原子の濃縮度の低い燃料棒を配置するようにしてい
た。その−例を第3図に示す。図において10は燃料集
合体、12は燃料棒を収納するチャンネルボックスであ
り、26は原子炉中に挿入された制御棒を示す。
However, in a boiling water reactor, the axial power peaking increases due to the effect of voids generated in the water in the fuel assembly, so it is necessary to reduce the local power peaking. That is, when a boiling water reactor is operated, the water in the fuel assembly boils as the temperature inside the reactor rises by -L, creating voids, which collect at the top of the fuel assembly and generate neutrons. On the other hand, in the lower part of the fuel assembly, neutrons are decelerated by water and become thermal neutrons suitable for nuclear fission reactions, increasing the nuclear fission reaction. Output beaking increases. Therefore, as mentioned above, the reactor output is determined by multiplying the product of the three peakings by the average output of the fuel assembly in the reactor, so as the axial output peaking increases,
It is necessary to reduce local power peaking. For this reason, conventionally, in fuel assemblies for boiling water reactors, in order to minimize local power peaking, the density of fuel atoms in each fuel rod is different, and the center of the fuel assembly has a concentrated concentration of fuel atoms. Fuel rods with a high concentration of fuel atoms were arranged, and fuel rods with a low enrichment of fuel atoms were arranged at the periphery of the fuel assembly. An example of this is shown in FIG. In the figure, 10 is a fuel assembly, 12 is a channel box that accommodates fuel rods, and 26 is a control rod inserted into the reactor.

そして、28は最も燃料原子の濃度が高い最高濃縮度燃
料棒であり、30は2番目に濃縮度が高い高濃縮度燃料
棒、32は高濃縮度燃料棒30より濃度が低い中間高濃
縮度燃料棒、34はさらに濃縮度が低い中間低濃縮度燃
料棒、36は中間低濃縮度燃料棒34より濃縮度が低い
低濃縮度燃料棒、そして38は燃料原子の濃度が最も低
い最低濃縮度燃料棒である。また、40は中性子を吸収
するガドリニウムQd等のいわゆる可燃性毒物が入つ\ た可燃性毒物入シ燃料棒であシ、42は中性子を減速し
て燃料集合体10の中心部での核分裂反応を増大させる
ために収納されたウォータロッドである。
28 is the highest enrichment fuel rod with the highest concentration of fuel atoms, 30 is the high enrichment fuel rod with the second highest enrichment, and 32 is an intermediate high enrichment fuel rod with a lower concentration than the high enrichment fuel rod 30. 34 is an intermediate low enrichment fuel rod with a lower enrichment, 36 is a low enrichment fuel rod with a lower enrichment than the intermediate low enrichment fuel rod 34, and 38 is a lowest enrichment fuel rod with the lowest concentration of fuel atoms. It's a fuel rod. Further, 40 is a fuel rod containing a so-called burnable poison such as gadolinium Qd that absorbs neutrons, and 42 is a fuel rod containing a burnable poison that decelerates neutrons and initiates a nuclear fission reaction in the center of the fuel assembly 10. It is a water rod housed to increase the

他方、近年燃料棒の長手方向をほぼ中央において2領域
に分け、各領域の燃料棒中の含有物質の濃度を変える技
術が開発された。そして、燃料集合体上部の燃料原子の
濃度を下部より高くシ、燃料集合体上部の無限増倍率を
大きくして、燃料集合体下部の無限増倍率を小さくシ、
燃料集合体の長手方向の核分裂反応を均一化し、沸騰水
型原子炉に特有な蒸気ボイドによって生ずる情方向出カ
ビーキングの増加を抑えることが可能となった(特開昭
53−40188)。この軸方向出力ビーキングの増加
を抑える技術により、沸騰水型原子炉内の熱的余裕は増
大したが、燃料集合体内の中心部と周縁部とにおける燃
料原子濃度は従来と同様であった。そのため、燃料集合
体全体の無限増倍率の効果、即ち、無限増倍率を大きく
することに関しては、従来と大きな変化がなかった。
On the other hand, in recent years, a technology has been developed in which the fuel rod is divided into two regions approximately at the center in the longitudinal direction, and the concentration of substances contained in the fuel rod is varied in each region. Then, the concentration of fuel atoms in the upper part of the fuel assembly is made higher than in the lower part, the infinite multiplication factor in the upper part of the fuel assembly is made large, and the infinite multiplication factor in the lower part of the fuel assembly is made small.
It became possible to homogenize the nuclear fission reaction in the longitudinal direction of the fuel assembly, and to suppress the increase in turbulence caused by steam voids characteristic of boiling water reactors (Japanese Patent Laid-Open No. 53-40188). Although the thermal margin within the boiling water reactor has been increased by this technique of suppressing the increase in axial power peaking, the concentration of fuel atoms at the center and the periphery of the fuel assembly remains the same as before. Therefore, the effect of the infinite multiplication factor of the entire fuel assembly, ie, increasing the infinite multiplication factor, has not changed significantly from the conventional method.

本発明は、上記の事実を考慮してなされたもので、燃料
集合体全体の燃料原子の濃度を変えることなく、燃料集
合体の周縁の燃料原子の濃度を高くして燃焼期間全長く
することができる燃料集合体を提供することを目的とす
る。
The present invention has been made in consideration of the above facts, and aims to increase the concentration of fuel atoms at the periphery of the fuel assembly to lengthen the entire combustion period without changing the concentration of fuel atoms in the entire fuel assembly. The purpose is to provide a fuel assembly that can.

本発明は、核分裂性物質を燃料とする原子炉用燃料棒の
複数を平行して組込み一体化した燃料集合体において、
この燃料集合体の周縁部の前記燃料棒の核燃料物質の平
均濃度を前記燃料集合体の中心部の前記燃料棒の核燃料
物質の平均濃度より大きくすると共に、前記燃料棒中の
含有物質の割合を長手方向で変えることにより、前記燃
料集合体の上部の無限増倍率を前記燃料集合体の下部の
無限増倍率より太きくシ、燃料集合体全体の無限増倍率
を大きくして燃料集合体の燃焼期間が長くなるように構
成したものである。
The present invention provides a fuel assembly in which a plurality of nuclear reactor fuel rods that use fissile material as fuel are assembled and integrated in parallel.
The average concentration of nuclear fuel material in the fuel rods at the periphery of the fuel assembly is made larger than the average concentration of nuclear fuel material in the fuel rods at the center of the fuel assembly, and the proportion of the material contained in the fuel rods is increased. By changing the lengthwise direction, the infinite multiplication factor in the upper part of the fuel assembly is made larger than the infinite multiplication factor in the lower part of the fuel assembly, and the infinite multiplication factor of the entire fuel assembly is increased, thereby increasing the combustion of the fuel assembly. It is structured so that the period is long.

本発明に係る燃料集合体の好ましい実施例を添付図面に
従って詳説する。なお、従来例に示した部材に対応する
部材については同一の符号を付して説明を省略する。
A preferred embodiment of the fuel assembly according to the present invention will be described in detail with reference to the accompanying drawings. Incidentally, members corresponding to those shown in the conventional example are given the same reference numerals and explanations thereof will be omitted.

第4図は、本発明に係る燃料集合体の実施例の燃料棒の
配置図であり、第5図は、第4図の燃料棒の燃料原子の
濃度を示す図である。なお、燃料棒中の燃料原子の濃度
(!I縮度)は、前記と同様に最高濃縮度、高濃縮度、
中間高濃縮度、中間低濃縮度、低濃縮度、最低濃縮度の
順に小さくなっている。第4図、第5図において燃料果
合体10は、中心部に2本のウォータロッド42が組込
まれ、46本の燃料棒が8行8列の格子状に組込まれて
配置されている。そして、燃料集合体10の外側から2
番目の層の各辺中央に2本ずつ配置されている最高濃縮
度燃料棒44は、3.7重量パーセント(以下、Wlo
と称す)の燃料原子が燃料棒中にほぼ一様に分布してい
る。また、燃料集合体10の最も外側の層の各辺中央部
に4本ずつ配置された高濃縮度燃料棒46は、燃料棒中
の燃料原子の平均濃度が3.5W10であって、燃料棒
の上半分が3.7 W/ O1下半分が3.3W10の
濃度にされている。高濃縮度燃料棒46の両側に配置さ
れた中間高濃縮度燃料棒48は、燃料原子の平均濃度が
3.1W10であって、上半分が3.3 W/ O1下
半分が2.9 W/ Oの濃度を有する。また、燃料集
合体10の外側から2番目の層の各角部に配置された中
間低濃縮度燃料棒50は、2.9W10の燃料原子が一
様に分布しておシ、燃料集合体10の最も外側の各角部
に配置された低濃縮度燃料棒52は、燃料原子の平均濃
度が2.4W10であって、上半分が2.6W10、下
半分が2.2W10である。そして、燃料集合体10の
中心部には、14本の最低濃縮度燃料棒54が配置され
、この最低濃縮度燃料棒54は、濃度2.2W10の燃
料原子が一様に分布している。なお、燃料集合体10の
外!側から2番目の層の第4図において左上部と右下部
とに配置された56及び右上部と左下部とに配置された
58とはそれぞれ可燃性毒物(Gd )入り燃料棒であ
る。そして、可燃性毒物入り燃料棒56は、2.9W1
0の燃料原子と4.5W10の可燃性毒物とが一様に分
布しておシ、可燃性毒物入り燃料58は、2.9W10
の燃料原子が一様に分布すると共に、上半分は3.5W
10の可燃性毒物が、下半分には4.5W10の可燃性
毒物が含まれている。
FIG. 4 is a layout diagram of fuel rods in an embodiment of the fuel assembly according to the present invention, and FIG. 5 is a diagram showing the concentration of fuel atoms in the fuel rods of FIG. 4. Note that the concentration of fuel atoms in the fuel rod (!I degree of contraction) is determined by the maximum enrichment, high enrichment, and
The concentration decreases in the following order: intermediate high enrichment, intermediate low enrichment, low enrichment, and minimum enrichment. In FIGS. 4 and 5, the fuel assembly 10 has two water rods 42 installed in its center, and 46 fuel rods arranged in a grid of 8 rows and 8 columns. 2 from the outside of the fuel assembly 10.
The highest enrichment fuel rods 44, two of which are arranged at the center of each side of the second layer, are 3.7% by weight (hereinafter referred to as WLO).
The fuel atoms (referred to as ) are almost uniformly distributed throughout the fuel rod. Furthermore, the four high enrichment fuel rods 46 arranged at the center of each side of the outermost layer of the fuel assembly 10 have an average concentration of fuel atoms in the fuel rods of 3.5W10. The upper half has a concentration of 3.7 W/O1 and the lower half has a concentration of 3.3W10. The intermediate high enrichment fuel rods 48 arranged on both sides of the high enrichment fuel rod 46 have an average concentration of fuel atoms of 3.1 W10, with an upper half of 3.3 W/O1 and a lower half of 2.9 W. /O. Further, the intermediate low enrichment fuel rods 50 arranged at each corner of the second layer from the outside of the fuel assembly 10 have fuel atoms of 2.9W10 uniformly distributed therein. The low enrichment fuel rods 52 located at each of the outermost corners have an average concentration of fuel atoms of 2.4W10, with the upper half having 2.6W10 and the lower half having 2.2W10. Fourteen minimum enrichment fuel rods 54 are arranged at the center of the fuel assembly 10, and fuel atoms having a concentration of 2.2W10 are uniformly distributed in the minimum enrichment fuel rods 54. In addition, outside the fuel assembly 10! In FIG. 4 of the second layer from the side, 56 arranged at the upper left and lower right and 58 arranged at the upper right and lower left are fuel rods containing burnable poison (Gd), respectively. The fuel rod 56 containing burnable poison is 2.9W1
0 fuel atoms and 4.5W10 burnable poison are uniformly distributed, and the fuel 58 containing burnable poison is 2.9W10.
of fuel atoms are uniformly distributed, and the upper half is 3.5W
10 burnable poisons and the lower half contains 4.5W10 burnable poisons.

上記のような配置で燃料棒が組込まれた燃料集合体lO
は、燃料原子の濃度が下部より上部で大きくなっている
と共に、燃料原子の平均濃度が中心部より周縁部で大き
くなっている。従って、燃料集合体10の長手方向の無
限増倍率が下部より上部が大きくされて核分裂反応が均
一化され、軸方向出力r−キングが低下する。一方、前
記したように核分裂反応に適した熱中性子が多い燃料集
合体1oの周縁部の燃料原子の濃度を高くしたことによ
シ、燃料集合体10の中心部の無限増倍率の低下以上に
周縁部での無限増倍率を大きくすることができ、燃料集
合体1o全体の無限増倍率を大きくすることができる。
Fuel assembly lO in which fuel rods are assembled in the above arrangement
In this case, the concentration of fuel atoms is higher at the top than at the bottom, and the average concentration of fuel atoms is higher at the periphery than at the center. Therefore, the infinite multiplication factor in the longitudinal direction of the fuel assembly 10 is made larger in the upper part than in the lower part, so that the nuclear fission reaction is made uniform, and the axial output r-king is reduced. On the other hand, as mentioned above, by increasing the concentration of fuel atoms at the periphery of the fuel assembly 1o, where there are many thermal neutrons suitable for nuclear fission reactions, the decrease in the infinite multiplication factor at the center of the fuel assembly 10 is greater than that at the center of the fuel assembly 10. The infinite multiplication factor at the peripheral portion can be increased, and the infinite multiplication factor of the entire fuel assembly 1o can be increased.

燃料集合体全体の燃料原子の濃度が等しい前記実施例の
燃料集合体と従来の燃料集合体とを使用して原子炉を運
転したときの無限増倍率と燃料の燃焼度との関係を第6
図に示す。第6図において縦軸は無限増倍率、横軸は燃
焼度であって単位はMWd/l (メガワット日/トン
)である。また、Aは本実施例の燃料集合体上部の測定
値、Bは本実施例の燃料集合体下部の測定値、Cは従来
の燃料集合体゛上部の測定値、Dは従来の燃料集合体下
部の測定値である。図に示されているように実施例の燃
料集合体は、従来の燃料集合体に比べ燃焼度が大きい部
分(燃料寿命の後半)において無限増倍率が0.01増
加する。この結果、燃料集合体全体の燃料原子の濃度が
従来と同一であっても、本実施例の燃料集合体は、燃料
寿命後半において従来より無限増倍率が大きくなるので
、燃焼期間を長くすることができる。即ち、同量の燃料
を使用しても取り出されるエネルギーが多くなシ、燃料
の経済性を大幅に向上することができる。
The relationship between the infinite multiplication factor and the fuel burnup when a nuclear reactor is operated using the fuel assembly of the above embodiment and the conventional fuel assembly in which the concentration of fuel atoms in the entire fuel assembly is equal is shown in the sixth diagram.
As shown in the figure. In FIG. 6, the vertical axis is the infinite multiplication factor, and the horizontal axis is the burnup, which is expressed in MWd/l (megawatt day/ton). In addition, A is the measured value of the upper part of the fuel assembly of this example, B is the measured value of the lower part of the fuel assembly of this example, C is the measured value of the upper part of the conventional fuel assembly, and D is the measured value of the conventional fuel assembly. This is the measurement value at the bottom. As shown in the figure, in the fuel assembly of the example, the infinite multiplication factor increases by 0.01 in the portion where the burnup is large (in the latter half of the fuel life) compared to the conventional fuel assembly. As a result, even if the concentration of fuel atoms in the entire fuel assembly is the same as the conventional one, the fuel assembly of this example has a larger infinite multiplication factor than the conventional one in the latter half of the fuel life, so the combustion period can be lengthened. Can be done. That is, even if the same amount of fuel is used, more energy is extracted, and fuel economy can be greatly improved.

なお、前記実施例では燃料集合体1oの軸方向出力ビー
キングを小さくするのに燃料原子の濃度を変えて行う場
合について説明したが、中性子を吸収する性質を有する
可燃毒物の濃度を変えることによっても行うことができ
る。また、前記実施例では、燃料棒t−8行8列の格子
状に組込んだ燃料集合体について説明したが、燃料集合
体は8行8列の格子状に限定されず、また、燃料棒全円
形に配置1でもよい。
In the above embodiment, the axial output peaking of the fuel assembly 1o is reduced by changing the concentration of fuel atoms. It can be carried out. Further, in the above embodiment, a fuel assembly was described in which the fuel rods were assembled in a lattice shape with t-8 rows and 8 columns, but the fuel assembly is not limited to the lattice shape with 8 rows and 8 columns. Arrangement 1 may be arranged in a complete circle.

以上説明したように本発明によれば、燃料棒中の含有物
の濃度を変えて燃料集合体上部の無限増倍率を下部の無
限増倍率よ゛シ大きくシ、燃料集合体の周縁部の燃料原
子の濃度を中心部より犬きくしたことにより燃料の燃焼
期間を長くすることができる。
As explained above, according to the present invention, the concentration of the content in the fuel rods is changed to make the infinite multiplication factor in the upper part of the fuel assembly larger than the infinite multiplication factor in the lower part. By increasing the concentration of atoms from the center, the combustion period of the fuel can be extended.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は燃料集合体の概略図、第2図は第1図の■−■
線に沿う断面図、第3図は従来の燃料集合体の燃料棒の
配置図、第4図は本発明に係る実施例の燃料集合体の燃
料棒の配置図、第5図は第4図の燃料棒の燃料原子の濃
度を示す図、第6図は燃料集合体の燃焼度と無限増倍率
との関係を示す図である。 10・・・燃料集合体、28.44・・・最高濃縮度燃
料棒、30.46・・・高濃縮度燃料棒、32.48・
・・中間高濃縮度燃料棒、34,50・・・中間低濃縮
度燃料棒、36.52・・・低濃縮度燃料棒、38゜5
4・・・最低濃縮度燃料棒、40,56.58・・・可
第1 幻 第3121 第千口
Figure 1 is a schematic diagram of the fuel assembly, and Figure 2 is from ■-■ in Figure 1.
3 is a diagram showing the arrangement of fuel rods in a conventional fuel assembly, FIG. 4 is a diagram showing the arrangement of fuel rods in a fuel assembly according to an embodiment of the present invention, and FIG. FIG. 6 is a diagram showing the concentration of fuel atoms in the fuel rods, and FIG. 6 is a diagram showing the relationship between the burnup of the fuel assembly and the infinite multiplication factor. 10... Fuel assembly, 28.44... Highest enrichment fuel rod, 30.46... High enrichment fuel rod, 32.48.
...Intermediate high enrichment fuel rod, 34,50...Intermediate low enrichment fuel rod, 36.52...Low enrichment fuel rod, 38゜5
4...Minimum enrichment fuel rod, 40,56.58...Acceptable 1st phantom 3121st 1000th

Claims (1)

【特許請求の範囲】[Claims] 1、核分裂性物質を燃料とする原子炉用燃料棒の複数を
平行して組込み一体化した燃料集合体において、この燃
料集合体の周縁部の前記燃料棒の核燃料物質の平均濃度
を前記燃料集合体の中心部の前記燃料棒の核燃料物質の
平均濃度より大きくすると共に、前記燃料棒中の含有物
質の割合を長手方向で変えることによシ、前記燃料集合
体の上部の無限増倍率を前記燃料集合体の下部の無限増
倍率よシ大きくしたことを特徴とする燃料集合体。
1. In a fuel assembly in which a plurality of fuel rods for a nuclear reactor using fissile material as fuel are assembled and integrated in parallel, the average concentration of nuclear fuel material in the fuel rods at the periphery of the fuel assembly is calculated as the fuel assembly. By increasing the average concentration of nuclear fuel material in the fuel rods in the center of the body and by varying the proportion of the material contained in the fuel rods in the longitudinal direction, the infinite multiplication factor in the upper part of the fuel assembly can be increased as described above. A fuel assembly characterized by having a larger infinite multiplication factor than the lower part of the fuel assembly.
JP56124063A 1981-08-10 1981-08-10 Fuel assembly Granted JPS5826292A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56124063A JPS5826292A (en) 1981-08-10 1981-08-10 Fuel assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56124063A JPS5826292A (en) 1981-08-10 1981-08-10 Fuel assembly

Publications (2)

Publication Number Publication Date
JPS5826292A true JPS5826292A (en) 1983-02-16
JPS6367870B2 JPS6367870B2 (en) 1988-12-27

Family

ID=14876032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56124063A Granted JPS5826292A (en) 1981-08-10 1981-08-10 Fuel assembly

Country Status (1)

Country Link
JP (1) JPS5826292A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4683113A (en) * 1984-05-16 1987-07-28 Hitachi, Ltd. Nuclear fuel assembly
JPS6353203U (en) * 1986-09-26 1988-04-09
JP2012063189A (en) * 2010-09-15 2012-03-29 Hitachi-Ge Nuclear Energy Ltd Fuel assembly

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5340188A (en) * 1976-09-25 1978-04-12 Hitachi Ltd Fuel assembly

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5340188A (en) * 1976-09-25 1978-04-12 Hitachi Ltd Fuel assembly

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4683113A (en) * 1984-05-16 1987-07-28 Hitachi, Ltd. Nuclear fuel assembly
JPS6353203U (en) * 1986-09-26 1988-04-09
JP2012063189A (en) * 2010-09-15 2012-03-29 Hitachi-Ge Nuclear Energy Ltd Fuel assembly

Also Published As

Publication number Publication date
JPS6367870B2 (en) 1988-12-27

Similar Documents

Publication Publication Date Title
JPH0232293A (en) Boiling water nuclear reactor
JPH0313556B2 (en)
JPH0536757B2 (en)
JPH0450551B2 (en)
JPS5826292A (en) Fuel assembly
JPS58187891A (en) Fuel assembly
JPH06174874A (en) Fuel assembly and reactor core
JPS60201284A (en) Fuel aggregate
JP2942622B2 (en) Reactor fuel assemblies
JP2632726B2 (en) Fuel assembly for boiling water reactor
JP2507408B2 (en) Fuel assembly
JP2625404B2 (en) Fuel assembly
JPH04122888A (en) Fuel assembly and core of nuclear reactor
JP2972255B2 (en) Reactor
JPH0792512B2 (en) Fuel assembly and reactor core
JP3135644B2 (en) Reactor core
JPH05164869A (en) Fuel assembly
JP2656279B2 (en) Fuel assembly for boiling water reactor
JPH09166678A (en) Mox fuel assembly
JPH07111469B2 (en) Fuel assembly
JPS63231293A (en) Core for nuclear reactor
JPS59102188A (en) Fuel assembly
JPH07159569A (en) Fuel assembly
JPS61147184A (en) Fuel aggregate
JPS60242391A (en) Fuel aggregate