JPH07229418A - Exhaust emission control device - Google Patents

Exhaust emission control device

Info

Publication number
JPH07229418A
JPH07229418A JP6022314A JP2231494A JPH07229418A JP H07229418 A JPH07229418 A JP H07229418A JP 6022314 A JP6022314 A JP 6022314A JP 2231494 A JP2231494 A JP 2231494A JP H07229418 A JPH07229418 A JP H07229418A
Authority
JP
Japan
Prior art keywords
gas
electrode
exhaust gas
corona discharge
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6022314A
Other languages
Japanese (ja)
Inventor
Tsugita Yukitake
次太 雪竹
Kenichi Soma
憲一 相馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6022314A priority Critical patent/JPH07229418A/en
Publication of JPH07229418A publication Critical patent/JPH07229418A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Treating Waste Gases (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

PURPOSE:To add NH3 formed by the decomposition of urea to the gas inflow side of a corona discharge denitrating device, enhance the reaction with NOx in corona discharge feed, and improve the denitrating performance. CONSTITUTION:An AC voltage is charged to a discharge electrode having a dielectric 12 on the grounding electrode side between a discharge electrode 11 and a grounding electrode 13 to generate a corona discharge. A urea decomposing device is provided on the gas inflow side of a corona discharge tube, and a gas purifying tower for forming a hydrocarbon solution is provided on the gas outflow side of the discharge tube. Thus, NOx, soot and dust in the exhaust gas of a diesel engine or gas engine are economically removed, which can contribute to the environmental improvement.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ディーゼルエンジンや
ガスエンジン等の排ガス中に含まれる有害ガス及びばい
じんを、プラズマ放電により清浄にする排ガス浄化方法
及び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purifying method and apparatus for cleaning harmful gas and dust contained in exhaust gas from diesel engines and gas engines by plasma discharge.

【0002】[0002]

【従来の技術】近年、都市部を中心に普及してきたコジ
ェネレーションシステムでは、その動力源は負荷変動に
追随しやすいディーゼルエンジンまたはガスエンジンが
用いられている。これらエンジンの排気ガス中には、光
化学スモッグの要因となるNOx(窒素酸化物)が多く含
まれ、近年の厳しいNOx排出規制のため、小型エンジ
ンでも排煙脱硝装置の設置が要求される。エンジンから
排出されるNOxの大部分は水やアルカリ水溶液には溶
解しないNO(一酸化窒素)である。
2. Description of the Related Art In recent years, a cogeneration system that has been popularized mainly in urban areas uses a diesel engine or a gas engine as a power source, which easily follows a load change. Exhaust gas from these engines contains a large amount of NOx (nitrogen oxide), which causes photochemical smog. Due to severe NOx emission regulations in recent years, it is required to install a flue gas denitration device even for small engines. Most of the NOx discharged from the engine is NO (nitrogen monoxide) that is not dissolved in water or an alkaline aqueous solution.

【0003】従来、排気ガス中からNOxを除去するい
わゆる排煙脱硝法は、アンモニアと触媒によりNOxを
無害な窒素と酸素に分解するアンモニア接触還元法が広
く採用されている。他の方式では、コロナ放電脱硝法が
多数提案されている。例えば、特開昭63−183211号公報
には放電極と接地極からなるコロナ放電空間の接地極側
に絶縁層を設けたものにおいて、放電極がネジ切りした
形状とすることにより、コロナの発生を良くしてNOx
の分解を高めることが提案されている。また、特開平2
−173311 号公報には、コロナ放電極の内部に粘性油を
滴下し、脱硝と同時にディーゼルエンジン排気ガス中の
すすを除去できることが示されている。更には特開昭53
−25264 号公報には電気集塵器の放電極のガス上流側に
NOxの環元剤を添加し、脱硝率を高めることなどが開
示されている。
Conventionally, as a so-called flue gas denitration method for removing NOx from exhaust gas, an ammonia catalytic reduction method for decomposing NOx into harmless nitrogen and oxygen by ammonia and a catalyst has been widely adopted. As another method, many corona discharge denitration methods have been proposed. For example, in JP-A-63-183211, a corona discharge space consisting of a discharge electrode and a ground electrode is provided with an insulating layer on the side of the ground electrode, and the discharge electrode has a threaded shape to generate corona. Improve NOx
It has been proposed to increase the decomposition of. In addition, JP-A-2
-173311 discloses that viscous oil can be dropped inside a corona discharge electrode to remove soot and desorb soot in diesel engine exhaust gas at the same time as denitration. Furthermore, JP-A-53
No. 25264 discloses that a NOx reducing agent is added to the gas upstream side of the discharge electrode of the electrostatic precipitator to increase the denitration rate.

【0004】[0004]

【発明が解決しようとする課題】上述した従来のアンモ
ニア接触還元法は、危険物であるアンモニアを都市部に
おいて貯蔵,使用すること、また、アンモニアの一部が
ガスと共に大気へ流失する恐れがあるという問題があ
る。また、このアンモニア接触還元法はすすの除去はで
きないために、特に、エンジンの起動時や負荷変動時に
は多量のすすが排出され、住域の大気汚染源ともなって
いる。一方、従来のコロナ放電脱硝法は、電気のみでN
Oxを無害な窒素と酸素に分解する方式であるが、ディ
ーゼルエンジンまたは、ガスエンジンのように排ガス中
に酸素が10%程度含まれるものでは、NOxの大部分
はNO2に酸化されるが、NO2を除去する手段が必要に
なるが、従来のガス吸収塔のように、アルカリ水溶液で
は吸収率が低いばかりでなく、吸収した反応溶液の後処
理に要する費用が高くなる問題がある。更にはNOをN
2に酸化するための消費電力が高いのも課題である。
また、特開昭53−25264号公報に示される脱硝法では、
放電極に脱硝触媒を担持するために高価な電極となる。
本発明の目的は上記に鑑みてなされたもので、ディーゼ
ルエンジンやガスエンジンの排ガス中に含まれる有害ガ
ス及びばいじんを、コロナ放電により清浄にする経済性
に優れた排ガス浄化方法及び装置を提供するものであ
る。
The above-mentioned conventional ammonia catalytic reduction method involves storing and using ammonia, which is a dangerous substance, in urban areas, and there is a risk that part of the ammonia will be lost to the atmosphere along with the gas. There is a problem. Further, since this ammonia catalytic reduction method cannot remove soot, a large amount of soot is discharged particularly when the engine is started or when the load changes, and it is a source of air pollution in the residential area. On the other hand, the conventional corona discharge denitration method uses electricity only
This is a method of decomposing Ox into harmless nitrogen and oxygen, but in a diesel engine or a gas engine in which exhaust gas contains about 10% oxygen, most of NOx is oxidized to NO 2 . Although a means for removing NO 2 is required, there is a problem in that, as in a conventional gas absorption tower, an alkaline aqueous solution has a low absorptivity, and the post-treatment cost of the absorbed reaction solution is high. Furthermore, NO to N
High power consumption for oxidation to O 2 is also a problem.
Further, in the denitration method shown in JP-A-53-25264,
Since the denitration catalyst is carried on the discharge electrode, it becomes an expensive electrode.
The object of the present invention has been made in view of the above, and provides a highly economical exhaust gas purification method and apparatus for cleaning harmful gas and dust contained in the exhaust gas of diesel engines and gas engines by corona discharge. It is a thing.

【0005】[0005]

【課題を解決するための手段】上記の目的を達成するた
めに本発明は、放電電極とこれに対向した位置に誘電体
を介して設けられた接地電極からなるコロナ放電反応管
により脱硝するものにおいて、該コロナ放電反応管のガ
ス流入側にガス調質装置を備え、かつ、反応管のガス流
出側に炭化水素の洗浄液を用いたガス洗浄塔を具備した
ことを特徴とするものである。
In order to achieve the above object, the present invention denitrates by a corona discharge reaction tube consisting of a discharge electrode and a ground electrode provided at a position facing the discharge electrode via a dielectric. In the above, a gas conditioning device is provided on the gas inflow side of the corona discharge reaction tube, and a gas cleaning tower using a hydrocarbon cleaning liquid is provided on the gas outflow side of the reaction tube.

【0006】[0006]

【作用】上記の構成からなる本発明の排ガス浄化方法に
ついて述べる。エンジンからの燃焼排ガスは、放電極と
誘電体及び接地極から構成されるコロナ放電反応管に導
入される。両電極間に交流高電圧を印加するとコロナ放
電が生起し、放電空間にプラズマが生成される。この放
電領域に導入された排ガス中のNOや酸素は電子やイオ
ンにより励起されて反応が促進され、NOは酸化されて
NO2 になる。この場合、燃焼排ガスのみでは酸化率が
低く、NOをNO2 に酸化するのに要する消費電力が高
くなりすぎることが大きな課題であった。本発明ではこ
れを解決するために、放電ガス反応管のガス流入側にガ
ス調質装置を設け、調質装置において尿素を加熱分解し
てアンモニアを生成し、放電場に導く。放電場ではアン
モニアとNO2 が反応して硝酸アンモニゥムの固体粒子
が生成される。一方、放電場には電気的に絶縁性の洗浄
液を噴霧することにより、洗浄液中に固体粒子を回収す
る。しかしながら、反応管のみでは固体粒子は回収でき
ない。また、反応管では酸化された全てのNO2 がアン
モニアと結合できるものではなく、ガス吸収塔よりNO
2 が逸脱するで、これをガス洗浄塔により除去する必要
がある。ガス洗浄塔には炭化水素系のガス吸収媒体が循
環しており、NO2 ,ばいじん及び硝酸アンモニゥムの
固体粒子を効率良く除去することができる。
The exhaust gas purifying method of the present invention having the above structure will be described. The combustion exhaust gas from the engine is introduced into a corona discharge reaction tube composed of a discharge electrode, a dielectric and a ground electrode. When an AC high voltage is applied between both electrodes, corona discharge occurs and plasma is generated in the discharge space. NO and oxygen in the exhaust gas introduced into this discharge region are excited by electrons and ions to promote the reaction, and NO is oxidized to NO 2 . In this case, the oxidation rate is low only with the combustion exhaust gas, and the power consumption required to oxidize NO to NO 2 is too high, which is a major problem. In the present invention, in order to solve this, a gas refining device is provided on the gas inflow side of the discharge gas reaction tube, and urea is thermally decomposed in the refining device to generate ammonia, which is led to the discharge field. In the discharge field, ammonia and NO 2 react to generate solid ammonium nitrate particles. On the other hand, by spraying an electrically insulating cleaning liquid on the discharge field, solid particles are collected in the cleaning liquid. However, solid particles cannot be collected only by the reaction tube. Also, in the reaction tube, not all the oxidized NO 2 can bond with ammonia, and the NO
Since 2 deviates, it must be removed by the gas scrubber. A hydrocarbon-based gas absorbing medium circulates in the gas washing tower, and solid particles of NO 2 , dust and ammonium nitrate can be efficiently removed.

【0007】[0007]

【実施例】図1は、本発明になる排ガス浄化装置の一実
施例を示す。1はコロナ放電反応管、11は放電電極、
12は誘電体であり材質はガラス又はセラミックが用い
られる。13は接地電極であり、放電電極11と接地電
極13は導体の金属である。14はスプレイノズルであ
り、洗浄液タンク15よりポンプ16でもって電極内に
洗浄液を噴霧し、電極内部を常時洗浄する。洗浄液の種
類は電気的には絶縁性であり、揮発性が低く、好ましく
は炭化水素の可燃性液体であり、危険物法令で定められ
る第4石油類が良い。2はガス調質装置であり、調質剤
には尿素が用いられる。ガス調質装置2において尿素を
300〜400℃に加熱して分解し、アンモニアを生成
する。分解したアンモニアを反応管1のガス流入側煙道
内に注入する。3はガス吸収塔であり、31は洗浄液噴
霧ノズル、32は充填層であり、例えばアルミナや樹脂
材のラシヒリングが用いられる。33はミストセパレ
タ、34は洗浄液貯蔵タンクであり、洗浄液はポンプ3
5により、スプレノズル31よりガス洗浄塔に噴霧され
る。洗浄液には前述のコロナ放電反応管1の洗浄液と同
質のものが用いられるのが特徴である。
1 shows an embodiment of an exhaust gas purifying apparatus according to the present invention. 1 is a corona discharge reaction tube, 11 is a discharge electrode,
Reference numeral 12 is a dielectric, and the material is glass or ceramic. 13 is a ground electrode, and the discharge electrode 11 and the ground electrode 13 are conductor metals. A spray nozzle 14 sprays a cleaning liquid into the electrode from a cleaning liquid tank 15 with a pump 16 to constantly clean the inside of the electrode. The type of cleaning liquid is electrically insulative, has low volatility, is preferably a flammable liquid of hydrocarbons, and is preferably a fourth petroleum product specified by the Dangerous Goods Law. Reference numeral 2 is a gas refining device, and urea is used as a refining agent. Urea is heated to 300 to 400 ° C. in the gas refining apparatus 2 to decompose it and produce ammonia. The decomposed ammonia is injected into the gas inlet side flue of the reaction tube 1. Reference numeral 3 is a gas absorption tower, 31 is a cleaning liquid spraying nozzle, and 32 is a packed bed. For example, Raschig rings of alumina or a resin material are used. 33 is a mist separator, 34 is a cleaning liquid storage tank, and the cleaning liquid is pump 3
5 is sprayed from the spray nozzle 31 to the gas cleaning tower. The cleaning liquid is characterized in that it has the same quality as the cleaning liquid for the corona discharge reaction tube 1 described above.

【0008】以下、本発明になる排ガス浄化装置の作用
についてディーゼルエンジン排ガス処理を例に詳細に述
べる。ガス調質装置2において尿素より分解されたアン
モニアガスが煙道内に送入されると排ガス中に拡散し
て、排ガスと共にコロナ放電反応管1に導入される。コ
ロナ放電反応管1は、誘電体12を介して放電電極11
と接地極13との間に交流または高周波の高電圧を印加
するとコロナ放電が形成され、該放電場に導入された排
ガスは高い電界強度のもとに解離したイオンや電子の射
突によりNOxやアンモニアガスの気体分子は励起され
て反応性が高まり、固体粒子の硝酸アンモニゥムが効率
良く生成される。一方、放電場には電気的に絶縁性の洗
浄液を噴霧しており、コロナ放電場に洗浄液が流入する
と交流のコロナのために更に洗浄液滴は微細となりガス
や粒子との接触が高まり、液滴中に固体粒子は回収され
る。この場合、放電電極の形状について検討した結果、
図2に示されるように、電極表面がローレット加工また
はコイル状の如く、細かいひだ状のものが放電の安定性
に優れていることを明らかにした。即ち、洗浄液が放電
電極になじみやすいためと思われる。しかしながら、反
応管のみでは固体粒子は完全には回収できない。その理
由は、交流コロナ放電であるために粒子は電極内で交互
に移動するので接地電極に到達する確率が少ないためで
ある。また、反応管では酸化された全てのNO2 がアン
モニアと結合できない場合があり、ガス吸収塔より一部
のNO2 が逸脱するで、これらのガスと固体粒子をガス
洗浄塔2により除去する必要がある。通常、SO2やN
2のように酸性ガスの吸収にはアルカリ水溶液が用い
られるが、ガス吸収について種々検討した結果、炭化水
素からなるガス吸収媒体が最も吸収性が高いことを明ら
かにした。図3は、炭化水素(CmHn)として第4石
油類を用いたときの水とのNO2 の吸収率の比較であ
る。水に比較してCmHnははるかに吸収率が高い。こ
のように、ガス吸収塔3には炭化水素からなるガス吸収
媒体が循環しており、NO2 ,ばいじん、すなわち疎水
性のすす及び硝酸アンモニゥムの固体粒子を効率良く除
去することができる。ガス吸収剤に炭化水素を用いる効
果は、NO2 吸収率が高いばかりでなく、吸収したガス
及びすすは燃料として再利用できるので、従来のように
吸収溶液の後処理に要する費用がかからないのが特徴で
ある。図4は、ガス吸収塔の他の実施例を示す。36は
放電極、37は接地極であり、両電間に高圧電源38よ
り直流高電圧を印加するとコロナ放電が生成する。一
方、充填層32に高圧極39と接地極40が設けられ、
両電極間に電源41より直流高電圧が印加電界が形成さ
れる。このような電極構成により、ガス吸収塔内に流入
する固体粒子に電荷を与え、ガス吸収塔3に印加される
電界でもって粒子の捕捉を促進することにより、吸収性
能を大幅に向上することができる。ここに用いられる放
電電力は極めて僅かである。
Hereinafter, the operation of the exhaust gas purifying apparatus according to the present invention will be described in detail by taking a diesel engine exhaust gas treatment as an example. When the ammonia gas decomposed from urea in the gas conditioning device 2 is fed into the flue, it diffuses into the exhaust gas and is introduced into the corona discharge reaction tube 1 together with the exhaust gas. The corona discharge reaction tube 1 includes a discharge electrode 11 via a dielectric 12.
When a high voltage of alternating current or high frequency is applied between the ground electrode 13 and the ground electrode 13, a corona discharge is formed, and the exhaust gas introduced into the discharge field emits NOx or NOx due to collision of dissociated ions or electrons under high electric field strength. The gas molecules of the ammonia gas are excited to increase the reactivity, and ammonium nitrate as solid particles is efficiently generated. On the other hand, the electrically insulative cleaning liquid is sprayed on the discharge field, and when the cleaning liquid flows into the corona discharge field, the cleaning droplet becomes finer due to the corona of the alternating current, and the contact with gas and particles increases, and the droplet Solid particles are collected therein. In this case, as a result of examining the shape of the discharge electrode,
As shown in FIG. 2, it was clarified that the electrode surface has a fine pleated shape such as knurled or coiled shape, which is excellent in discharge stability. That is, it is considered that the cleaning liquid is easily adapted to the discharge electrode. However, solid particles cannot be completely recovered only by the reaction tube. The reason is that the particles move alternately in the electrode due to the AC corona discharge, and therefore the probability of reaching the ground electrode is low. Further, in the reaction tube, all the oxidized NO 2 may not be able to combine with ammonia, and a part of the NO 2 deviates from the gas absorption tower. Therefore, it is necessary to remove these gases and solid particles by the gas cleaning tower 2. There is. Usually SO 2 or N
Although an alkaline aqueous solution is used for absorbing an acidic gas such as O 2 , as a result of various studies on the gas absorption, it has been clarified that a gas absorbing medium made of hydrocarbon has the highest absorbability. FIG. 3 is a comparison of the absorption rate of NO 2 with water when the fourth petroleum is used as the hydrocarbon (CmHn). CmHn has a much higher absorption rate than water. In this way, the gas absorption medium made of hydrocarbons circulates in the gas absorption tower 3, and it is possible to efficiently remove NO 2 , soot, that is, solid particles of hydrophobic soot and ammonium nitrate. The effect of using hydrocarbon as the gas absorbent is that not only the NO 2 absorption rate is high, but also the absorbed gas and soot can be reused as fuel, so the cost required for the post-treatment of the absorption solution is not the same as in the conventional case. It is a feature. FIG. 4 shows another embodiment of the gas absorption tower. 36 is a discharge electrode and 37 is a grounding electrode, and when a high DC voltage is applied from a high voltage power source 38 between both electrodes, corona discharge is generated. On the other hand, a high voltage electrode 39 and a ground electrode 40 are provided in the filling layer 32,
A DC high voltage applied by the power source 41 forms an electric field between both electrodes. With such an electrode configuration, the solid particles flowing into the gas absorption tower are charged and the trapping of the particles is promoted by the electric field applied to the gas absorption tower 3, whereby the absorption performance can be significantly improved. it can. The discharge power used here is very low.

【0009】[0009]

【発明の効果】本発明を実施することにより、ディーゼ
ルエンジンやガスエンジンの燃焼排ガス中からNOx及
びばいじんを効率良く除去し、クリーンなガスとして大
気中へ排出できるので公害防止上に貢献するものであ
る。
By implementing the present invention, NOx and dust can be efficiently removed from the combustion exhaust gas of diesel engines and gas engines, and can be discharged into the atmosphere as clean gas, which contributes to the prevention of pollution. is there.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る排ガス浄化装置の一実施例の説明
図である。
FIG. 1 is an explanatory diagram of an embodiment of an exhaust gas purifying apparatus according to the present invention.

【図2】本発明に係るコロナ放電反応管の放電電極の実
施例を示す図である。
FIG. 2 is a diagram showing an example of a discharge electrode of a corona discharge reaction tube according to the present invention.

【図3】炭化水素液と水のNO2吸収率比較を示す図で
ある。
FIG. 3 is a diagram showing a comparison of NO 2 absorption rates of hydrocarbon liquid and water.

【図4】本発明になるガス吸収塔の他の実施例装置を示
す図である。
FIG. 4 is a view showing an apparatus of another embodiment of the gas absorption tower according to the present invention.

【符号の説明】[Explanation of symbols]

1…コロナ放電反応管、2…ガス調質装置、3…ガス吸
収塔、11…放電電極、12…誘電体、13…接地電
極、14,31…スプレイノズル、32…充填層、33
…ミストセパレータ、36…放電極、37,40…接地
極、39…高圧極。
DESCRIPTION OF SYMBOLS 1 ... Corona discharge reaction tube, 2 ... Gas conditioning apparatus, 3 ... Gas absorption tower, 11 ... Discharge electrode, 12 ... Dielectric material, 13 ... Ground electrode, 14, 31 ... Spray nozzle, 32 ... Packed layer, 33
... Mist separator, 36 ... Discharge electrode, 37, 40 ... Ground electrode, 39 ... High-voltage electrode.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B01D 53/56 53/74 B01J 19/08 ZAB E 8822−4G F01N 3/04 ZAB D ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location B01D 53/56 53/74 B01J 19/08 ZAB E 8822-4G F01N 3/04 ZAB D

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】放電電極とこれに対向した位置に誘電体を
介して設けられた接地電極からなるコロナ放電反応管に
おいて、該コロナ放電反応管のガス流入側煙道にガス調
質装置を備え、かつ、反応管のガス流出側に炭化水素の
液状からなるガス洗浄塔を具備したことを特徴とする排
ガス浄化装置。
1. A corona discharge reaction tube comprising a discharge electrode and a ground electrode provided at a position facing the discharge electrode via a dielectric, wherein a gas conditioning device is provided in a flue of a gas inflow side of the corona discharge reaction tube. An exhaust gas purifying apparatus comprising a gas washing tower made of a liquid of hydrocarbon on the gas outlet side of the reaction tube.
【請求項2】前記ガス調質装置は、尿素を加熱してアン
モニアを生成する加熱生成機能を備えたことを特徴とす
る請求項1記載の排ガス浄化装置。
2. The exhaust gas purifying apparatus according to claim 1, wherein the gas conditioning apparatus has a heating generation function of heating urea to generate ammonia.
【請求項3】前記ガス吸収塔の吸収媒体は、常温常圧で
は揮発性が低い炭化水素であって、かつ、可燃性液体で
あることを特徴とする請求項1記載の排ガス浄化装置。
3. The exhaust gas purifying apparatus according to claim 1, wherein the absorption medium of the gas absorption tower is a hydrocarbon having low volatility at room temperature and atmospheric pressure, and a flammable liquid.
【請求項4】前記ガス吸収塔は噴霧装置と充填装置から
なり、ガス吸収塔に流入したばいじん及び粒子に電荷を
与える帯電電極を設け、かつ、充填装置には沿面放電を
行うための荷電電極を具備したことを特徴とする請求項
3記載の排ガス浄化装置。
4. The gas absorption tower comprises a spraying device and a filling device, is provided with a charging electrode for giving electric charges to dust and particles flowing into the gas absorption tower, and the charging device is provided with a charging electrode for performing a creeping discharge. The exhaust gas purifying apparatus according to claim 3, further comprising:
【請求項5】前記コロナ放電反応管の放電電極は、電極
表面形状がローレット加工またはコイル状の如く、ひだ
を生じせしめたことを特徴とする請求項1記載の排ガス
浄化装置。
5. The exhaust gas purifying apparatus according to claim 1, wherein the discharge electrode of the corona discharge reaction tube has pleats such that the electrode surface shape is knurled or coiled.
【請求項6】前記コロナ放電反応管は炭化水素の液状か
らなる洗浄液を電極のガス流入側に噴霧する手段を具備
したことを特徴とする請求項1記載の排ガス浄化装置。
6. The exhaust gas purifying apparatus according to claim 1, wherein the corona discharge reaction tube is provided with means for spraying a cleaning liquid composed of a liquid hydrocarbon on the gas inflow side of the electrode.
JP6022314A 1994-02-21 1994-02-21 Exhaust emission control device Pending JPH07229418A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6022314A JPH07229418A (en) 1994-02-21 1994-02-21 Exhaust emission control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6022314A JPH07229418A (en) 1994-02-21 1994-02-21 Exhaust emission control device

Publications (1)

Publication Number Publication Date
JPH07229418A true JPH07229418A (en) 1995-08-29

Family

ID=12079276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6022314A Pending JPH07229418A (en) 1994-02-21 1994-02-21 Exhaust emission control device

Country Status (1)

Country Link
JP (1) JPH07229418A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000140614A (en) * 1998-10-20 2000-05-23 Boc Group Inc:The Contact method of electrostatically controlled gas and solid particle with each other
CN102274680A (en) * 2011-07-22 2011-12-14 广东佳德环保科技有限公司 Steamer discharge ammonia flue gas desulfurization, denitration and demisting integrated method
WO2014045578A1 (en) * 2012-09-19 2014-03-27 川崎重工業株式会社 Wet scrubber device, engine system, and ship
KR101408178B1 (en) * 2012-11-21 2014-06-16 한국기계연구원 Apparatus for purificating exhaust gas
KR101832895B1 (en) * 2018-01-19 2018-04-13 광성(주) SOx Reduction System For Ship And Operating Method Of That
KR101842178B1 (en) * 2018-01-19 2018-05-14 광성(주) SOx Reduction System For Ship And Operating Method Of That
KR102047013B1 (en) * 2018-05-29 2019-11-20 이대호 Apparatus for treating exhaust gas using plasma

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000140614A (en) * 1998-10-20 2000-05-23 Boc Group Inc:The Contact method of electrostatically controlled gas and solid particle with each other
CN102274680A (en) * 2011-07-22 2011-12-14 广东佳德环保科技有限公司 Steamer discharge ammonia flue gas desulfurization, denitration and demisting integrated method
WO2014045578A1 (en) * 2012-09-19 2014-03-27 川崎重工業株式会社 Wet scrubber device, engine system, and ship
KR101408178B1 (en) * 2012-11-21 2014-06-16 한국기계연구원 Apparatus for purificating exhaust gas
KR101832895B1 (en) * 2018-01-19 2018-04-13 광성(주) SOx Reduction System For Ship And Operating Method Of That
KR101842178B1 (en) * 2018-01-19 2018-05-14 광성(주) SOx Reduction System For Ship And Operating Method Of That
KR102047013B1 (en) * 2018-05-29 2019-11-20 이대호 Apparatus for treating exhaust gas using plasma

Similar Documents

Publication Publication Date Title
US6772584B2 (en) Apparatus for removing soot and NOx in exhaust gas from diesel engines
US6038854A (en) Plasma regenerated particulate trap and NOx reduction system
US6038853A (en) Plasma-assisted catalytic storage reduction system
EP1683565B1 (en) Method of treating exhaust gas and treating apparatus
Kuroki et al. Single-stage plasma-chemical process for particulates, NO/sub x/, and SO/sub x/simultaneous removal
US6119455A (en) Process and device for purifying exhaust gases containing nitrogen oxides
US6852200B2 (en) Non-thermal plasma reactor gas treatment system
JP3068040B2 (en) Corona discharge pollutant destruction equipment for treating nitrogen oxides
KR101608720B1 (en) Exhaust gas purification system
KR20010092791A (en) Reactor for plasma assisted gas processing
JP5033848B2 (en) Ship exhaust gas purification device and exhaust gas purification method
JPH07229418A (en) Exhaust emission control device
US6136158A (en) NOx reduction method in corona discharge pollutant destruction apparatus
KR101408178B1 (en) Apparatus for purificating exhaust gas
KR100996671B1 (en) Exhaust gas processing system
JP3625499B2 (en) Exhaust gas treatment equipment
JP2001187319A (en) Method and device for cleaning gas
WO2005065805A1 (en) Method of treating exhaust gas and apparatus therefor
JP2001162134A (en) Method and device for cleaning waste gas
JPH0564721A (en) Method and apparatus for treating air containing nitrogen oxide in low concentration
KR20190072252A (en) Exhaust gas treatment system
JPH04247218A (en) Method for treating exhaust gas and device therefor
JPH03267113A (en) Method and device for treating gas by using high-frequency creeping discharge
JPH06246133A (en) Waste gas purifying system
JP3253380B2 (en) Exhaust gas purification device for internal combustion engine