JPH07227285A - Method for detecting mutagen without using reagent - Google Patents

Method for detecting mutagen without using reagent

Info

Publication number
JPH07227285A
JPH07227285A JP1845294A JP1845294A JPH07227285A JP H07227285 A JPH07227285 A JP H07227285A JP 1845294 A JP1845294 A JP 1845294A JP 1845294 A JP1845294 A JP 1845294A JP H07227285 A JPH07227285 A JP H07227285A
Authority
JP
Japan
Prior art keywords
gene
sos
luciferase activity
luminescence
test sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1845294A
Other languages
Japanese (ja)
Other versions
JP3277426B2 (en
Inventor
Takao Imaeda
孝夫 今枝
Masakata Hirai
正名 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP1845294A priority Critical patent/JP3277426B2/en
Priority to EP94307739A priority patent/EP0649905B1/en
Priority to US08/326,949 priority patent/US5702883A/en
Priority to DE69413491T priority patent/DE69413491T2/en
Publication of JPH07227285A publication Critical patent/JPH07227285A/en
Application granted granted Critical
Publication of JP3277426B2 publication Critical patent/JP3277426B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

PURPOSE:To provide a method having about ten times wider a measuring range of a genetic poison such as a mutagen than a conventional colorimetry, the minimum detection concentration reduced by <= five times and being an extremely simple operation. CONSTITUTION:A host microorganism transformed with a recombinant gene containing an SOS gene to manifest during damage of DNA, a gene to manifest luciferase activity arranged at the downstream of the gene and a gene to manifest an enzyme capable of catalyzing production of a substrate with luciferase activity is cultured in a medium containing a specimen to be tested. A method which determines existence of a genetic poison such as a mutagen in the specimen to be tested for measuring luminescence by the manifestation of the gene group to manifest luminescence activity or measures the existing amount is provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、発光方式の変異原検出
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a luminescence-based method for detecting a mutagen.

【0002】[0002]

【従来の技術】現在、発ガン性物質の短期スクリーニン
グ法として微生物を用いた突然変異試験法が数多く報告
されている。その中でも復帰突然変異試験法であるAm
esテストが最も広く利用されている。しかし、この試
験法は測定までに約3日を要し、無菌操作を必要とする
など問題点を有している。最近、突然変異の誘発性を検
出するAmesテストとは異なり、DNAの損傷性を検
出する短期変異原検出法(umuテスト、SOSクロモ
テスト)が報告された(小田、中村等、"Evalution of
the new system(umu-test)for the detection of envir
onmental mutagens and carcinogens",Mutation Resear
ch, 147 ,219-229,1985 、特公平4−12118)。
2. Description of the Related Art At present, many mutation test methods using microorganisms have been reported as short-term screening methods for carcinogens. Am, which is a reverse mutation test
The es test is the most widely used. However, this test method has a problem that it takes about 3 days until measurement and aseptic operation is required. Recently, unlike the Ames test for detecting the inducibility of mutation, a short-term mutagen detection method (umu test, SOS chromotest) for detecting DNA damage was reported (Oda, Nakamura et al., "Evaluation of
the new system (umu-test) for the detection of envir
onmental mutagens and carcinogens ", Mutation Resear
ch, 147 , 219-229, 1985, Japanese Patent Publication No. 4-12118).

【0003】これらの方法は、DNA損傷時に誘発され
るSOS反応を、SOS遺伝子の一つであるumuD
遺伝子又はsfiA遺伝子の下流にlacZ遺伝子を
連結することによりβ−ガラクトシダーゼの発現量とし
て測定し、DNA損傷性、変異原性を検出する方法であ
る。より具体的には、上記遺伝子を導入したサルモネラ
菌(umuテスト)、大腸菌(SOSクロモテスト)を
被検物質の存在下で培養し、この培養液を所定のバッフ
ァーに加えて希釈した後、トルエン又はクロロホルムと
ドデシルベンゼンスルホン酸ナトリウムのようなスルホ
ン酸塩型界面活性剤水溶液を加え、細胞破砕処理を行
う。
According to these methods, the SOS response induced upon DNA damage is one of the SOS genes, umuD ,
In this method , the lacZ gene is linked to the downstream of the C gene or sfiA gene to measure the expression level of β-galactosidase, and the DNA damage and mutagenicity are detected. More specifically, the gene-introduced Salmonella (umu test) and E. coli (SOS chromotest) are cultured in the presence of a test substance, and the culture solution is diluted with a predetermined buffer and then diluted with toluene or Chloroform and an aqueous solution of a sulfonate type surfactant such as sodium dodecylbenzenesulfonate are added to perform cell disruption treatment.

【0004】次いでβ−ガラクトシダーゼ活性を測定す
る目的で、β−ガラクトシダーゼの基質である2−ニト
ロフェニル−β−D−ガラクトピラノシド水溶液を加
え、28℃で酵素反応を行い、数十分後、炭酸ナトリウ
ムで反応を停止する。酵素反応液の光学濃度を二波長
(420,550nm) で計測し、ミラー法 (Miller.J.
H.,Experiments in molecular genetics,Cold Spring H
arbor Laboratory,1972) に基づいてβ−ガラクトシダ
ーゼ活性を算出する。
Then, for the purpose of measuring β-galactosidase activity, an aqueous solution of 2-nitrophenyl-β-D-galactopyranoside, which is a substrate of β-galactosidase, was added, and the enzyme reaction was carried out at 28 ° C. Stop the reaction with sodium carbonate. The optical density of the enzyme reaction solution was measured at two wavelengths (420,550 nm) and the mirror method (Miller.J.
H., Experiments in molecular genetics, Cold Spring H
The β-galactosidase activity is calculated based on Arbor Laboratory, 1972).

【0005】上記umuテストおよびSOSクロモテス
トは、Amesテストに比べかなり簡便、迅速に検出で
きるという特徴を備えている。その諸操作を工程別に整
理すると、SOS反応を誘導するための第一工程、即
ち、具体的には、宿主微生物を被験試料の存在下で培養
する工程、および本工程によって菌体内に発現されたβ
−ガラクトシダーゼ活性を発色反応によって検出する第
二工程の二つに大別できる。
The above-mentioned umu test and SOS chromo test are characterized in that they can be detected rather easily and rapidly than the Ames test. When the operations are arranged according to steps, the first step for inducing the SOS reaction, specifically, the step of culturing a host microorganism in the presence of a test sample, and the step of expressing in the cells were performed. β
-The galactosidase activity can be roughly divided into the second step of detecting by chromogenic reaction.

【0006】前に具体的な手法を示したように、第二工
程は第一工程に比較すると操作が煩雑であり、希釈、細
胞破砕処理、基質の添加、発色反応の進行および停止、
吸光度の測定といった諸操作が必要である。また、比色
による検出は、検出感度が低いといった問題点がある。
検出感度を高めるため、菌体内に発現されたβ−ガラク
トシダーゼと外部より添加した発色基質の反応性を増す
ために細胞破砕処理が行われるが、この操作により試験
がより煩雑になることは否めない。
As described above in detail, the second step is more complicated in operation than the first step, and involves dilution, cell disruption treatment, addition of substrate, progress and termination of color reaction,
Various operations such as measurement of absorbance are required. Further, the colorimetric detection has a problem that the detection sensitivity is low.
In order to increase the detection sensitivity, cell crushing treatment is performed to increase the reactivity of β-galactosidase expressed in the cells and the chromogenic substrate added from the outside, but it cannot be denied that this operation makes the test more complicated. .

【0007】このように発色検出を基本とした試験法
は、上記第二工程において煩雑な操作を必要とするこ
と、検出感度が低いため、この欠点を補う意味で発色時
間を長くしたり、煩雑な菌体破砕処理を行ったりすると
検出の迅速性が損なわれること、高価な発色試薬の添加
が不可欠であること、等の問題点がある。
As described above, the test method based on color detection requires complicated operation in the second step and has low detection sensitivity. Therefore, in order to compensate for this drawback, the color development time is lengthened or complicated. However, there are problems that the rapidity of detection is impaired when various microbial cell crushing processes are performed, and the addition of an expensive coloring reagent is indispensable.

【0008】[0008]

【発明が解決しようとする課題】従って本発明は、上記
第二工程における煩雑な操作、即ち、希釈、細胞破砕処
理、基質の添加、発色反応の進行および停止の諸操作を
特に必要としないため、操作が著しく簡略化されてお
り、かつ、迅速性、検出感度、経済性の点で優るSOS
遺伝子のDNA損傷性を利用した変異原性物質等の遺伝
毒物の検出方法を提供しようとするものである。
Therefore, the present invention does not particularly require the complicated operations in the above-mentioned second step, namely, the operations of dilution, cell disruption treatment, addition of substrate, progress and termination of color reaction. , SOS that is significantly simplified in operation, and is superior in terms of speed, detection sensitivity, and economy
An object of the present invention is to provide a method for detecting a genotoxic substance such as a mutagenic substance utilizing the DNA damaging property of a gene.

【0009】[0009]

【課題を解決するための手段】本発明者らは、上記の課
題を解決すべく種々検討した結果、DNAの損傷に対し
て感受性のSOS遺伝子の下流にルシフェラーゼ活性を
発現する遺伝子およびそのルシフェラーゼ活性の基質の
生産を触媒する酵素を発現する遺伝子を配置した組換え
遺伝子により形質転換された微生物を変異原性物質等の
遺伝毒物を含有する培地中で培養すれば、該SOS遺伝
子の発現と同時にルシフェラーゼ活性を有する遺伝子お
よびそのルシフェラーゼ活性の基質の生産を触媒する酵
素を発現する遺伝子も発現され、この結果、ルシフェラ
ーゼ活性の基質が菌体内で連続的に供給される条件が達
成され、ルシフェラーゼによる連続的な発光反応が起こ
り、この発光を測定することにより上記第二工程の煩雑
な操作を特に行う必要がなく迅速に変異原性物質等の遺
伝毒物を検出又は測定することができることを見い出
し、本発明を完成した。
As a result of various studies to solve the above problems, the present inventors have found that a gene expressing luciferase activity downstream of the SOS gene susceptible to DNA damage and its luciferase activity. When a microorganism transformed with a recombinant gene in which a gene that expresses an enzyme that catalyzes the production of the substrate is placed in a medium containing a genotoxic substance such as a mutagen, the expression of the SOS gene A gene having a luciferase activity and a gene expressing an enzyme that catalyzes the production of the substrate for the luciferase activity are also expressed, and as a result, the condition that the substrate for the luciferase activity is continuously supplied in the cells is achieved, and the continuous luciferase activity is achieved. Luminescence reaction occurs, and the complicated operation of the second step is particularly performed by measuring this luminescence. Found that it is possible to detect or measure genetic toxicology of such rapidly mutagen no necessity, the present invention has been completed.

【0010】変異原性物質等の遺伝毒物を含む条件での
レスポンスを遺伝毒物を含まない条件でのレスポンスで
割った値を指標として解析を行うと、代表的な変異原性
物質である2−(2−フリル)−3−(5−ニトロ−2
−フリル)アクリルアミドの場合、従来の比色検出の場
合は、この値が遺伝毒物の含有量が増すに従って増加
し、1から10前後まで変化するのに対し、本発明の発
光検出の場合は、1から100前後まで変化することを
見い出した。このように本発明の場合、測定のダイナミ
ックレンジが従来法より最高で10倍程度広がり、遺伝
毒物を感度よく、高精度に検出、定量できることが明ら
かになった。
When a response obtained under the condition that a genotoxic substance such as a mutagenic substance is divided by a response obtained under a condition that does not contain a genotoxic substance is analyzed as an index, it is a typical mutagenic substance. (2-furyl) -3- (5-nitro-2)
In the case of the conventional colorimetric detection in the case of -furyl) acrylamide, this value increases as the content of the genotoxic substance increases and changes from 1 to around 10, whereas in the case of the luminescence detection of the present invention, We have found that it varies from 1 to around 100. As described above, in the case of the present invention, it was revealed that the dynamic range of measurement was expanded by up to about 10 times as compared with the conventional method, and the genotoxic substance could be detected and quantified with high sensitivity and high accuracy.

【0011】また、遺伝毒物であるか否かの判定基準と
して、被験試料を添加していない条件に対して2倍のレ
スポンスを示すことをもって、遺伝毒性ありとすること
が一般に行われており、2倍のレスポンスを示す濃度を
最少検出濃度と呼んでいる。種々の遺伝毒物に対して試
験を行った結果、本発明の発光検出の最少検出濃度は、
従来の比色検出の場合に比べ最低でも5倍程度は低濃度
となり、遺伝毒物を高感度に検出できることが明らかに
なった。
Further, as a criterion for determining whether a genotoxic substance is present or not, it is generally determined that genotoxicity is obtained by showing a double response to the condition that the test sample is not added, The concentration showing a double response is called the minimum detected concentration. As a result of conducting tests on various genotoxic substances, the minimum detection concentration of luminescence detection of the present invention is:
Compared with the conventional colorimetric detection, the concentration was at least about 5 times lower, which revealed that the genotoxic substance can be detected with high sensitivity.

【0012】従って本発明は、DNA損傷時に発現され
るSOS遺伝子と該遺伝子の下流に配置されたルシフェ
ラーゼ活性を発現する遺伝子およびそのルシフェラーゼ
活性の基質の生産を触媒する酵素を発現する遺伝子とを
含んでなる組換え遺伝子を提供する。本発明はまた、前
記遺伝子により形質転換された宿主微生物を提供する。
Therefore, the present invention comprises a SOS gene expressed upon DNA damage, a gene expressing luciferase activity located downstream of the gene and a gene expressing an enzyme which catalyzes the production of a substrate for the luciferase activity. A recombinant gene consisting of The present invention also provides a host microorganism transformed with the above gene.

【0013】本発明はさらに、前記宿主微生物を、被験
試料を含有する培地中で培養し、ルシフェラーゼ活性お
よびそのルシフェラーゼ活性の基質の生産を触媒する酵
素を発現する遺伝子群の発現によって得られる発光を測
定することを特徴とする被験試料中の変異原性物質等の
遺伝毒物の存否の決定又は存在量の測定を行うための方
法を提供する。
The present invention further provides luminescence obtained by culturing the host microorganism in a medium containing a test sample and expressing a gene group expressing an enzyme which catalyzes the production of luciferase activity and a substrate for the luciferase activity. A method for determining the presence or absence of a genotoxic substance such as a mutagenic substance in a test sample or measuring the abundance of the test substance, which is characterized by being measured.

【0014】本発明においては、ルシフェラーゼ活性お
よびその基質の生産を触媒する酵素を発現する遺伝子を
DNAの損傷に依存して発現させるために、その発現制
御手段としてSOS遺伝子を利用する。従って、SOS
遺伝子はDNA損傷時に発現されるものであればよく、
SOSボックスと称する制御部分を含有するものであれ
ばよい。従って、本発明においてDNA損傷時に発現さ
れるSOS遺伝子とは、前記SOSボックスと称される
制御部分を含有するものを意味し、SOSボックス自体
でもよく、またこれを含有する任意のDNA断片であっ
てもよい。
In the present invention, the SOS gene is used as an expression control means for expressing a gene expressing an enzyme which catalyzes the luciferase activity and the production of its substrate depending on the damage of DNA. Therefore, SOS
Any gene can be used as long as it is expressed when DNA is damaged.
It may be any as long as it includes a control portion called an SOS box. Therefore, in the present invention, the SOS gene expressed at the time of DNA damage means one containing a control portion called the SOS box, which may be the SOS box itself, or any DNA fragment containing this. May be.

【0015】SOS遺伝子としては、umu遺伝子、例
えばumuC遺伝子及びumuD遺伝子、並びにsfi
遺伝子等が挙げられるがこれに限定されない。これら
の遺伝子の内、umuDumuC遺伝子は、Pro.Nat
l.Acad.Sci.USA Vol.82,4336-4340(1985)に記載されて
おり、これらの記載に基いて容易に入手することができ
る。また、umuD遺伝子並びにumuC遺伝子の一部
lacZ遺伝子との融合遺伝子を含有するプラスミド
pSK1002は、H.Shinagawa ら、Gene, 23,167(198
3)に記載されており、このプラスミドからumuDおよ
umuC遺伝子を容易に入手することができる。
Examples of the SOS gene include umu gene, for example, umuC gene and umuD gene, and sfi
Examples of the gene include A gene, but are not limited thereto. Among these genes, the umuD and umuC genes are Pro.Nat
l.Acad.Sci.USA Vol. 82 , 4336-4340 (1985), and can be easily obtained based on these descriptions. Also, plasmid pSK1002 containing the fusion gene with a part and the lacZ gene of umuD gene and umuC genes, H.Shinagawa et, Gene, 23, 167 (198
3), the umuD and umuC genes can be easily obtained from this plasmid.

【0016】ルシフェラーゼ活性およびその基質の生産
を触媒する酵素を発現する遺伝子としては、SOS遺伝
子の制御下でその両遺伝子群が発現されるものであれば
よく、例えば海洋細菌の生物発光遺伝子群を挙げること
ができるがこれに限定されない。上記性質を有する生物
発光遺伝子群を持つ海洋細菌としては、ビブリオ(Vibr
io) 群のビブリオ(Vibrio) 属では、ビブリオ・ハーベ
イ(V. harveyi)、ビブリオ・フィシェリ(V. fische
ri) 、ビブリオ・スプレンディドゥス(V. Splendidu
s) 、ビブリオ・コレラ(V. cholerae) が、フォトバ
クテリウム(Photobacterium) 属では、フォトバクテリ
ウム・ホスホリウム (P. phosphoreum)、フォトバクテ
リウム・レイノクナシ (P. leiognathi) 等が挙げられ
る。
The gene expressing the enzyme that catalyzes the luciferase activity and the production of its substrate may be any gene as long as both genes are expressed under the control of the SOS gene. Examples include, but are not limited to: A marine bacterium having a bioluminescence gene group having the above-mentioned properties is Vibrio (Vibrio) .
In Vibrio (Vibrio) of the genus io) group, Vibrio Harvey (V. harveyi), Vibrio fischeri (V. fische
ri ), V. Splendidu
s ), Vibrio cholera ( V. cholerae ), and in the genus Photobacterium (Photobacterium), there are Photobacterium phosphoreum ( P. phosphoreum) , Photobacterium reingnathi ( P. leiognathi ), and the like.

【0017】例えば、ビブリオ・フィシェリ (V. fics
heri) 由来の生物発光遺伝子群は、リポーター遺伝子と
して使い易くするために生物発光遺伝子群のオペレータ
ー領域を取り除き、構造遺伝子部分(ルシフェラーゼ活
性を発現する遺伝子群およびその基質であるアルデヒド
の生産を触媒する酵素である脂肪酸リダクターゼ活性を
発現する遺伝子群)だけを含む種々のカセットベクタ
ー、例えば、pUCD320,pUCD613,pUCD614,pUCD618,pUCD62
0,pUCD623,pUCD1111等が報告されている。これらのカセ
ットベクターについては、Clarence I.Kado ら、Plant
Molecular Biology Reporter, ,225(1987)に記載され
ており、これらのベクターから生物発光遺伝子群の構造
遺伝子部分を容易に入手することができる。
For example, V. fics ( V. fics
The bioluminescence gene group derived from heri ) removes the operator region of the bioluminescence gene group to facilitate the use as a reporter gene, and catalyzes the production of structural gene part (gene group expressing luciferase activity and its substrate aldehyde). Various cassette vectors containing only the gene group expressing the enzyme fatty acid reductase activity), for example, pUCD320, pUCD613, pUCD614, pUCD618, pUCD62
0, pUCD623, pUCD1111 etc. have been reported. For these cassette vectors, see Clarence I. Kado et al., Plant.
Molecular Biology Reporter, 5 , 225 (1987), and the structural gene portion of the bioluminescence gene group can be easily obtained from these vectors.

【0018】なお、この発明において、ルシフェラーゼ
の基質とは長鎖アルデヒド等を意味し、これらの生産を
触媒する酵素とは、NAD(P)H:FMN還元酵素、
脂肪酸リダクターゼ等を意味する。上記の例において
は、ルシフェラーゼ活性を発現する遺伝子及びルシフェ
ラーゼの基質の生産を触媒する酵素の遺伝子として同一
の起源のものを用いたが、異る起源のこれらの遺伝子を
連結して使用することもできる。
In the present invention, the luciferase substrate means a long-chain aldehyde and the like, and the enzyme that catalyzes the production of these is NAD (P) H: FMN reductase,
Means fatty acid reductase and the like. In the above example, the gene of the same origin was used as the gene expressing the luciferase activity and the gene of the enzyme that catalyzes the production of the luciferase substrate, but it is also possible to use these genes of different origins by linking them. it can.

【0019】宿主微生物としては、それらのDNAが変
異原性物質等の遺伝毒物により損傷された際にSOS遺
伝子を発現させることができる微生物、すなわちSOS
機能を有する微生物であればよく、例えば大腸菌(Esche
richia coli) 、サルモネラ菌 (Salmonella typhimur
ium)、例えばそのTA1535株、TA1538株等、
酵母(Saccharomyces cerevisiae) 等が挙げられる。
The host microorganism is a microorganism capable of expressing the SOS gene when its DNA is damaged by a genotoxic substance such as a mutagenic substance, that is, SOS.
Any microorganism having a function may be used.
richia coli ), Salmonella typhimur
ium) , for example, the TA1535 strain, TA1538 strain, etc.
Yeast (Saccharomyces cerevisiae ) etc. are mentioned.

【0020】SOS遺伝子と、ルシフェラーゼ活性及び
その基質の生産を触媒する酵素を発現する遺伝子とを含
んでなる組換え遺伝子は、SOS遺伝子のSOSボック
スを少なくとも含有するDNA断片の該SOSボックス
より下流に、ルシフェラーゼ活性及びその基質の生産を
触媒する酵素を発現する遺伝子群を連結することにより
作製することができる。この連結は、DNAリガーゼを
用いて常法に従って行うことができる。この組換え遺伝
子を宿主微生物に導入するためには、該組換え遺伝子
は、ベクター中に存在する必要があり、例えばプラスミ
ドとしては、pBR系プラスミド、pUC系プラスミド
等を利用することができる。
A recombinant gene comprising the SOS gene and a gene expressing an enzyme that catalyzes the production of luciferase activity and its substrate is a DNA fragment containing at least the SOS box of the SOS gene, which is downstream of the SOS box. , Luciferase activity and a group of genes expressing enzymes that catalyze the production of its substrate can be linked. This ligation can be carried out by a conventional method using DNA ligase. In order to introduce this recombinant gene into a host microorganism, the recombinant gene needs to be present in a vector, and as the plasmid, for example, pBR type plasmid, pUC type plasmid or the like can be used.

【0021】発現ベクターにより宿主微生物を形質転換
するには、微生物、例えば細菌の形質転換に用いられる
常法によればよい。本発明に従って、被験試料中の変異
原性物質等の遺伝毒物を検出又は測定するには、被験試
料を培地に混合した後、この培地中で前記形質転換され
た宿主微生物を培養する。培養は通常1〜3時間行われ
る。培養を行うことにより、被験試料を含んだ培養液自
体が発光しているので、培養後直ちに常法に従ってその
光を検出することができる。被験試料が変異原性物質等
の遺伝毒物を含んでいる場合には発光量が濃度依存的に
増加するので、この増加量から被験試料中の変異原性物
質等の遺伝毒物を検出又は測定することができる。
To transform a host microorganism with the expression vector, a conventional method used for transforming a microorganism such as a bacterium may be used. According to the present invention, in order to detect or measure a genotoxic substance such as a mutagenic substance in a test sample, the test sample is mixed with a medium, and then the transformed host microorganism is cultured in this medium. Culturing is usually performed for 1 to 3 hours. Since the culture solution containing the test sample itself emits light by culturing, the light can be detected immediately after culturing according to a conventional method. When the test sample contains a genotoxic substance such as a mutagenic substance, the amount of luminescence increases in a concentration-dependent manner, so the genotoxic substance such as a mutagenic substance in the test sample is detected or measured from this increased amount. be able to.

【0022】本発明の方法によれば、すべての変異原性
物質等の遺伝毒物を検出の対象とすることができる。変
異原性物質等の遺伝毒物は、最終的に溶液として培地に
導入されるが、気体や固体でも培地に溶解するものであ
れば測定することができる。
According to the method of the present invention, all genotoxic substances such as mutagenic substances can be detected. A genotoxic substance such as a mutagenic substance is finally introduced into a medium as a solution, but even a gas or a solid can be measured as long as it can be dissolved in the medium.

【0023】[0023]

【発明の効果】本発明の方法によれば、被験試料と形質
転換された宿主微生物を含む培地を混合し、培養後直ち
に発光検出できるため、前記第二工程の煩雑な操作が不
要となる。このため、簡単な操作で、検出時間が大幅に
短縮され、また試薬が不要なため安価に測定でき、さら
に発光検出としているため、従来の比色検出に比べ、測
定のダイナミックレンジが最高で10倍程度広がり、か
つ変異原性物質等の遺伝毒物の最少検出濃度を少なくと
も5倍程度低濃度側で高感度かつ高精度に検出すること
ができる。
According to the method of the present invention, the test sample and the medium containing the transformed host microorganism can be mixed and the luminescence can be detected immediately after culturing. Therefore, the complicated operation of the second step is not required. For this reason, the detection time can be greatly shortened by a simple operation, the reagent is not required, and thus the measurement can be performed at a low cost. Furthermore, since the luminescence detection is performed, the dynamic range of the measurement is up to 10 compared to the conventional colorimetric detection. It is possible to detect with high sensitivity and high accuracy the minimum detection concentration of a genotoxic substance such as a mutagenic substance at least about 5 times lower than the low concentration side.

【0024】[0024]

【実施例】実施例1.発光ベクターの構築及び形質転換体の調製 SOS遺伝子として、大腸菌(CSH26 「Miller,J.H.,Ex
periments in Molecular Genetics,Cold Spring Harbor
Laboratory,1972」:F- ara del(lac-pro)thi)に導入さ
れたプラスミドpSK1002のumuD,C遺伝子を
利用した。ルシフェラーゼ活性およびその基質の生産を
触媒する酵素を発現する遺伝子としては、大腸菌(HB10
1:hsd20 (rB - ,mB - ),recA13,ara-14,proA2,lacY1,ga
lK2,rpsL20,xyl-5,mtl-1,supE44)に導入されたプラスミ
ドpUCD620 (Clarence I.Kadoら、Plant Molecular Biol
ogy Reporter, ,225(1987)) の発光遺伝子群を利用し
た。
EXAMPLES Example 1. Construction of luminescent vector and preparation of transformant As SOS gene, Escherichia coli (CSH26 "Miller, JH, Ex
periments in Molecular Genetics, Cold Spring Harbor
Laboratory, 1972 ": F - ara del (lac-pro) thi). The umuD and C genes of plasmid pSK1002 were used. As a gene expressing an enzyme that catalyzes the luciferase activity and the production of its substrate, Escherichia coli (HB10
1: hsd20 (r B -, m B -), recA13, ara-14, proA2, lacY1, ga
plasmid pUCD620 (Clarence I. Kado et al., Plant Molecular Biol) introduced in lK2, rpsL20, xyl-5, mtl-1, supE44).
Ogy Reporter, 5 , 225 (1987)) was used.

【0025】導入する微生物として、サルモネラ菌(TA
1535「Ames,B.N.,J.McCann,E.Yamasaki,Mutation Res.,
31,347,1975 」:hisG46,Δgal,Δchl,Δbio,Δuvr B, r
fa-,SJ10002:r- ,m+ ) を利用した。発光測定装置は、
コロナ電気(株)製のマイクロルミノリーダ (MLR−
100)を使用した。
As a microorganism to be introduced, Salmonella (TA
1535 `` Ames, BN, J. McCann, E. Yamasaki, Mutation Res.,
31 , 347,1975 ``: hisG46, Δgal, Δchl, Δbio, Δuvr B, r
fa -, SJ10002: r -, using the m +). Luminescence measuring device
Micro Lumino Reader (MLR- manufactured by Corona Electric Co., Ltd.)
100) was used.

【0026】プラスミドpSK1002を含む大腸菌C
SH26をアンピシリンを含むLB培地(Bactoト
リプトン1%、Bacto酵母エキス0.5%、NaC
l1%)で培養後、アルカリ抽出法「Birnboim,H.C.,Do
ly,J.,Nucl.Acids Res.,11,1513,1979」によって、pS
K1002を大量に調製した。プラスミドpSK100
2をSalIおよびSmaIで切断し、umuD
伝子を含む約7.5kbのSalI−SalIDNA断片
を得た。このDNA断片をT4DNAリガーゼにより連
結し、常法に従い大腸菌DH5を形質転換した。
E. coli C containing the plasmid pSK1002
LB medium containing SH26 and ampicillin (Bacto tryptone 1%, Bacto yeast extract 0.5%, NaC
(11%), followed by alkali extraction method "Birnboim, HC, Do
ly, J., Nucl. Acids Res., 11 , 1513,1979 ", pS
A large amount of K1002 was prepared. Plasmid pSK100
2 was cleaved with Sal I and Sma I to obtain a Sal I- Sal I DNA fragment of about 7.5 kb containing the umuD and C genes. This DNA fragment was ligated with T4 DNA ligase, and Escherichia coli DH5 was transformed by a conventional method.

【0027】得られた形質転換体からアルカリ抽出法に
よりプラスミドを単離した。このプラスミドをMlu
で切断後、T4DNAポリメラーゼにより平滑末端化し
た。umuCに対して終始コドンとして働き、かつBa
HIサイトをもつDNAリンカー(TAGGATCC
TA)を化学合成した。この合成リンカーと前記Mlu
IDNA断片をT4DNAリガーゼにより連結し、常法
に従い大腸菌DH5に形質転換した。得られた形質転換
体からアルカリ抽出法によりプラスミドを抽出した。こ
のプラスミドをBamHIおよびSalIで切断し、約
7.4kbのBamHI−SalIDNA断片を得た。
A plasmid was isolated from the obtained transformant by the alkali extraction method. This plasmid was designated Mlu I
After cleaving with T4, it was blunt-ended with T4 DNA polymerase. Acts as a stop codon for umuC , and Ba
DNA linkers (TAGGATCC with m HI site
TA) was chemically synthesized. This synthetic linker and the above Mlu
The IDNA fragment was ligated with T4 DNA ligase and transformed into Escherichia coli DH5 according to a conventional method. A plasmid was extracted from the obtained transformant by the alkali extraction method. This plasmid was cut with Bam HI and Sal I, to obtain a Bam HI- Sal IDNA fragment of about 7.4 kb.

【0028】プラスミドpUCD620を含む大腸菌H
B101をアンピシリンを含むLB培地で培養後、アル
カリ抽出法によって、pUCD620を大量に調製し
た。プラスミドpUCD620をBamHIおよびSa
Iで切断し、発光遺伝子群を含む約7.5kbのBam
HI−SalIDNA断片を得た。このDNA断片と約
7.4kbの前記BamHI−SalIDNA断片をT4
DNAリガーゼにより連結し、発光ベクターを構築し
た。
E. coli H containing the plasmid pUCD620
After culturing B101 in an LB medium containing ampicillin, a large amount of pUCD620 was prepared by the alkali extraction method. Plasmid pUCD620 was cloned into Bam HI and Sa
It was cut with l I, about 7.5kb of Bam including a luminescent genes
An HI- Sal I DNA fragment was obtained. This DNA fragment and the Bam HI- Sal I DNA fragment of about 7.4 kb were added to T4.
A luminescent vector was constructed by ligating with DNA ligase.

【0029】SJ10002をLB培地で一夜培養し
た。LB培地に、1/100容量の前記培養液を加え、
600nmにおける濁度(OD600 )が約0.4になるま
で培養した。培養液5mlを遠心分離し、沈澱画分を5ml
の30mMCaCl2 水溶液に懸濁し、45分間氷中に放
置した。再度遠心分離を行い、菌体を0.4mlの30mM
CaCl2 水溶液に懸濁し、SJ10002のコンピテ
ントセルを調製した。
SJ10002 was cultured overnight in LB medium. To LB medium, 1/100 volume of the above culture solution was added,
Incubation was performed until the turbidity at 600 nm (OD 600 ) was about 0.4. Centrifuge 5 ml of the culture broth to obtain a precipitate fraction of 5 ml.
Suspended in 30 mM CaCl 2 aqueous solution and left in ice for 45 minutes. Centrifuge again to add 0.4 ml of 30 mM
It was suspended in a CaCl 2 aqueous solution to prepare a competent cell of SJ10002.

【0030】TA1535をLB培地で一夜培養した。
LB培地に、1/100容量の前記培養液を加え、60
0nmにおける濁度(OD600 )が約0.4になるまで培
養した。培養液5mlを遠心分離し、沈澱画分を5mlの1
0mMCaCl2 ,10mMMnCl2 ,10mMMgCl2
水溶液に懸濁し、45分間氷中に放置した。再度遠心分
離を行い、菌体を0.4mlの10mMCaCl2 ,10mM
MnCl2 ,10mMMgCl2 水溶液に懸濁し、TA1
535のコンピテントセルを調製した。
TA1535 was cultured overnight in LB medium.
Add 1/100 volume of the culture solution to LB medium,
Culturing was performed until the turbidity at 0 nm (OD 600 ) was about 0.4. Centrifuge 5 ml of the culture broth and add the precipitated fraction to 5 ml of 1
0mMCaCl 2, 10mMMnCl 2, 10mMMgCl 2
Suspended in aqueous solution and left in ice for 45 minutes. Centrifuge again to add 0.4 ml of 10 mM CaCl 2 , 10 mM.
Suspend in MnCl 2 , 10 mM MgCl 2 aqueous solution, TA1
535 competent cells were prepared.

【0031】SJ10002のコンピテントセル100
μlに、発光ベクター約200ngを加え、30分間氷中
に放置した。2分間42℃で処理した後、室温にて5分
間放置した。LB培地1mlを加え、37℃で1時間イン
キュベートした。この液をアンピシリン50μg/mlを
含むLBプレートに播種した。このようにして得られた
SJ10002に導入された形質転換体より発光ベクタ
ーをアルカリ抽出法で調製し、前記と同様な方法でTA
1535への形質転換を行った。
Competent cell 100 of SJ10002
About 200 ng of the luminescent vector was added to μl, and the mixture was left in ice for 30 minutes. After treating at 42 ° C. for 2 minutes, it was left at room temperature for 5 minutes. 1 ml of LB medium was added and incubated at 37 ° C for 1 hour. This solution was seeded on an LB plate containing 50 μg / ml of ampicillin. A luminescent vector was prepared from the thus obtained transformant introduced into SJ10002 by an alkali extraction method, and TA was prepared by the same method as described above.
Transformation into 1535 was performed.

【0032】実施例2.発光測定 代謝活性化酵素 ラットの肝臓から得られ、フェノバルビタールと5,6
−ベンゾフラボンで処理されたS9画分(オリエンタル
酵母(株)製)を用い、これに補助因子としてCofa
ctor−I(オリエンタル酵母(株)製)を混合した
S9ミックスを用いた。
Example 2. Luminescence Metabolic Activating Enzyme Obtained from rat liver, containing phenobarbital and 5,6
-S9 fraction (manufactured by Oriental Yeast Co., Ltd.) treated with benzoflavone, and Cofa as a cofactor
S9 mix in which ctor-I (manufactured by Oriental Yeast Co., Ltd.) was mixed was used.

【0033】被験試料 2−(2−フリル)−3−(5−ニトロ−2−フリル)
アクリルアミド(以下AF−2と略す)、4−ニトロキ
ノリン1−オキサイド(以下4NQOと略す)、1−ニ
トロピレン(以下1−NPと略す)、2−アミノアント
ラセン(以下2−AAと略す)、ベンゾ〔a〕ピレン
(以下Bapと略す)を用いた。
Test sample 2- (2-furyl) -3- (5-nitro-2-furyl)
Acrylamide (hereinafter abbreviated as AF-2), 4-nitroquinoline 1-oxide (hereinafter abbreviated as 4NQO), 1-nitropyrene (hereinafter abbreviated as 1-NP), 2-aminoanthracene (hereinafter abbreviated as 2-AA), benzo [A] Pyrene (hereinafter abbreviated as Bap) was used.

【0034】TA1535の発光ベクター形質転換体を
TGA培地(トリプトン1%、食塩0.5%、グルコー
ス0.2%、アンピシリン20μg/ml)で一夜30℃
で培養した。この培養液をTGA培地に1/50容量植
菌し、30℃で1.5時間培養した。この培養液をOD
600 =0.1になるようにTGA培地で希釈した。この
希釈培養液を1.45mlずつ試験管に分注し、それぞれ
に所定濃度の被験試料50μl加え30℃で2時間培養
した。代謝活性化酵素を必要とする場合は、希釈培養液
1.2mlにS9ミックス0.25ml、被験試料50μl
を加え、30℃で2時間培養した。培養後直ちに培養液
100μlの発光量を発光測定装置で測定した。また、
培養液のOD600 を測定した。
The TA1535 luminescent vector transformant was placed in a TGA medium (tryptone 1%, salt 0.5%, glucose 0.2%, ampicillin 20 μg / ml) at 30 ° C. overnight.
It was cultured in. This culture solution was inoculated into a TGA medium at 1/50 volume and cultured at 30 ° C. for 1.5 hours. OD this culture
It diluted with TGA culture medium so that it might become 600 = 0.1. Each 1.45 ml of this diluted culture solution was dispensed into a test tube, 50 μl of a test sample having a predetermined concentration was added to each, and the mixture was incubated at 30 ° C. for 2 hours. If a metabolic activation enzyme is required, 0.25 ml of S9 mix and 50 μl of test sample should be added to 1.2 ml of diluted culture medium.
Was added and the mixture was cultured at 30 ° C. for 2 hours. Immediately after the culturing, the luminescence amount of 100 μl of the culture solution was measured by a luminescence measuring device. Also,
The OD 600 of the culture was measured.

【0035】活性(Intensity/OD600
は、10秒間の発光量を測定し、その値をOD600 の値
で割ることにより求めた。測定結果を図1〜4に示す。
以下に示す比較例は、本発明と従来法の感度比較を行う
ために実施した。
Activity (Intensity / OD 600 )
Was determined by measuring the amount of light emission for 10 seconds and dividing the value by the value of OD 600 . The measurement results are shown in FIGS.
The following comparative examples were carried out in order to compare the sensitivity of the present invention and the conventional method.

【0036】比較例 プラスミドpSK1002が導入されたサルモネラ菌
(TA1535/pSK1002)を用いた、0.1mo
l /lリン酸カリウム緩衝液(pH7.0)11に0.7
5g塩化カリウム、0.246g硫酸マグネシウム、
0.05mol /lの2−メルカプトエタノール2mlを加
え溶解し、Z−緩衝液を調製した。
Comparative Example Using Salmonella bacterium (TA1535 / pSK1002) into which plasmid pSK1002 was introduced, 0.1mo
0.7 l / l potassium phosphate buffer (pH 7.0) 11
5 g potassium chloride, 0.246 g magnesium sulfate,
2 ml of 0.05 mol / l 2-mercaptoethanol was added and dissolved to prepare a Z-buffer solution.

【0037】TA1535/pSK1002を、TGA
培地で一夜37℃で培養した。この培養液をTGA培地
に1/50容量植菌し、37℃で1.5時間培養した。
この培養液をOD600 =0.1になるようにTGA培地
で希釈した。この希釈培養液を1.45mlずつ試験管に
分注し、それぞれに所定濃度の被験試料50μlを加え
37℃で2時間培養した。代謝活性化酵素を必要とする
場合は、希釈培養液1.2mlにS9ミックス0.25m
l、被験試料50μlを加え、37℃で2時間培養し
た。この菌液のOD600 を測定した。
TA1535 / pSK1002 was added to TGA
Incubated in medium overnight at 37 ° C. This culture solution was inoculated into a TGA medium at 1/50 volume and cultured at 37 ° C. for 1.5 hours.
This culture solution was diluted with TGA medium so that OD 600 = 0.1. Each 1.45 ml of this diluted culture solution was dispensed into a test tube, 50 μl of a test sample having a predetermined concentration was added to each, and the mixture was incubated at 37 ° C. for 2 hours. When metabolic activation enzyme is required, S9 mix 0.25m in 1.2ml diluted culture solution
l and 50 μl of the test sample were added, and the mixture was incubated at 37 ° C. for 2 hours. The OD 600 of this bacterial solution was measured.

【0038】残りの菌液0.1mlに、Z−緩衝液0.9
ml、0.1%SDS50μl、クロロホルム10μlを
加え、5秒間攪拌した。次に、0.1Mリン酸緩衝液
(pH7.0)に溶解した4mg/mlo−ニトロフェニル−
β−D−ガラクトピラノシド(ONPG)水溶液を0.
2ml加え、28℃で10分間反応させた後、1mol /l
炭酸ナトリウム溶液を0.5ml加え反応を停止した。そ
して、直ちに420nmおよび550nmにおける吸光度を
測定した。活性(unit)は、ミラー法に基づき下式
により求めた。
The remaining bacterial solution (0.1 ml) was added with Z-buffer solution 0.9.
ml, 0.1% SDS (50 μl) and chloroform (10 μl) were added, and the mixture was stirred for 5 seconds. Next, 4 mg / ml o-nitrophenyl-dissolved in 0.1 M phosphate buffer (pH 7.0).
A β-D-galactopyranoside (ONPG) aqueous solution was added to 0.
After adding 2 ml and reacting at 28 ° C for 10 minutes, 1 mol / l
The reaction was stopped by adding 0.5 ml of sodium carbonate solution. Then, the absorbance at 420 nm and 550 nm was immediately measured. The activity (unit) was calculated by the following formula based on the Miller method.

【0039】[0039]

【数1】 [Equation 1]

【0040】図1および3が示すように本発明の発光測
定法を用いた場合、各被験試料共に従来の比色検出に比
べ、ダイナミックレンジが最高で10倍程度広がった。
図2および4並びに表.1が示すように本発明の発光測
定法を用いた場合、各被験試料共に従来の比色検出に比
べ、最少検出濃度が少なくとも5倍程度低濃度になっ
た。
As shown in FIGS. 1 and 3, when the luminescence measuring method of the present invention was used, the maximum dynamic range of each test sample was increased by about 10 times as compared with the conventional colorimetric detection.
2 and 4 and Table. As shown in 1, when the luminescence measurement method of the present invention was used, the minimum detection concentration was at least about 5 times lower than that of the conventional colorimetric detection in each test sample.

【0041】[0041]

【表1】 [Table 1]

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例および比較例で得られたAF−2,4N
QO,1−NPの各濃度でのレスポンスを被験試料を含
まない条件でのレスポンスで割った値Ratio(0〜
100)を示すグラフである。
FIG. 1 shows AF-2,4N obtained in Examples and Comparative Examples.
Value obtained by dividing the response at each concentration of QO and 1-NP by the response under the condition that the test sample was not included Ratio (0 to
It is a graph which shows 100).

【図2】実施例および比較例で得られたAF−2,4N
QO,1−NPの各濃度でのレスポンスを被験試料を含
まない条件でのレスポンスで割った値Ratio(0〜
10)を示すグラフである。
FIG. 2 shows AF-2,4N obtained in Examples and Comparative Examples.
Value obtained by dividing the response at each concentration of QO and 1-NP by the response under the condition that the test sample was not included Ratio (0 to
It is a graph which shows 10).

【図3】実施例および比較例で得られた2−AA,Ba
pの各濃度でのレスポンスを被験試料を含まない条件で
のレスポンスで割った値Ratio(0〜80)を示す
グラフである。
FIG. 3 shows 2-AA and Ba obtained in Examples and Comparative Examples.
It is a graph which shows the value Ratio (0-80) which divided the response in each density | concentration of p by the response on the condition which does not contain a test sample.

【図4】実施例および比較例で得られた2−AA,Ba
pの各濃度でのレスポンスを被験試料を含まない条件で
のレスポンスで割った値Ratio(0〜10)を示す
グラフである。
FIG. 4 shows 2-AA and Ba obtained in Examples and Comparative Examples.
It is a graph which shows the value Ratio (0-10) which divided the response in each density | concentration of p by the response on the condition which does not contain a test sample.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C12Q 1/66 6807−4B //(C12N 15/09 C12R 1:63) (C12N 15/09 C12R 1:01) (C12N 1/21 C12R 1:42) (C12N 1/21 C12R 1:19) C12R 1:63) (C12N 15/00 A C12R 1:01) ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Internal reference number FI Technical indication C12Q 1/66 6807-4B // (C12N 15/09 C12R 1:63) (C12N 15/09 C12R (1:01) (C12N 1/21 C12R 1:42) (C12N 1/21 C12R 1:19) C12R 1:63) (C12N 15/00 A C12R 1:01)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 DNA損傷時に発現されるSOS遺伝子
と該遺伝子の下流に配置されたルシフェラーゼ活性を発
現する遺伝子およびそのルシフェラーゼ活性の基質の生
産を触媒する酵素を発現する遺伝子とを含んでなる組換
え遺伝子。
1. A set comprising an SOS gene that is expressed upon DNA damage, a gene that is located downstream of the gene and that expresses a luciferase activity, and a gene that expresses an enzyme that catalyzes the production of a substrate for the luciferase activity. Replacement gene.
【請求項2】 請求項1に記載の組換え遺伝子により形
質転換された宿主微生物。
2. A host microorganism transformed with the recombinant gene according to claim 1.
【請求項3】 請求項2に記載の宿主微生物を、被験試
料を含有する培地中で培養し、発光活性を発現する遺伝
子群の発現による発光を測定することを特徴とする被験
試料中の変異原性物質等の遺伝毒物の存否の決定又は存
在量の測定を行うための方法。
3. A mutation in a test sample, which comprises culturing the host microorganism according to claim 2 in a medium containing the test sample, and measuring luminescence due to expression of a gene group expressing luminescence activity. A method for determining the presence or absence or determining the abundance of a genotoxic substance such as a protozoal substance.
JP1845294A 1993-10-22 1994-02-15 Reagent-free mutagen detection method Expired - Fee Related JP3277426B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP1845294A JP3277426B2 (en) 1994-02-15 1994-02-15 Reagent-free mutagen detection method
EP94307739A EP0649905B1 (en) 1993-10-22 1994-10-21 Methods of detection of mutagens using luminescence gene
US08/326,949 US5702883A (en) 1993-10-22 1994-10-21 Methods for detection of mutagens using luminescence gene
DE69413491T DE69413491T2 (en) 1993-10-22 1994-10-21 Method for the detection of mutagens using a luminescent gene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1845294A JP3277426B2 (en) 1994-02-15 1994-02-15 Reagent-free mutagen detection method

Publications (2)

Publication Number Publication Date
JPH07227285A true JPH07227285A (en) 1995-08-29
JP3277426B2 JP3277426B2 (en) 2002-04-22

Family

ID=11972028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1845294A Expired - Fee Related JP3277426B2 (en) 1993-10-22 1994-02-15 Reagent-free mutagen detection method

Country Status (1)

Country Link
JP (1) JP3277426B2 (en)

Also Published As

Publication number Publication date
JP3277426B2 (en) 2002-04-22

Similar Documents

Publication Publication Date Title
Davidov et al. Improved bacterial SOS promoter∷ lux fusions for genotoxicity detection
Collins et al. Directed evolution of Vibrio fischeri LuxR for increased sensitivity to a broad spectrum of acyl‐homoserine lactones
Patterson et al. Codon optimization of bacterial luciferase (lux) for expression in mammalian cells
Blosser et al. Extraction of violacein from Chromobacterium violaceum provides a new quantitative bioassay for N-acyl homoserine lactone autoinducers
Kambara et al. Pervasive targeting of nascent transcripts by Hfq
Kim et al. Monothiol glutaredoxin Grx5 interacts with Fe–S scaffold proteins Isa1 and Isa2 and supports Fe–S assembly and DNA integrity in mitochondria of fission yeast
Rainey et al. In vivo expression technology strategies: valuable tools for biotechnology
US6329160B1 (en) Biosensors
Guo et al. Improved monitoring of low-level transcription in Escherichia coli by a β-galactosidase α-complementation system
Kain et al. Overview of genetic reporter systems
US5702883A (en) Methods for detection of mutagens using luminescence gene
Zhu et al. A luxS-dependent transcript profile of cell-to-cell communication in Klebsiella pneumoniae
JP2003509029A (en) Luciferase expression cassette and method of use
Aspiras et al. Expression of green fluorescent protein in Streptococcus gordonii DL1 and its use as a species-specific marker in coadhesion with Streptococcus oralis 34 in saliva-conditioned biofilms in vitro
Alavi et al. [3] Surface sensing, swarmer cell differentiation, and biofilm development
Rosen et al. Microbial sensors of ultraviolet radiation based on recA’:: lux fusions
Dahlgren et al. A novel mutation in ribosomal protein S4 thataffects the function of a mutated RF1
EP0469021B1 (en) Determination of factors affecting gene regulation and/or gene replication
Shapiro et al. Stress-activated bioluminescent Escherichia coli sensors for antimicrobial agents detection
JP3277426B2 (en) Reagent-free mutagen detection method
Mastropaolo et al. Comparison of Bacteroides thetaiotaomicron and Escherichia coli 16S rRNA gene expression signals
US7811760B2 (en) Vector and method for detecting the change in transcription amount
JP4272265B2 (en) Diagnostic system and method for determining the presence of genotoxic compounds in a sample
Hui et al. A panel of visual bacterial biosensors for the rapid detection of genotoxic and oxidative damage: A proof of concept study
EP0907748B1 (en) Recombinant nucleic acid sequences and methods for determining both genotoxicity and mutagenicity of a sample and the kinetics of the genetoxicity

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080215

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090215

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20090215

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100215

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees