JP3277426B2 - Reagent-free mutagen detection method - Google Patents

Reagent-free mutagen detection method

Info

Publication number
JP3277426B2
JP3277426B2 JP1845294A JP1845294A JP3277426B2 JP 3277426 B2 JP3277426 B2 JP 3277426B2 JP 1845294 A JP1845294 A JP 1845294A JP 1845294 A JP1845294 A JP 1845294A JP 3277426 B2 JP3277426 B2 JP 3277426B2
Authority
JP
Japan
Prior art keywords
gene
test sample
sos
substance
genes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1845294A
Other languages
Japanese (ja)
Other versions
JPH07227285A (en
Inventor
孝夫 今枝
正名 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP1845294A priority Critical patent/JP3277426B2/en
Priority to EP94307739A priority patent/EP0649905B1/en
Priority to US08/326,949 priority patent/US5702883A/en
Priority to DE69413491T priority patent/DE69413491T2/en
Publication of JPH07227285A publication Critical patent/JPH07227285A/en
Application granted granted Critical
Publication of JP3277426B2 publication Critical patent/JP3277426B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、発光方式の変異原検出
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a luminescent mutagen detection method.

【0002】[0002]

【従来の技術】現在、発ガン性物質の短期スクリーニン
グ法として微生物を用いた突然変異試験法が数多く報告
されている。その中でも復帰突然変異試験法であるAm
esテストが最も広く利用されている。しかし、この試
験法は測定までに約3日を要し、無菌操作を必要とする
など問題点を有している。最近、突然変異の誘発性を検
出するAmesテストとは異なり、DNAの損傷性を検
出する短期変異原検出法(umuテスト、SOSクロモ
テスト)が報告された(小田、中村等、"Evalution of
the new system(umu-test)for the detection of envir
onmental mutagens and carcinogens",Mutation Resear
ch, 147 ,219-229,1985 、特公平4−12118)。
2. Description of the Related Art At present, many mutation test methods using microorganisms have been reported as short-term screening methods for carcinogenic substances. Among them, the reverse mutation test method, Am
The es test is the most widely used. However, this test method has a problem that it takes about 3 days to measure and requires aseptic operation. Recently, short-term mutagen detection methods (umu test, SOS chromo test) for detecting DNA damage, unlike the Ames test for detecting mutagenicity, have been reported (Oda, Nakamura et al., "Evalution of
the new system (umu-test) for the detection of envir
onmental mutagens and carcinogens ", Mutation Resear
ch, 147 , 219-229, 1985, Japanese Patent Publication No. 4-12118).

【0003】これらの方法は、DNA損傷時に誘発され
るSOS反応を、SOS遺伝子の一つであるumuD
遺伝子又はsfiA遺伝子の下流にlacZ遺伝子を
連結することによりβ−ガラクトシダーゼの発現量とし
て測定し、DNA損傷性、変異原性を検出する方法であ
る。より具体的には、上記遺伝子を導入したサルモネラ
菌(umuテスト)、大腸菌(SOSクロモテスト)を
被検物質の存在下で培養し、この培養液を所定のバッフ
ァーに加えて希釈した後、トルエン又はクロロホルムと
ドデシルベンゼンスルホン酸ナトリウムのようなスルホ
ン酸塩型界面活性剤水溶液を加え、細胞破砕処理を行
う。
[0003] In these methods, the SOS response induced at the time of DNA damage is determined by using one of the SOS genes, umuD ,
This is a method for detecting DNA damage and mutagenicity by measuring the expression level of β-galactosidase by ligating the lacZ gene downstream of the C gene or sfiA gene. More specifically, Salmonella (umu test) and Escherichia coli (SOS chromotest) into which the above-described genes have been introduced are cultured in the presence of a test substance, and this culture solution is diluted with a predetermined buffer, and then diluted with toluene or An aqueous solution of a sulfonate type surfactant such as chloroform and sodium dodecylbenzenesulfonate is added to perform cell disruption treatment.

【0004】次いでβ−ガラクトシダーゼ活性を測定す
る目的で、β−ガラクトシダーゼの基質である2−ニト
ロフェニル−β−D−ガラクトピラノシド水溶液を加
え、28℃で酵素反応を行い、数十分後、炭酸ナトリウ
ムで反応を停止する。酵素反応液の光学濃度を二波長
(420,550nm) で計測し、ミラー法 (Miller.J.
H.,Experiments in molecular genetics,Cold Spring H
arbor Laboratory,1972) に基づいてβ−ガラクトシダ
ーゼ活性を算出する。
Then, for the purpose of measuring β-galactosidase activity, an aqueous solution of 2-nitrophenyl-β-D-galactopyranoside, which is a substrate of β-galactosidase, is added, and the enzyme reaction is carried out at 28 ° C. The reaction is stopped with sodium carbonate. The optical density of the enzyme reaction solution was measured at two wavelengths (420, 550 nm), and the mirror method (Miller.J.
H., Experiments in molecular genetics, Cold Spring H
β-galactosidase activity is calculated based on the Arbor Laboratory, 1972).

【0005】上記umuテストおよびSOSクロモテス
トは、Amesテストに比べかなり簡便、迅速に検出で
きるという特徴を備えている。その諸操作を工程別に整
理すると、SOS反応を誘導するための第一工程、即
ち、具体的には、宿主微生物を被験試料の存在下で培養
する工程、および本工程によって菌体内に発現されたβ
−ガラクトシダーゼ活性を発色反応によって検出する第
二工程の二つに大別できる。
The above-mentioned umu test and SOS chromo test have a feature that they can be detected much more easily and quickly than the Ames test. When the various operations are organized by step, the first step for inducing the SOS reaction, specifically, the step of culturing the host microorganism in the presence of the test sample, and the step expressed in the cells by this step, β
-The second step of detecting galactosidase activity by a color reaction can be roughly classified into two.

【0006】前に具体的な手法を示したように、第二工
程は第一工程に比較すると操作が煩雑であり、希釈、細
胞破砕処理、基質の添加、発色反応の進行および停止、
吸光度の測定といった諸操作が必要である。また、比色
による検出は、検出感度が低いといった問題点がある。
検出感度を高めるため、菌体内に発現されたβ−ガラク
トシダーゼと外部より添加した発色基質の反応性を増す
ために細胞破砕処理が行われるが、この操作により試験
がより煩雑になることは否めない。
As described above, the operation of the second step is more complicated than that of the first step, such as dilution, cell disruption, addition of a substrate, progress and stop of the color reaction,
Various operations such as measurement of absorbance are required. In addition, colorimetric detection has a problem that detection sensitivity is low.
In order to increase the detection sensitivity, cell disruption treatment is performed to increase the reactivity between β-galactosidase expressed in the cells and the chromogenic substrate added from the outside, but this operation cannot help but complicate the test. .

【0007】このように発色検出を基本とした試験法
は、上記第二工程において煩雑な操作を必要とするこ
と、検出感度が低いため、この欠点を補う意味で発色時
間を長くしたり、煩雑な菌体破砕処理を行ったりすると
検出の迅速性が損なわれること、高価な発色試薬の添加
が不可欠であること、等の問題点がある。
[0007] As described above, the test method based on color detection requires complicated operations in the second step and has low detection sensitivity. Therefore, in order to compensate for this drawback, it is necessary to lengthen the color development time or to perform complicated operations. However, there are problems such as that the rapid detection is impaired when a complicated cell crushing treatment is performed, and that the addition of an expensive coloring reagent is indispensable.

【0008】[0008]

【発明が解決しようとする課題】従って本発明は、上記
第二工程における煩雑な操作、即ち、希釈、細胞破砕処
理、基質の添加、発色反応の進行および停止の諸操作を
特に必要としないため、操作が著しく簡略化されてお
り、かつ、迅速性、検出感度、経済性の点で優るSOS
遺伝子のDNA損傷性を利用した変異原性物質等の遺伝
毒物の検出方法を提供しようとするものである。
Accordingly, the present invention does not require any complicated operations in the second step, that is, various operations such as dilution, cell disruption, addition of a substrate, and progress and stop of the color reaction. The operation is significantly simplified, and the SOS is superior in terms of speed, detection sensitivity, and economy.
An object of the present invention is to provide a method for detecting a genotoxic substance such as a mutagenic substance using the DNA damaging property of a gene.

【0009】[0009]

【課題を解決するための手段】本発明者らは、上記の課
題を解決すべく種々検討した結果、DNAの損傷に対し
て感受性のSOS遺伝子の下流にルシフェラーゼ活性を
発現する遺伝子およびそのルシフェラーゼ活性の基質の
生産を触媒する酵素を発現する遺伝子を配置した組換え
遺伝子により形質転換された微生物を変異原性物質等の
遺伝毒物を含有する培地中で培養すれば、該SOS遺伝
子の発現と同時にルシフェラーゼ活性を有する遺伝子お
よびそのルシフェラーゼ活性の基質の生産を触媒する酵
素を発現する遺伝子も発現され、この結果、ルシフェラ
ーゼ活性の基質が菌体内で連続的に供給される条件が達
成され、ルシフェラーゼによる連続的な発光反応が起こ
り、この発光を測定することにより上記第二工程の煩雑
な操作を特に行う必要がなく迅速に変異原性物質等の遺
伝毒物を検出又は測定することができることを見い出
し、本発明を完成した。
Means for Solving the Problems As a result of various studies to solve the above problems, the present inventors have found that a gene expressing luciferase activity downstream of an SOS gene susceptible to DNA damage and its luciferase activity By culturing a microorganism transformed with a recombinant gene in which a gene that expresses an enzyme that catalyzes the production of a substrate of the present invention is placed in a medium containing a genotoxic substance such as a mutagenic substance, the expression of the SOS gene and A gene having a luciferase activity and a gene expressing an enzyme that catalyzes the production of a substrate for the luciferase activity are also expressed. As a result, the conditions under which the substrate for the luciferase activity is continuously supplied in the cells are achieved. A luminescent reaction occurs, and the complicated operation of the second step is particularly performed by measuring this luminescence. Found that it is possible to detect or measure genetic toxicology of such rapidly mutagen no necessity, the present invention has been completed.

【0010】変異原性物質等の遺伝毒物を含む条件での
レスポンスを遺伝毒物を含まない条件でのレスポンスで
割った値を指標として解析を行うと、代表的な変異原性
物質である2−(2−フリル)−3−(5−ニトロ−2
−フリル)アクリルアミドの場合、従来の比色検出の場
合は、この値が遺伝毒物の含有量が増すに従って増加
し、1から10前後まで変化するのに対し、本発明の発
光検出の場合は、1から100前後まで変化することを
見い出した。このように本発明の場合、測定のダイナミ
ックレンジが従来法より最高で10倍程度広がり、遺伝
毒物を感度よく、高精度に検出、定量できることが明ら
かになった。
When an analysis is performed using the value obtained by dividing the response under the condition containing a genotoxic substance such as a mutagenic substance by the response under the condition not containing a genotoxic substance as an index, it is a typical mutagenic substance. (2-furyl) -3- (5-nitro-2)
In the case of (furyl) acrylamide, in the case of the conventional colorimetric detection, this value increases as the content of the genotoxic substance increases and changes from 1 to about 10, whereas in the case of the luminescence detection of the present invention, It has been found that it varies from 1 to around 100. As described above, in the case of the present invention, it has been revealed that the dynamic range of measurement is up to about 10 times wider than the conventional method, and that genotoxic substances can be detected and quantified with high sensitivity and high accuracy.

【0011】また、遺伝毒物であるか否かの判定基準と
して、被験試料を添加していない条件に対して2倍のレ
スポンスを示すことをもって、遺伝毒性ありとすること
が一般に行われており、2倍のレスポンスを示す濃度を
最少検出濃度と呼んでいる。種々の遺伝毒物に対して試
験を行った結果、本発明の発光検出の最少検出濃度は、
従来の比色検出の場合に比べ最低でも5倍程度は低濃度
となり、遺伝毒物を高感度に検出できることが明らかに
なった。
As a criterion for judging whether or not a substance is a genotoxic substance, it is generally performed to indicate that the substance is genotoxic by showing a double response to the condition in which no test sample is added. The concentration showing a double response is called the minimum detection concentration. As a result of conducting tests on various genotoxicants, the minimum detection concentration of the luminescence detection of the present invention is as follows.
The concentration was at least about 5 times lower than that of the conventional colorimetric detection, and it became clear that genotoxic substances could be detected with high sensitivity.

【0012】従って本発明は、DNA損傷時に発現され
るSOS遺伝子と該遺伝子の下流に配置されたルシフェ
ラーゼ活性を発現する遺伝子およびそのルシフェラーゼ
活性の基質の生産を触媒する酵素を発現する遺伝子とを
含んでなる組換え遺伝子を提供する。本発明はまた、前
記遺伝子により形質転換された宿主微生物を提供する。
Accordingly, the present invention includes the SOS gene expressed at the time of DNA damage, a gene arranged downstream of the gene and expressing a luciferase activity, and a gene expressing an enzyme that catalyzes the production of a substrate for the luciferase activity. And a recombinant gene comprising: The present invention also provides a host microorganism transformed with the gene.

【0013】本発明はさらに、前記宿主微生物を、被験
試料を含有する培地中で培養し、ルシフェラーゼ活性お
よびそのルシフェラーゼ活性の基質の生産を触媒する酵
素を発現する遺伝子群の発現によって得られる発光を測
定することを特徴とする被験試料中の変異原性物質等の
遺伝毒物の存否の決定又は存在量の測定を行うための方
法を提供する。
The present invention further provides a method for culturing the host microorganism in a medium containing a test sample to obtain luminescence obtained by expression of genes that express luciferase activity and an enzyme that catalyzes the production of a substrate for the luciferase activity. Provided is a method for determining the presence or absence of a genotoxic substance such as a mutagenic substance in a test sample or measuring the amount of the genotoxic substance in the test sample.

【0014】本発明においては、ルシフェラーゼ活性お
よびその基質の生産を触媒する酵素を発現する遺伝子を
DNAの損傷に依存して発現させるために、その発現制
御手段としてSOS遺伝子を利用する。従って、SOS
遺伝子はDNA損傷時に発現されるものであればよく、
SOSボックスと称する制御部分を含有するものであれ
ばよい。従って、本発明においてDNA損傷時に発現さ
れるSOS遺伝子とは、前記SOSボックスと称される
制御部分を含有するものを意味し、SOSボックス自体
でもよく、またこれを含有する任意のDNA断片であっ
てもよい。
In the present invention, in order to express a gene expressing an enzyme that catalyzes luciferase activity and its substrate production depending on DNA damage, the SOS gene is used as an expression control means thereof. Therefore, SOS
The gene only needs to be expressed at the time of DNA damage,
What is necessary is just to contain the control part called SOS box. Therefore, the SOS gene expressed at the time of DNA damage in the present invention means a gene containing a control part called the SOS box, and may be the SOS box itself or any DNA fragment containing the same. You may.

【0015】SOS遺伝子としては、umu遺伝子、例
えばumuC遺伝子及びumuD遺伝子、並びにsfi
遺伝子等が挙げられるがこれに限定されない。これら
の遺伝子の内、umuDumuC遺伝子は、Pro.Nat
l.Acad.Sci.USA Vol.82,4336-4340(1985)に記載されて
おり、これらの記載に基いて容易に入手することができ
る。また、umuD遺伝子並びにumuC遺伝子の一部
lacZ遺伝子との融合遺伝子を含有するプラスミド
pSK1002は、H.Shinagawa ら、Gene, 23,167(198
3)に記載されており、このプラスミドからumuDおよ
umuC遺伝子を容易に入手することができる。
Examples of the SOS gene, umu gene, examples <br/> example, if umuC gene and umuD gene, and sfi
A gene and the like are included, but not limited thereto. Of these genes, the umuD and umuC genes are Pro.
USA, Vol. 82 , 4336-4340 (1985), and can be easily obtained based on these descriptions. Also, plasmid pSK1002 containing the fusion gene with a part and the lacZ gene of umuD gene and umuC genes, H.Shinagawa et, Gene, 23, 167 (198
The umuD and umuC genes can be easily obtained from this plasmid.

【0016】ルシフェラーゼ活性およびその基質の生産
を触媒する酵素を発現する遺伝子としては、SOS遺伝
子の制御下でその両遺伝子群が発現されるものであれば
よく、例えば海洋細菌の生物発光遺伝子群を挙げること
ができるがこれに限定されない。上記性質を有する生物
発光遺伝子群を持つ海洋細菌としては、ビブリオ(Vibr
io) 群のビブリオ(Vibrio) 属では、ビブリオ・ハーベ
イ(V. harveyi)、ビブリオ・フィシェリ(V. fische
ri) 、ビブリオ・スプレンディドゥス(V. Splendidu
s) 、ビブリオ・コレラ(V. cholerae) が、フォトバ
クテリウム(Photobacterium) 属では、フォトバクテリ
ウム・ホスホリウム (P. phosphoreum)、フォトバクテ
リウム・レイノクナシ (P. leiognathi) 等が挙げられ
る。
Luciferase activity and production of its substrate
Genes that express enzymes that catalyze SOS
If both genes are expressed under the control of the offspring
Well, for example, mention the bioluminescent genes of marine bacteria
But can be, but not limited to. Organism with the above properties
As a marine bacterium having a luminescent gene group, Vibrio (Vibr
io) Vibrio of the group (VibrioIn the genus, Vibrio have
I(V. harveyi), Vibrio Fisherie (V. fische
ri), Vibrio Splendidus (V. Splendidu
s), Vibrio Cholera (V. cholerae)
Photobacterium in the genus Photobacterium
Um Phosphorium (P. phosphoreum), Photo Bacte
Lum Reinokunashi (P. leiognathi) Etc.
You.

【0017】例えば、ビブリオ・フィシェリ (V. fics
heri) 由来の生物発光遺伝子群は、リポーター遺伝子と
して使い易くするために生物発光遺伝子群のオペレータ
ー領域を取り除き、構造遺伝子部分(ルシフェラーゼ活
性を発現する遺伝子群およびその基質であるアルデヒド
の生産を触媒する酵素である脂肪酸リダクターゼ活性を
発現する遺伝子群)だけを含む種々のカセットベクタ
ー、例えば、pUCD320,pUCD613,pUCD614,pUCD618,pUCD62
0,pUCD623,pUCD1111等が報告されている。これらのカセ
ットベクターについては、Clarence I.Kado ら、Plant
Molecular Biology Reporter, ,225(1987)に記載され
ており、これらのベクターから生物発光遺伝子群の構造
遺伝子部分を容易に入手することができる。
For example, V. fics
heri ) -derived bioluminescent genes remove the operator region of the bioluminescent genes to facilitate their use as reporter genes, and catalyze the production of structural genes (genes expressing luciferase activity and its substrate, aldehyde) Various cassette vectors containing only the enzymes that express the activity of the enzyme fatty acid reductase), for example, pUCD320, pUCD613, pUCD614, pUCD618, pUCD62
0, pUCD623, pUCD1111 and the like have been reported. See Clarence I. Kado et al., Plant
Molecular Biology Reporter, 5 , 225 (1987), and the structural gene portion of the bioluminescent gene group can be easily obtained from these vectors.

【0018】なお、この発明において、ルシフェラーゼ
の基質とは長鎖アルデヒド等を意味し、これらの生産を
触媒する酵素とは、NAD(P)H:FMN還元酵素、
脂肪酸リダクターゼ等を意味する。上記の例において
は、ルシフェラーゼ活性を発現する遺伝子及びルシフェ
ラーゼの基質の生産を触媒する酵素の遺伝子として同一
の起源のものを用いたが、異る起源のこれらの遺伝子を
連結して使用することもできる。
In the present invention, the term "luciferase substrate" means a long-chain aldehyde and the like, and the enzyme which catalyzes the production thereof includes NAD (P) H: FMN reductase,
It means fatty acid reductase and the like. In the above example, the genes expressing the luciferase activity and the gene of the enzyme that catalyzes the production of the luciferase substrate are of the same origin, but these genes of different origins may be used in combination. it can.

【0019】宿主微生物としては、それらのDNAが変
異原性物質等の遺伝毒物により損傷された際にSOS遺
伝子を発現させることができる微生物、すなわちSOS
機能を有する微生物であればよく、例えば大腸菌(Esche
richia coli) 、サルモネラ菌 (Salmonella typhimur
ium)、例えばそのTA1535株、TA1538株等、
酵母(Saccharomyces cerevisiae) 等が挙げられる。
The host microorganism is a microorganism capable of expressing the SOS gene when its DNA is damaged by a genotoxic substance such as a mutagenic substance, ie, SOS.
Any microorganism having a function may be used, for example, Escherichia coli (Esche
richia coli ), Salmonella typhimur
ium) , for example, the TA1535 strain, the TA1538 strain, etc.
Yeast (Saccharomyces cerevisiae ) and the like.

【0020】SOS遺伝子と、ルシフェラーゼ活性及び
その基質の生産を触媒する酵素を発現する遺伝子とを含
んでなる組換え遺伝子は、SOS遺伝子のSOSボック
スを少なくとも含有するDNA断片の該SOSボックス
より下流に、ルシフェラーゼ活性及びその基質の生産を
触媒する酵素を発現する遺伝子群を連結することにより
作製することができる。この連結は、DNAリガーゼを
用いて常法に従って行うことができる。この組換え遺伝
子を宿主微生物に導入するためには、該組換え遺伝子
は、ベクター中に存在する必要があり、例えばプラスミ
ドとしては、pBR系プラスミド、pUC系プラスミド
等を利用することができる。
A recombinant gene comprising the SOS gene and a gene expressing an enzyme that catalyzes luciferase activity and production of its substrate is located downstream of the SOS box of a DNA fragment containing at least the SOS box of the SOS gene. And a gene group expressing an enzyme that catalyzes luciferase activity and its substrate production. This ligation can be performed using DNA ligase according to a conventional method. In order to introduce this recombinant gene into a host microorganism, the recombinant gene must be present in a vector. For example, a pBR plasmid, a pUC plasmid, or the like can be used as a plasmid.

【0021】発現ベクターにより宿主微生物を形質転換
するには、微生物、例えば細菌の形質転換に用いられる
常法によればよい。本発明に従って、被験試料中の変異
原性物質等の遺伝毒物を検出又は測定するには、被験試
料を培地に混合した後、この培地中で前記形質転換され
た宿主微生物を培養する。培養は通常1〜3時間行われ
る。培養を行うことにより、被験試料を含んだ培養液自
体が発光しているので、培養後直ちに常法に従ってその
光を検出することができる。被験試料が変異原性物質等
の遺伝毒物を含んでいる場合には発光量が濃度依存的に
増加するので、この増加量から被験試料中の変異原性物
質等の遺伝毒物を検出又は測定することができる。
Transformation of a host microorganism with an expression vector may be performed by a conventional method used for transforming a microorganism, for example, a bacterium. According to the present invention, in order to detect or measure a genotoxic substance such as a mutagenic substance in a test sample, the test sample is mixed with a medium, and the transformed host microorganism is cultured in the medium. The culture is usually performed for 1 to 3 hours. Since the culture solution itself containing the test sample emits light by performing the culture, the light can be detected according to a conventional method immediately after the culture. When the test sample contains a genotoxic substance such as a mutagenic substance, the amount of luminescence increases in a concentration-dependent manner. Based on this increase, a genotoxic substance such as a mutagenic substance in the test sample is detected or measured. be able to.

【0022】本発明の方法によれば、すべての変異原性
物質等の遺伝毒物を検出の対象とすることができる。変
異原性物質等の遺伝毒物は、最終的に溶液として培地に
導入されるが、気体や固体でも培地に溶解するものであ
れば測定することができる。
According to the method of the present invention, all genotoxic substances such as mutagenic substances can be detected. A genotoxic substance such as a mutagenic substance is finally introduced into a medium as a solution, but it can be measured even if it is a gas or a solid that can be dissolved in the medium.

【0023】[0023]

【発明の効果】本発明の方法によれば、被験試料と形質
転換された宿主微生物を含む培地を混合し、培養後直ち
に発光検出できるため、前記第二工程の煩雑な操作が不
要となる。このため、簡単な操作で、検出時間が大幅に
短縮され、また試薬が不要なため安価に測定でき、さら
に発光検出としているため、従来の比色検出に比べ、測
定のダイナミックレンジが最高で10倍程度広がり、か
つ変異原性物質等の遺伝毒物の最少検出濃度を少なくと
も5倍程度低濃度側で高感度かつ高精度に検出すること
ができる。
According to the method of the present invention, a test sample and a medium containing a transformed host microorganism can be mixed and luminescence can be detected immediately after culturing, so that the complicated operation of the second step is not required. For this reason, the detection time is greatly reduced by simple operation, the measurement can be performed at a low cost because no reagent is required, and the luminescence detection is used. It is possible to detect the minimum detection concentration of a genotoxic substance such as a mutagenic substance at a low concentration side at least about 5 times with high sensitivity and high accuracy.

【0024】[0024]

【実施例】実施例1.発光ベクターの構築及び形質転換体の調製 SOS遺伝子として、大腸菌(CSH26 「Miller,J.H.,Ex
periments in Molecular Genetics,Cold Spring Harbor
Laboratory,1972」:F- ara del(lac-pro)thi)に導入さ
れたプラスミドpSK1002のumuD,C遺伝子を
利用した。ルシフェラーゼ活性およびその基質の生産を
触媒する酵素を発現する遺伝子としては、大腸菌(HB10
1:hsd20 (rB - ,mB - ),recA13,ara-14,proA2,lacY1,ga
lK2,rpsL20,xyl-5,mtl-1,supE44)に導入されたプラスミ
ドpUCD620 (Clarence I.Kadoら、Plant Molecular Biol
ogy Reporter, ,225(1987)) の発光遺伝子群を利用し
た。
[Embodiment 1 ] Construction of luminescence vector and preparation of transformant Escherichia coli (CSH26 "Miller, JH, Ex.
periments in Molecular Genetics, Cold Spring Harbor
Laboratory, 1972 ": UmuD, C gene of plasmid pSK1002 introduced into F - ara del (lac-pro) thi) was used. Genes that express enzymes that catalyze luciferase activity and its substrate production include E. coli (HB10
1: hsd20 (r B -, m B -), recA13, ara-14, proA2, lacY1, ga
1K2, rpsL20, xyl-5, mtl-1, supE44) introduced plasmid pUCD620 (Clarence I. Kado et al., Plant Molecular Biol
ogy Reporter, 5 , 225 (1987)).

【0025】導入する微生物として、サルモネラ菌(TA
1535「Ames,B.N.,J.McCann,E.Yamasaki,Mutation Res.,
31,347,1975 」:hisG46,Δgal,Δchl,Δbio,Δuvr B, r
fa-,SJ10002:r- ,m+ ) を利用した。発光測定装置は、
コロナ電気(株)製のマイクロルミノリーダ (MLR−
100)を使用した。
As the microorganism to be introduced, Salmonella (TA)
1535 `` Ames, BN, J. McCann, E. Yamasaki, Mutation Res.,
31 , 347, 1975 '': hisG46, Δgal, Δchl, Δbio, Δuvr B, r
fa -, SJ10002: r -, using the m +). The luminescence measuring device
Microlumino Reader manufactured by Corona Electric Co., Ltd. (MLR-
100) was used.

【0026】プラスミドpSK1002を含む大腸菌C
SH26をアンピシリンを含むLB培地(Bactoト
リプトン1%、Bacto酵母エキス0.5%、NaC
l1%)で培養後、アルカリ抽出法「Birnboim,H.C.,Do
ly,J.,Nucl.Acids Res.,11,1513,1979」によって、pS
K1002を大量に調製した。プラスミドpSK100
2をSalIおよびSmaIで切断し、umuD
伝子を含む約7.5kbのSalI−SalIDNA断片
を得た。このDNA断片をT4DNAリガーゼにより連
結し、常法に従い大腸菌DH5を形質転換した。
E. coli C containing plasmid pSK1002
SH26 is LB medium containing ampicillin (Bacto tryptone 1%, Bacto yeast extract 0.5%, NaC
11%), and the alkaline extraction method "Birnboim, HC, Do
ly, J., Nucl. Acids Res., 11 , 1513, 1979, pS
K1002 was prepared in large quantities. Plasmid pSK100
2 was cut with Sal I and Sma I to obtain a Sal I- Sal I DNA fragment of about 7.5 kb containing the umuD , C gene. This DNA fragment was ligated with T4 DNA ligase, and Escherichia coli DH5 was transformed according to a conventional method.

【0027】得られた形質転換体からアルカリ抽出法に
よりプラスミドを単離した。このプラスミドをMlu
で切断後、T4DNAポリメラーゼにより平滑末端化し
た。umuCに対して終始コドンとして働き、かつBa
HIサイトをもつDNAリンカー(TAGGATCC
TA)を化学合成した。この合成リンカーと前記Mlu
IDNA断片をT4DNAリガーゼにより連結し、常法
に従い大腸菌DH5に形質転換した。得られた形質転換
体からアルカリ抽出法によりプラスミドを抽出した。こ
のプラスミドをBamHIおよびSalIで切断し、約
7.4kbのBamHI−SalIDNA断片を得た。
A plasmid was isolated from the obtained transformant by an alkali extraction method. This plasmid was transferred to Mlu I
, And blunt-ended with T4 DNA polymerase. Acts as a codon for umuC and Ba
DNA linkers (TAGGATCC with m HI site
TA) was chemically synthesized. This synthetic linker and the Mlu
The IDNA fragment was ligated with T4 DNA ligase and transformed into Escherichia coli DH5 according to a conventional method. A plasmid was extracted from the obtained transformant by an alkali extraction method. This plasmid was cut with Bam HI and Sal I, to obtain a Bam HI- Sal IDNA fragment of about 7.4 kb.

【0028】プラスミドpUCD620を含む大腸菌H
B101をアンピシリンを含むLB培地で培養後、アル
カリ抽出法によって、pUCD620を大量に調製し
た。プラスミドpUCD620をBamHIおよびSa
Iで切断し、発光遺伝子群を含む約7.5kbのBam
HI−SalIDNA断片を得た。このDNA断片と約
7.4kbの前記BamHI−SalIDNA断片をT4
DNAリガーゼにより連結し、発光ベクターを構築し
た。
E. coli H containing plasmid pUCD620
After culturing B101 in an LB medium containing ampicillin, pUCD620 was prepared in a large amount by alkali extraction. The plasmid pUCD620 Bam HI and Sa
It was cut with l I, about 7.5kb of Bam including a luminescent genes
An HI- Sal I DNA fragment was obtained. This DNA fragment and the above-mentioned Bam HI- Sal I DNA fragment of about 7.4 kb were digested with T4
By ligating with DNA ligase, a luminescent vector was constructed.

【0029】SJ10002をLB培地で一夜培養し
た。LB培地に、1/100容量の前記培養液を加え、
600nmにおける濁度(OD600 )が約0.4になるま
で培養した。培養液5mlを遠心分離し、沈澱画分を5ml
の30mMCaCl2 水溶液に懸濁し、45分間氷中に放
置した。再度遠心分離を行い、菌体を0.4mlの30mM
CaCl2 水溶液に懸濁し、SJ10002のコンピテ
ントセルを調製した。
[0029] SJ10002 was cultured overnight in LB medium. To the LB medium, 1/100 volume of the culture solution was added,
The cells were cultured until the turbidity at 600 nm (OD 600 ) was about 0.4. 5 ml of the culture solution is centrifuged, and the precipitate fraction is
Was suspended in a 30 mM CaCl 2 aqueous solution and left on ice for 45 minutes. Centrifugation was performed again, and the cells were added to 0.4 ml of 30 mM
The suspension was suspended in a CaCl 2 aqueous solution to prepare a competent cell of SJ10002.

【0030】TA1535をLB培地で一夜培養した。
LB培地に、1/100容量の前記培養液を加え、60
0nmにおける濁度(OD600 )が約0.4になるまで培
養した。培養液5mlを遠心分離し、沈澱画分を5mlの1
0mMCaCl2 ,10mMMnCl2 ,10mMMgCl2
水溶液に懸濁し、45分間氷中に放置した。再度遠心分
離を行い、菌体を0.4mlの10mMCaCl2 ,10mM
MnCl2 ,10mMMgCl2 水溶液に懸濁し、TA1
535のコンピテントセルを調製した。
TA1535 was cultured overnight in LB medium.
1/100 volume of the culture solution was added to LB medium,
The cells were cultured until the turbidity at 0 nm (OD 600 ) was about 0.4. 5 ml of the culture solution was centrifuged, and the sediment fraction was added to 5 ml of 1 ml.
0mMCaCl 2, 10mMMnCl 2, 10mMMgCl 2
Suspended in an aqueous solution and left on ice for 45 minutes. After centrifugation again, the cells were clarified with 0.4 ml of 10 mM CaCl 2 , 10 mM.
MnCl 2 , suspended in 10 mM MgCl 2 aqueous solution, TA1
535 competent cells were prepared.

【0031】SJ10002のコンピテントセル100
μlに、発光ベクター約200ngを加え、30分間氷中
に放置した。2分間42℃で処理した後、室温にて5分
間放置した。LB培地1mlを加え、37℃で1時間イン
キュベートした。この液をアンピシリン50μg/mlを
含むLBプレートに播種した。このようにして得られた
SJ10002に導入された形質転換体より発光ベクタ
ーをアルカリ抽出法で調製し、前記と同様な方法でTA
1535への形質転換を行った。
Competent cell 100 of SJ10002
About 200 ng of the luminescent vector was added to μl, and left on ice for 30 minutes. After treatment at 42 ° C. for 2 minutes, the mixture was left at room temperature for 5 minutes. 1 ml of LB medium was added and incubated at 37 ° C. for 1 hour. This solution was seeded on an LB plate containing 50 μg / ml of ampicillin. A luminescent vector was prepared from the thus obtained transformant introduced into SJ10002 by an alkali extraction method, and TA was prepared in the same manner as described above.
Transformation into 1535 was performed.

【0032】実施例2.発光測定 代謝活性化酵素 ラットの肝臓から得られ、フェノバルビタールと5,6
−ベンゾフラボンで処理されたS9画分(オリエンタル
酵母(株)製)を用い、これに補助因子としてCofa
ctor−I(オリエンタル酵母(株)製)を混合した
S9ミックスを用いた。
Embodiment 2 FIG . Luminometric Metabolic Activating Enzyme Obtained from rat liver, phenobarbital and 5,6
Benzoflavone-treated S9 fraction (manufactured by Oriental Yeast Co., Ltd.)
An S9 mix mixed with ctor-I (manufactured by Oriental Yeast Co., Ltd.) was used.

【0033】被験試料 2−(2−フリル)−3−(5−ニトロ−2−フリル)
アクリルアミド(以下AF−2と略す)、4−ニトロキ
ノリン1−オキサイド(以下4NQOと略す)、1−ニ
トロピレン(以下1−NPと略す)、2−アミノアント
ラセン(以下2−AAと略す)、ベンゾ〔a〕ピレン
(以下Bapと略す)を用いた。
Test sample 2- (2-furyl) -3- (5-nitro-2-furyl)
Acrylamide (hereinafter abbreviated as AF-2), 4-nitroquinoline 1-oxide (hereinafter abbreviated as 4NQO), 1-nitropyrene (hereinafter abbreviated as 1-NP), 2-aminoanthracene (hereinafter abbreviated as 2-AA), benzo [A] Pyrene (hereinafter abbreviated as Bap) was used.

【0034】TA1535の発光ベクター形質転換体を
TGA培地(トリプトン1%、食塩0.5%、グルコー
ス0.2%、アンピシリン20μg/ml)で一夜30℃
で培養した。この培養液をTGA培地に1/50容量植
菌し、30℃で1.5時間培養した。この培養液をOD
600 =0.1になるようにTGA培地で希釈した。この
希釈培養液を1.45mlずつ試験管に分注し、それぞれ
に所定濃度の被験試料50μl加え30℃で2時間培養
した。代謝活性化酵素を必要とする場合は、希釈培養液
1.2mlにS9ミックス0.25ml、被験試料50μl
を加え、30℃で2時間培養した。培養後直ちに培養液
100μlの発光量を発光測定装置で測定した。また、
培養液のOD600 を測定した。
The TA1535 luminescent vector transformant was placed in a TGA medium (1% tryptone, 0.5% salt, 0.2% glucose, 20 μg / ml ampicillin) at 30 ° C. overnight.
And cultured. This culture solution was inoculated into a TGA medium at a volume of 1/50 and cultured at 30 ° C. for 1.5 hours. OD of this culture
It was diluted with TGA medium so that 600 = 0.1. 1.45 ml of the diluted culture solution was dispensed into test tubes, and 50 μl of a test sample having a predetermined concentration was added to each of the tubes, followed by culturing at 30 ° C. for 2 hours. If a metabolic activating enzyme is required, 0.25 ml of S9 mix and 50 μl of test sample are added to 1.2 ml of the diluted culture solution.
And cultured at 30 ° C. for 2 hours. Immediately after the culture, the amount of luminescence of 100 μl of the culture solution was measured with a luminescence measuring device. Also,
The OD 600 of the culture was measured.

【0035】活性(Intensity/OD600
は、10秒間の発光量を測定し、その値をOD600 の値
で割ることにより求めた。測定結果を図1〜4に示す。
以下に示す比較例は、本発明と従来法の感度比較を行う
ために実施した。
Activity (Intensity / OD 600 )
Was determined by measuring the amount of luminescence for 10 seconds and dividing the value by the value of OD 600 . The measurement results are shown in FIGS.
The comparative examples shown below were performed to compare the sensitivity of the present invention with that of the conventional method.

【0036】比較例 プラスミドpSK1002が導入されたサルモネラ菌
(TA1535/pSK1002)を用いた、0.1mo
l /lリン酸カリウム緩衝液(pH7.0)11に0.7
5g塩化カリウム、0.246g硫酸マグネシウム、
0.05mol /lの2−メルカプトエタノール2mlを加
え溶解し、Z−緩衝液を調製した。
COMPARATIVE EXAMPLE 0.1 mol of a Salmonella bacterium (TA1535 / pSK1002) into which the plasmid pSK1002 was introduced was used.
l / l potassium phosphate buffer (pH 7.0)
5 g potassium chloride, 0.246 g magnesium sulfate,
2 ml of 0.05 mol / l 2-mercaptoethanol was added and dissolved to prepare a Z-buffer.

【0037】TA1535/pSK1002を、TGA
培地で一夜37℃で培養した。この培養液をTGA培地
に1/50容量植菌し、37℃で1.5時間培養した。
この培養液をOD600 =0.1になるようにTGA培地
で希釈した。この希釈培養液を1.45mlずつ試験管に
分注し、それぞれに所定濃度の被験試料50μlを加え
37℃で2時間培養した。代謝活性化酵素を必要とする
場合は、希釈培養液1.2mlにS9ミックス0.25m
l、被験試料50μlを加え、37℃で2時間培養し
た。この菌液のOD600 を測定した。
The TA1535 / pSK1002 was replaced with TGA
The cells were cultured overnight at 37 ° C. in the medium. This culture solution was inoculated in a 1/50 volume in a TGA medium and cultured at 37 ° C. for 1.5 hours.
This culture was diluted with TGA medium so that OD 600 = 0.1. 1.45 ml of the diluted culture solution was dispensed into test tubes, and 50 μl of a test sample having a predetermined concentration was added to each, and the mixture was cultured at 37 ° C. for 2 hours. If metabolic activating enzyme is required, S9 mix 0.25m
l, 50 μl of a test sample was added, and the mixture was cultured at 37 ° C. for 2 hours. The OD 600 of this bacterial solution was measured.

【0038】残りの菌液0.1mlに、Z−緩衝液0.9
ml、0.1%SDS50μl、クロロホルム10μlを
加え、5秒間攪拌した。次に、0.1Mリン酸緩衝液
(pH7.0)に溶解した4mg/mlo−ニトロフェニル−
β−D−ガラクトピラノシド(ONPG)水溶液を0.
2ml加え、28℃で10分間反応させた後、1mol /l
炭酸ナトリウム溶液を0.5ml加え反応を停止した。そ
して、直ちに420nmおよび550nmにおける吸光度を
測定した。活性(unit)は、ミラー法に基づき下式
により求めた。
To the remaining 0.1 ml of the bacterial solution, add 0.9 parts of Z-buffer.
ml, 0.1% SDS (50 μl) and chloroform (10 μl) were added, and the mixture was stirred for 5 seconds. Next, 4 mg / ml o-nitrophenyl- dissolved in 0.1 M phosphate buffer (pH 7.0) was used.
β-D-galactopyranoside (ONPG) aqueous solution was added to 0.
After adding 2 ml and reacting at 28 ° C. for 10 minutes, 1 mol / l
The reaction was stopped by adding 0.5 ml of sodium carbonate solution. Then, the absorbance at 420 nm and 550 nm was measured immediately. The activity (unit) was determined by the following equation based on the Miller method.

【0039】[0039]

【数1】 (Equation 1)

【0040】図1および3が示すように本発明の発光測
定法を用いた場合、各被験試料共に従来の比色検出に比
べ、ダイナミックレンジが最高で10倍程度広がった。
図2および4並びに表.1が示すように本発明の発光測
定法を用いた場合、各被験試料共に従来の比色検出に比
べ、最少検出濃度が少なくとも5倍程度低濃度になっ
た。
As shown in FIGS. 1 and 3, when the luminescence measurement method of the present invention was used, the dynamic range of each test sample was increased up to about 10 times compared with the conventional colorimetric detection.
Figures 2 and 4 and Table. As shown in FIG. 1, when the luminescence measurement method of the present invention was used, the minimum detection concentration of each test sample was at least about 5 times lower than that of the conventional colorimetric detection.

【0041】[0041]

【表1】 [Table 1]

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例および比較例で得られたAF−2,4N
QO,1−NPの各濃度でのレスポンスを被験試料を含
まない条件でのレスポンスで割った値Ratio(0〜
100)を示すグラフである。
FIG. 1 shows AF-2,4N obtained in Examples and Comparative Examples
A value obtained by dividing the response at each concentration of QO and 1-NP by the response under the condition not including the test sample, Ratio (0 to 0)
It is a graph which shows 100).

【図2】実施例および比較例で得られたAF−2,4N
QO,1−NPの各濃度でのレスポンスを被験試料を含
まない条件でのレスポンスで割った値Ratio(0〜
10)を示すグラフである。
FIG. 2 shows AF-2,4N obtained in Examples and Comparative Examples
A value obtained by dividing the response at each concentration of QO and 1-NP by the response under the condition not including the test sample, Ratio (0 to 0)
It is a graph which shows 10).

【図3】実施例および比較例で得られた2−AA,Ba
pの各濃度でのレスポンスを被験試料を含まない条件で
のレスポンスで割った値Ratio(0〜80)を示す
グラフである。
FIG. 3 shows 2-AA and Ba obtained in Examples and Comparative Examples.
It is a graph which shows the value Ratio (0-80) which divided the response in each density | concentration of p by the response under the conditions which do not contain a test sample.

【図4】実施例および比較例で得られた2−AA,Ba
pの各濃度でのレスポンスを被験試料を含まない条件で
のレスポンスで割った値Ratio(0〜10)を示す
グラフである。
FIG. 4 shows 2-AA and Ba obtained in Examples and Comparative Examples.
It is a graph which shows the value Ratio (0-10) which divided the response in each density | concentration of p by the response under the conditions which do not contain a test sample.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI C12R 1:42) C12N 15/00 A (56)参考文献 特開 平5−317043(JP,A) 特公 平4−12118(JP,B2) 社団法人日本生化学会編「新生化学実 験講座14 発生・分化・老化」株式会社 東京化学法人,p.322−3 (58)調査した分野(Int.Cl.7,DB名) C12N 15/00 - 15/70 C12Q 1/66 ────────────────────────────────────────────────── (5) Continuation of the front page (51) Int.Cl. 7 Identification code FI C12R 1:42) C12N 15/00 A (56) References JP-A-5-317043 (JP, A) JP-A-4-12118 (JP, B2) “The New Chemistry Experiment Course 14 Development, Differentiation, and Aging” edited by The Biochemical Society of Japan, Tokyo Chemical Industry Co., Ltd., p. 322-3 (58) Field surveyed (Int. Cl. 7 , DB name) C12N 15/00-15/70 C12Q 1/66

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 DNA損傷時に発現されるSOS遺伝子と該遺
伝子の下流に配置されたルシフェラーゼ活性を発現する
遺伝子およびそのルシフェラーゼ活性の基質の生産を触
媒する酵素を発現する遺伝子とを含んでなる組換遺伝子
により形質転換されたサルモネラ菌
1. A set comprising a SOS gene expressed at the time of DNA damage, a gene arranged downstream of the gene and expressing a luciferase activity, and a gene expressing an enzyme that catalyzes the production of a substrate for the luciferase activity. Transgene
Salmonella transformed by E. coli .
【請求項2】 請求項に記載のサルモネラ菌を、被験
試料を含有する培地中で培養し、発光活性を発現する遺
伝子群の発現による発光を測定することを特徴とする、
被験試料中の変異原性物質等の遺伝毒物の存否の決定又
は存在量の測定を行なうための方法。
2. The method according to claim 1 , wherein the Salmonella bacterium according to claim 1 is cultured in a medium containing a test sample, and luminescence due to expression of a group of genes that express luminescence activity is measured.
A method for determining the presence or absence of a genotoxic substance such as a mutagenic substance or the like in a test sample.
JP1845294A 1993-10-22 1994-02-15 Reagent-free mutagen detection method Expired - Fee Related JP3277426B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP1845294A JP3277426B2 (en) 1994-02-15 1994-02-15 Reagent-free mutagen detection method
EP94307739A EP0649905B1 (en) 1993-10-22 1994-10-21 Methods of detection of mutagens using luminescence gene
US08/326,949 US5702883A (en) 1993-10-22 1994-10-21 Methods for detection of mutagens using luminescence gene
DE69413491T DE69413491T2 (en) 1993-10-22 1994-10-21 Method for the detection of mutagens using a luminescent gene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1845294A JP3277426B2 (en) 1994-02-15 1994-02-15 Reagent-free mutagen detection method

Publications (2)

Publication Number Publication Date
JPH07227285A JPH07227285A (en) 1995-08-29
JP3277426B2 true JP3277426B2 (en) 2002-04-22

Family

ID=11972028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1845294A Expired - Fee Related JP3277426B2 (en) 1993-10-22 1994-02-15 Reagent-free mutagen detection method

Country Status (1)

Country Link
JP (1) JP3277426B2 (en)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
社団法人日本生化学会編「新生化学実験講座14 発生・分化・老化」株式会社東京化学法人,p.322−3

Also Published As

Publication number Publication date
JPH07227285A (en) 1995-08-29

Similar Documents

Publication Publication Date Title
Davidov et al. Improved bacterial SOS promoter∷ lux fusions for genotoxicity detection
Collins et al. Directed evolution of Vibrio fischeri LuxR for increased sensitivity to a broad spectrum of acyl‐homoserine lactones
Kim et al. Monothiol glutaredoxin Grx5 interacts with Fe–S scaffold proteins Isa1 and Isa2 and supports Fe–S assembly and DNA integrity in mitochondria of fission yeast
Patterson et al. Codon optimization of bacterial luciferase (lux) for expression in mammalian cells
JP2019509746A (en) Bacteriophage modification method
EP0793729B1 (en) Lyophilized bioluminescent bacterial reagent for the detection of toxicants
JP5701505B2 (en) Bioluminescence assay using secreted luciferase
EP0649905B1 (en) Methods of detection of mutagens using luminescence gene
Alavi et al. [3] Surface sensing, swarmer cell differentiation, and biofilm development
Kain et al. Overview of genetic reporter systems
Rosen et al. Microbial sensors of ultraviolet radiation based on recA’:: lux fusions
Kozlic et al. A yeast-based functional assay to study plant N-degron–N-recognin interactions
EP0469021B1 (en) Determination of factors affecting gene regulation and/or gene replication
US5776681A (en) Method for determining a metal present in a sample
Dahlgren et al. A novel mutation in ribosomal protein S4 thataffects the function of a mutated RF1
JP3277426B2 (en) Reagent-free mutagen detection method
Devarajan et al. Proteasome-dependent protein quality control of the peroxisomal membrane protein Pxa1p
US20230383286A1 (en) Phage engineering: protection by circularized intermediate
US20040002148A1 (en) Lux expression in eukaryotic cells
US7811760B2 (en) Vector and method for detecting the change in transcription amount
JP4272265B2 (en) Diagnostic system and method for determining the presence of genotoxic compounds in a sample
Lin et al. Cloning, sequencing, and functional studies of the rpoS gene from Vibrio harveyi
US20230235017A1 (en) A drug screening platform for endosomal enhancers to treat alzheimer&#39;s disease
JP3277436B2 (en) Mutagen detection method using luminescent gene
EP0907748B1 (en) Recombinant nucleic acid sequences and methods for determining both genotoxicity and mutagenicity of a sample and the kinetics of the genetoxicity

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080215

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090215

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20090215

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100215

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees