JPH07226525A - Semiconductor laminated structure, semiconductor device and manufacture of those - Google Patents

Semiconductor laminated structure, semiconductor device and manufacture of those

Info

Publication number
JPH07226525A
JPH07226525A JP6015097A JP1509794A JPH07226525A JP H07226525 A JPH07226525 A JP H07226525A JP 6015097 A JP6015097 A JP 6015097A JP 1509794 A JP1509794 A JP 1509794A JP H07226525 A JPH07226525 A JP H07226525A
Authority
JP
Japan
Prior art keywords
layer
semiconductor
laminated structure
type
compound semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6015097A
Other languages
Japanese (ja)
Other versions
JP2546531B2 (en
Inventor
Yoko Uchida
陽子 内田
信一郎 ▲高▼谷
Shinichiro Takatani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6015097A priority Critical patent/JP2546531B2/en
Publication of JPH07226525A publication Critical patent/JPH07226525A/en
Application granted granted Critical
Publication of JP2546531B2 publication Critical patent/JP2546531B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Photovoltaic Devices (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To provide a semiconductor laminated structure wherein a compound semiconductor layer, which has a grating constant different from that of a semiconductor substrate and is superior in quality, is provided on this semiconductor substrate. CONSTITUTION:A semiconductor laminated structure consists of a P-type hiavily doped GaAs buffer layer 2, an Al layer 3, an AlAs layer 4 and a P-type GaAs layer 5, which are provided on a P-type Si substrate 1. Here, the grating constant of the substrate 1 is different from that of the layer 2, but the rise of a dislocation in the layer 2 can be inhibited by the layer 3. The layer 4 is formed of a compound semiconductor layer containing Al of the layer 3 as its constituent element and the layer 5 is formed of one having the same crystal structure as that of the layer 4.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、格子定数の異なる複数
の半導体からなる半導体積層構造、その製造方法、その
ような半導体積層構造を持つ半導体装置及びその製造方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor laminated structure composed of a plurality of semiconductors having different lattice constants, a manufacturing method thereof, a semiconductor device having such a semiconductor laminated structure, and a manufacturing method thereof.

【0002】[0002]

【従来の技術】Si基板上にGaAs層が形成されてい
る積層構造では、両者の格子定数が7%異なるために格
子不整合転位が発生し、積層構造上に形成された半導体
装置の性能を劣化させるため、従来から、この転位を低
減するための様々な方法が提案されている。このうち、
転位低減に効果的な手法として、2段階成長法、熱サイ
クルアニールがある。2段階成長法は、成長初期に低温
でアモルファス状態の膜を形成し、その上に高温でエピ
タキシャル膜を形成する手法である。熱サイクルアニー
ルは、積層構造形成中に成長を一時中断し、試料温度を
高温(700℃〜900℃)から低温(300℃)まで
変化させる工程を数回繰り返す方法である。これらの手
法により、転位密度を108cm-3から106cm-3台に
低減できる。しかし、GaAs基板上と同程度の性能の
半導体装置を作製するには、転位密度を104cm-3
まで減らす必要がある。
2. Description of the Related Art In a layered structure in which a GaAs layer is formed on a Si substrate, lattice mismatch dislocations occur because the lattice constants of the two differ by 7%, and the performance of a semiconductor device formed on the layered structure is improved. Various methods have been conventionally proposed for reducing this dislocation in order to cause deterioration. this house,
Two-step growth method and thermal cycle annealing are effective methods for reducing dislocations. The two-step growth method is a method in which an amorphous film is formed at a low temperature in the initial stage of growth and an epitaxial film is formed thereon at a high temperature. The thermal cycle annealing is a method in which the growth is temporarily stopped during the formation of the laminated structure and the step of changing the sample temperature from a high temperature (700 ° C. to 900 ° C.) to a low temperature (300 ° C.) is repeated several times. By these methods, the dislocation density can be reduced from 10 8 cm -3 to 10 6 cm -3 . However, in manufacturing a semiconductor device performance comparable to the GaAs substrate, it is necessary to reduce the dislocation density to -3 10 4 cm.

【0003】そのため、さらに、InGaAs/GaA
s等歪超格子を積層構造中に挿入し、多数の界面によ
り、転位の上昇を防ぐ方法が採用されている。ジャパン
・ジャーナル・オブ・アプライド・フィジクス,30
(1991)第L668頁〜第L671頁(Jpn.
J.Appl.Phys.30(1991)pp.L6
68〜L671)に報告されているように、熱サイクル
アニール、InGaAs/GaAs歪超格子の手法を取
り入れ、さらに、低温で結晶層を1層ずつ、時間間隔を
おきながら作製するマイグレイション・エンハンスト・
エピタキシー法により、105cm-3以下の転位密度が
実現されている。
Therefore, further, InGaAs / GaA
A method has been adopted in which an s-isostrained superlattice is inserted in a laminated structure and a large number of interfaces prevent rise of dislocations. Japan Journal of Applied Physics, 30
(1991) L668 to L671 (Jpn.
J. Appl. Phys. 30 (1991) pp. L6
68-L671), thermal cycle annealing, InGaAs / GaAs strained superlattice method are adopted, and further, the migration enhancement is performed at low temperature by forming one crystal layer at a time interval.
A dislocation density of 10 5 cm -3 or less has been realized by the epitaxy method.

【0004】[0004]

【発明が解決しようとする課題】従来の熱サイクルアニ
ールは、900℃の高温を用いるため、pn接合部、異
種半導体接合部を持つ半導体装置では、ドーパント原子
或いは半導体構成原子が拡散し、接合部の急峻性が保て
ないという問題があった。また、マイグレイション・エ
ンハンスト・エピタキシー法は、積層構造全体を低温で
構成するため、不純物が取り込まれやすく、結晶性のよ
い膜が得られにくく、例えば、高い光電変換効率を追求
する半導体素子を形成する場合に用いるのは不適当であ
るという問題があった。
Since the conventional thermal cycle annealing uses a high temperature of 900 ° C., in a semiconductor device having a pn junction and a heterogeneous semiconductor junction, dopant atoms or semiconductor constituent atoms are diffused to cause a junction. There was a problem that the steepness of could not be maintained. Further, in the migration enhancement epitaxy method, since the entire laminated structure is formed at a low temperature, impurities are easily taken in and a film with good crystallinity is difficult to obtain. There is a problem that it is unsuitable to use when doing.

【0005】本発明の第1の目的は、半導体基板上に、
これと格子定数の異なり、かつ品質の優れた化合物半導
体層が設けられた半導体積層構造を提供することにあ
る。本発明の第2の目的は、そのような半導体積層構造
を有する半導体装置を提供することにある。本発明の第
3の目的は、そのような半導体積層構造の製造方法を提
供することにある。本発明の第4の目的は、そのような
半導体装置の製造方法を提供することにある。
A first object of the present invention is to provide on a semiconductor substrate,
Another object of the present invention is to provide a semiconductor laminated structure provided with a compound semiconductor layer having a different lattice constant and excellent quality. A second object of the present invention is to provide a semiconductor device having such a semiconductor laminated structure. A third object of the present invention is to provide a method for manufacturing such a semiconductor laminated structure. A fourth object of the present invention is to provide a method of manufacturing such a semiconductor device.

【0006】[0006]

【課題を解決するための手段】上記第1の目的を達成す
るために、本発明の半導体積層構造は、半導体基板上に
配置された第1の化合物半導体の層と、この層の上に積
層された、所望の化合物半導体の構成元素の少なくとも
一種からなる金属層と、金属層の上に積層された、金属
層の元素を構成元素の一とする第2の化合物半導体の層
と、この層の上に積層された第3の化合物半導体の層と
よりなり、かつ、半導体基板と第1の化合物半導体は、
その格子定数が異なり、第2の化合物半導体と第3の化
合物半導体は、同一の結晶構造を持つようにしたもので
ある。
In order to achieve the first object, the semiconductor laminated structure of the present invention has a first compound semiconductor layer arranged on a semiconductor substrate, and a first compound semiconductor layer laminated on this layer. And a second compound semiconductor layer having the element of the metal layer as one of the constituent elements, the metal layer being composed of at least one of the constituent elements of the desired compound semiconductor, and this layer. A third compound semiconductor layer laminated on the semiconductor substrate, and the semiconductor substrate and the first compound semiconductor are
The second compound semiconductor and the third compound semiconductor have different lattice constants, and have the same crystal structure.

【0007】金属層は、例えば、化合物半導体がIII−
V族化合物半導体である場合、その構成元素となるAl
やIn等の層であればよい。この層がAlであるとき、
第2の化合物半導体としては、AlAs等を用いればよ
い。この第2の化合物半導体の層の厚さは、実質的に一
原子層の厚さであることが好ましい。
The metal layer is made of, for example, a compound semiconductor of III-
In the case of a group V compound semiconductor, Al that is a constituent element thereof
Any layer such as In or In may be used. When this layer is Al,
AlAs or the like may be used as the second compound semiconductor. The layer of the second compound semiconductor preferably has a thickness of substantially one atomic layer.

【0008】また、上記第2の目的を達成するために、
本発明の半導体装置は、上記半導体積層構造のいずれか
一の構造と、この半導体積層構造の上に配置された半導
体素子とからなるようにしたものである。半導体素子
は、積層構造の上とともに、金属層の下の半導体基板に
も形成されていてもよい。
In order to achieve the second object,
A semiconductor device of the present invention comprises any one of the above semiconductor laminated structures and a semiconductor element arranged on the semiconductor laminated structure. The semiconductor element may be formed not only on the laminated structure but also on the semiconductor substrate below the metal layer.

【0009】また、上記第3の目的を達成するために、
本発明の半導体積層構造の製造方法は、半導体基板上
に、この半導体基板の格子定数と異なる格子定数を持つ
第1の化合物半導体の層を形成し、この層の上に、所望
の化合物半導体の構成元素の少なくとも一種からなる金
属層を形成し、この金属層を構成する金属の融点以下の
温度で、金属層の表面層を第2の化合物半導体に変化さ
せ、さらに、この第2の化合物半導体の層の上に、第2
の化合物半導体と同一の結晶構造を持つ第3の化合物半
導体の層を形成したものである。
Further, in order to achieve the third object,
According to the method for manufacturing a semiconductor laminated structure of the present invention, a first compound semiconductor layer having a lattice constant different from that of the semiconductor substrate is formed on a semiconductor substrate, and a desired compound semiconductor layer is formed on the layer. A metal layer made of at least one of the constituent elements is formed, and the surface layer of the metal layer is changed to a second compound semiconductor at a temperature equal to or lower than the melting point of the metal forming the metal layer. On top of the second layer
The third compound semiconductor layer having the same crystal structure as that of the compound semiconductor is formed.

【0010】金属層については、上記に説明した通りで
ある。金属層を形成するときの基板温度は、金属の融点
以下の温度で行なうことが好ましい。また、例えば、こ
の層がAlであるとき、その層にAsを照射すれば、表
面層がAlAsに変化する。このAlAsが第2の化合
物半導体となる。Asを照射をAlの融点以下の温度で
行なえば、金属層の表面層の実質的に一原子層をAlA
sに変えることができる。
The metal layer is as described above. The substrate temperature when forming the metal layer is preferably a temperature not higher than the melting point of the metal. Further, for example, when this layer is Al and the layer is irradiated with As, the surface layer changes to AlAs. This AlAs becomes the second compound semiconductor. When As is irradiated at a temperature lower than the melting point of Al, substantially one atomic layer of the surface layer of the metal layer is AlA.
can be changed to s.

【0011】また、上記第4の目的を達成するために、
本発明の半導体装置の製造方法は、上記半導体積層構造
の製造方法のいずれか一の方法で製造した半導体積層構
造の上に、同種または異種の化合物半導体接合部を形成
し、この接合部を少なくとも半導体素子の一部とするよ
うにしたものである。
In order to achieve the above-mentioned fourth object,
A method for manufacturing a semiconductor device of the present invention comprises forming a compound semiconductor junction of the same kind or different kinds on a semiconductor laminated structure manufactured by any one of the methods for manufacturing a semiconductor laminated structure described above, and forming at least the junction. It is designed to be a part of a semiconductor device.

【0012】この半導体装置の製造方法において、半導
体基板に、例えば、光電変換素子を予め形成しておき、
その上に、第1の化合物半導体の層以上の積層構造を形
成し、さらにその上に光電変換素子を形成すれば、金属
層の上と下にそれぞれ素子が設けられた半導体装置を製
造することができる。
In this method of manufacturing a semiconductor device, for example, a photoelectric conversion element is previously formed on a semiconductor substrate,
By forming a laminated structure of a layer of the first compound semiconductor or more thereon and further forming a photoelectric conversion element thereon, a semiconductor device in which elements are provided above and below the metal layer can be manufactured. .

【0013】[0013]

【作用】説明の便宜のため、半導体基板がSiからな
り、第1及び第3の化合物半導体がGaAs、金属がA
l又はInであるとして本発明の作用を説明する。Si
基板上に、GaAs層、さらにAl又はInの金属層が
配置されていることにより、金属の静電場による電気相
互作用、さらに、界面がGaAsとAl又はInの異種
原子で構成されることによる界面での摩擦力の増大によ
り、転位の動きが減速される。そのため、SiとGaA
sの界面で発生し、積層構造中を伝播している転位の上
方向の移動を阻止することができる。
For convenience of explanation, the semiconductor substrate is made of Si, the first and third compound semiconductors are GaAs, and the metal is A.
The operation of the present invention will be described assuming that it is 1 or In. Si
By disposing the GaAs layer and the Al or In metal layer on the substrate, the electric interaction due to the electrostatic field of the metal, and the interface formed by the heteroatom of GaAs and Al or In The increase in the frictional force at s1 slows the movement of the dislocations. Therefore, Si and GaA
It is possible to prevent upward movement of dislocations that occur at the s interface and propagate in the laminated structure.

【0014】また、Al又はInの融点以下で、Al又
はInの層の表面に、As照射してAlAs、InAs
を形成すれば、Al又はIn層が固相であるため、As
が金属層に溶融することなく、表面原子とのみ反応し、
表面層をAlAs、InAsに変えることができる。こ
のため、薄く歪んでいるAlAs、InAsが形成で
き、新たな格子不整合転位が発生しない。
Further, the surface of the Al or In layer having a melting point not higher than that of Al or In is irradiated with As to expose AlAs or InAs.
, The Al or In layer is a solid phase,
Reacts only with surface atoms without melting into the metal layer,
The surface layer can be changed to AlAs or InAs. Therefore, thinly strained AlAs and InAs can be formed, and new lattice mismatch dislocations do not occur.

【0015】また、金属層の表面領域をAlAs又はI
nAs層とすれば、AlAs又はInAsがGaAsと
同じ結晶構造を持つため、その上に形成されるGaAs
をエピタキシャル成長させることができる。
Further, the surface region of the metal layer is covered with AlAs or I
In the case of an nAs layer, AlAs or InAs has the same crystal structure as GaAs, and therefore GaAs formed on it.
Can be epitaxially grown.

【0016】[0016]

【実施例】以下、本発明の実施例を図面を用いて説明す
る。 〈実施例1〉図1は、本発明の一実施例の光電変換素子
を有する半導体装置の断面図である。この光電変換素子
は、p型Si基板1、高濃度p型GaAsバッファ層
2、Al層3、AlAs層4、高濃度p型GaAs層2
´、p型GaAs層5、高濃度n型GaAs層6及びn
型AlGaAs層7の積層構造からなり、p型GaAs
層5、高濃度n型GaAs層6にpn構造をもつ光電変
換部が形成される。さらに、p型Si基板1にp型電極
10が、n型AlGaAs層7表面に高濃度n型GaA
s層8、n型電極9が形成されている。以下にこの半導
体装置の作製方法を示す。
Embodiments of the present invention will be described below with reference to the drawings. <Embodiment 1> FIG. 1 is a sectional view of a semiconductor device having a photoelectric conversion element according to an embodiment of the present invention. This photoelectric conversion element includes a p-type Si substrate 1, a high-concentration p-type GaAs buffer layer 2, an Al layer 3, an AlAs layer 4, and a high-concentration p-type GaAs layer 2.
′, P-type GaAs layer 5, high-concentration n-type GaAs layer 6 and n
P-type GaAs having a laminated structure of the AlGaAs layer 7
A photoelectric conversion part having a pn structure is formed in the layer 5 and the high-concentration n-type GaAs layer 6. Further, the p-type electrode 10 is formed on the p-type Si substrate 1, and the high-concentration n-type GaA is formed on the surface of the n-type AlGaAs layer 7.
An s layer 8 and an n-type electrode 9 are formed. The manufacturing method of this semiconductor device will be described below.

【0017】p型Si基板1として、p型、抵抗率0.
5Ωcm、厚さ0.4μmで、(001)面方位を持
ち、〈110〉方向に2゜オフ傾斜させた基板を使用す
る。基板は、有機洗浄、水洗した後、化学エッチングに
より、表面に薄い酸化膜を形成し、ただちに分子線結晶
成長装置に導入する。p型Si基板1上に形成された酸
化膜は、結晶成長装置内で、As雰囲気中で900℃、
10分加熱することにより分解除去される。その後、基
板温度を400℃まで下げ、高濃度p型GaAsバッフ
ァ層2の一部を0.1μm形成し、さらに基板温度を6
00℃に上げ、高濃度p型GaAsバッファ層2を2μ
m形成する。
The p-type Si substrate 1 has a p-type and a resistivity of 0.
A substrate having 5 Ωcm, a thickness of 0.4 μm, a (001) plane orientation, and a 2 ° off tilt in the <110> direction is used. After the substrate is washed with organic material and washed with water, a thin oxide film is formed on the surface by chemical etching and immediately introduced into a molecular beam crystal growth apparatus. The oxide film formed on the p-type Si substrate 1 is 900 ° C. in an As atmosphere in a crystal growth apparatus.
It is decomposed and removed by heating for 10 minutes. After that, the substrate temperature is lowered to 400 ° C., a part of the high-concentration p-type GaAs buffer layer 2 is formed to a thickness of 0.1 μm, and the substrate temperature is set to 6 μm.
The temperature is raised to 00 ° C. and the high-concentration p-type GaAs buffer layer 2 is set to 2 μm.
m.

【0018】ここで、Asセル温度を室温に下げると共
に、基板温度を400℃に下げ、Al層3を5原子層、
1nm形成する。その後、Asセル温度を上げ、シャッ
ター操作によりAsを照射し、Al層3の表面層のAl
をAlAs層4に変える。Alの融点は659℃である
ため、400℃の基板でAlは固相である。このため、
As照射により、Al層中へのAsのもぐり込みは起き
ず、表面層AlのみAlAsに変えることができる。
Here, the As cell temperature is lowered to room temperature, the substrate temperature is lowered to 400 ° C., and the Al layer 3 is made up of 5 atomic layers.
1 nm is formed. After that, the temperature of the As cell is raised and As is irradiated by a shutter operation, so that the Al of the surface layer of the Al layer 3 is irradiated.
To AlAs layer 4. Since the melting point of Al is 659 ° C., Al is a solid phase on a substrate at 400 ° C. For this reason,
By As irradiation, As does not go into the Al layer, and only the surface layer Al can be changed to AlAs.

【0019】この後、高濃度p型GaAs層2´を1μ
m形成する。この時の基板温度は、成長直後では400
℃とし、0.1μm程度成長させた後、600℃まで、
徐々に上げていく。ここまでに形成したGaAsは、B
e濃度1×1019cm-3の高濃度p型である。この後、
基板温度600℃で、p型GaAs層(Be濃度;8×
1016cm-3)5を2.5μm、さらに高濃度n型Ga
As層(Si濃度;3×1018cm-3)6を0.5μ
m、順次積層する。
After that, the high concentration p-type GaAs layer 2'is
m. The substrate temperature at this time is 400 immediately after the growth.
C., and after growing about 0.1 μm, up to 600 ° C.,
Gradually raise. The GaAs formed so far is B
It is a high-concentration p-type with an e concentration of 1 × 10 19 cm −3 . After this,
At a substrate temperature of 600 ° C., a p-type GaAs layer (Be concentration; 8 ×
10 16 cm −3 ) 5 to 2.5 μm, higher concentration n-type Ga
0.5 μm of As layer (Si concentration; 3 × 10 18 cm −3 ) 6
m, sequentially stacked.

【0020】上記の方法で作製した積層構造を持つ試料
を、350℃のKOH中で4分間エッチングし、顕微鏡
により試料表面を観察すると、7×104〜1×105
-3のエッチピットが観察される。この値は、市販のG
aAs基板で観察される値とほぼ同じオーダーである。
When the sample having the laminated structure produced by the above method was etched in KOH at 350 ° C. for 4 minutes and the sample surface was observed with a microscope, it was 7 × 10 4 to 1 × 10 5 c.
An etch pit of m -3 is observed. This value is
It is of the same order as the value observed with the aAs substrate.

【0021】光電変換素子を作製するために、高濃度n
型GaAs層6の上に、さらに、窓層としてn型AlG
aAs層(Si濃度;3×1018cm-3)7を300
Å、電極接続部として高濃度n型GaAs層(Si濃
度;5×1018cm-3)8を1000Å、積層する。そ
の後、n型電極部だけを残して、高濃度n型GaAs層
8をエッチングし、n型電極9及びp型電極10を形成
する。
In order to manufacture a photoelectric conversion element, a high concentration n
N-type AlG as a window layer on the n-type GaAs layer 6
The aAs layer (Si concentration; 3 × 10 18 cm −3 ) 7 is set to 300
Å A high-concentration n-type GaAs layer (Si concentration; 5 × 10 18 cm −3 ) 8 of 1000 Å is laminated as an electrode connecting portion. Then, the high-concentration n-type GaAs layer 8 is etched leaving only the n-type electrode portion to form the n-type electrode 9 and the p-type electrode 10.

【0022】作製した光電変換素子は、汎用の転位密度
104cm-3台のGaAs基板上に作製されたGaAs
光電変換素子の70〜80%の効率を示し、しかも、作
製コストが1桁近く低減する。
The produced photoelectric conversion element is a GaAs produced on a GaAs substrate with a general dislocation density of 10 4 cm -3.
The efficiency of the photoelectric conversion element is 70 to 80%, and the manufacturing cost is reduced by almost one digit.

【0023】なお、本実施例において、p型Si基板1
をn型に、高濃度p型GaAsバッファ層2、高濃度p
型GaAs層2´をそれぞれ高濃度n型に、p型GaA
s層5をn型に、高濃度n型GaAs層6を高濃度p型
に、n型AlGaAs層7をp型に、高濃度n型GaA
s層8を高濃度p型に、n型電極9をp型に、p型電極
10をn型にしても同様に効果がある。
In this embodiment, the p-type Si substrate 1 is used.
N-type, high-concentration p-type GaAs buffer layer 2, high-concentration p
-Type GaAs layers 2 ′ are respectively made into high-concentration n-type and p-type GaA
The s layer 5 is n-type, the high-concentration n-type GaAs layer 6 is high-concentration p-type, the n-type AlGaAs layer 7 is p-type, and high-concentration n-type GaA.
Even if the s layer 8 is a high-concentration p-type, the n-type electrode 9 is a p-type, and the p-type electrode 10 is an n-type, the same effect is obtained.

【0024】〈実施例2〉図2は、本発明の他の実施例
の光電変換素子を有する半導体装置の断面図である。こ
の光電変換素子は、p型Si基板11、高濃度p型Ga
Asバッファ層12、In層13、InAs層14、高
濃度p型GaAs層12´、p型GaAs層15、高濃
度n型GaAs層16及びn型AlGaAs層17の積
層構造からなり、p型GaAs層15、高濃度n型Ga
As層16にpn構造をもつ光電変換部が形成される。
さらに、p型Si基板11にp型電極20が、n型Al
GaAs層17表面に高濃度n型GaAs層18、n型
電極19が形成されている。以下にこの半導体装置の作
製方法を示す。
<Embodiment 2> FIG. 2 is a sectional view of a semiconductor device having a photoelectric conversion element according to another embodiment of the present invention. This photoelectric conversion element includes a p-type Si substrate 11 and a high-concentration p-type Ga substrate.
The As buffer layer 12, the In layer 13, the InAs layer 14, the high-concentration p-type GaAs layer 12 ′, the p-type GaAs layer 15, the high-concentration n-type GaAs layer 16, and the n-type AlGaAs layer 17 are laminated to form a p-type GaAs. Layer 15, high concentration n-type Ga
A photoelectric conversion part having a pn structure is formed in the As layer 16.
Further, the p-type electrode 20 is formed on the p-type Si substrate 11 by the n-type Al.
A high concentration n-type GaAs layer 18 and an n-type electrode 19 are formed on the surface of the GaAs layer 17. The manufacturing method of this semiconductor device will be described below.

【0025】前記実施例と同様手法で、p型Si基板1
1上に、高濃度p型GaAsバッファ層12を2μm形
成する。この後、Asセル温度を室温に下げると共に、
基板温度を100℃に下げ、In層13を5原子層、
1.2nm形成する。その後、Asセル温度を上げ、シ
ャッター操作によりAsを照射し、In層13の表面層
のInをInAs層14に変える。Inの融点は156
℃であるため、As照射時にInは固相である。
The p-type Si substrate 1 is manufactured in the same manner as in the above embodiment.
A high-concentration p-type GaAs buffer layer 12 having a thickness of 2 μm is formed on the substrate 1. After that, while lowering the As cell temperature to room temperature,
The substrate temperature is lowered to 100 ° C., the In layer 13 is made up of 5 atomic layers,
1.2 nm is formed. After that, the As cell temperature is raised and As is irradiated by a shutter operation to change the In of the surface layer of the In layer 13 to the InAs layer 14. In has a melting point of 156
Since the temperature is ° C, In is a solid phase at the time of As irradiation.

【0026】この後、高濃度p型GaAs層12´を1
μm形成する。この時の基板温度は、成長直後は、10
0℃とし、0.1μm程度成長させた後、600℃ま
で、徐々に温度を上げていく。ここまで形成したGaA
sは、Be濃度1×1019cm-3の高濃度p型である。
この後、基板温度600℃で、p型GaAs層(Be濃
度;8×1016cm-3)15を2.5μm、高濃度n型
GaAs層(Si濃度;3×1018cm-3)16を0.
5μm、順次、積層する。
After that, the high-concentration p-type GaAs layer 12 'is formed into 1
μm is formed. The substrate temperature at this time is 10 immediately after the growth.
After the temperature is set to 0 ° C. and the growth is performed for about 0.1 μm, the temperature is gradually increased to 600 ° C. GaA formed so far
s is a high-concentration p-type with a Be concentration of 1 × 10 19 cm −3 .
Then, at a substrate temperature of 600 ° C., the p-type GaAs layer (Be concentration; 8 × 10 16 cm −3 ) 15 is 2.5 μm, and the high concentration n-type GaAs layer (Si concentration; 3 × 10 18 cm −3 ) 16 is formed. 0.
5 μm, stacked in order.

【0027】上記の方法で作製した積層構造を持つ試料
のエッチピット密度は、5×104〜1×105cm-3
ある。実施例1のAlよりも重いInを使用しているた
め、転位の移動を阻止する能力が増加している。
The etch pit density of the sample having the laminated structure produced by the above method is 5 × 10 4 to 1 × 10 5 cm -3 . Since In, which is heavier than Al in Example 1, is used, the ability to prevent dislocation movement is increased.

【0028】光電変換素子を作製するために、高濃度n
型GaAs層16の上に、さらに、窓層としてn型Al
GaAs層(3×1018cm-3)17を300Å、電極
接続部として高濃度n型GaAs層(5×1018
-3)18を1000Å積層する。その後、n型電極部
だけを残して、高濃度n型GaAs層18をエッチング
し、n型電極19及びp型電極20を形成する。光電変
換素子の性能は、前記実施例と同等である。
In order to manufacture a photoelectric conversion element, a high concentration n
On the n-type GaAs layer 16 and n-type Al as a window layer
The GaAs layer (3 × 10 18 cm −3 ) 17 is 300 liters, and the high-concentration n-type GaAs layer (5 × 10 18 c) is used as an electrode connecting portion.
m -3 ) 18 is laminated by 1000Å. Then, the high-concentration n-type GaAs layer 18 is etched leaving only the n-type electrode portion to form the n-type electrode 19 and the p-type electrode 20. The performance of the photoelectric conversion element is equivalent to that of the above-mentioned embodiment.

【0029】なお、本実施例においても、p型Si基板
11をn型に、高濃度p型GaAsバッファ層12及び
高濃度p型GaAs層12´を高濃度n型に、p型Ga
As層15をn型に、高濃度n型GaAs層16をp型
に、n型AlGaAs層17をp型に、高濃度n型Ga
As層18を高濃度p型に、n型電極19をp型に、p
型電極20をn型にしても同様に効果がある。
Also in this embodiment, the p-type Si substrate 11 is n-type, the high-concentration p-type GaAs buffer layer 12 and the high-concentration p-type GaAs layer 12 'are high-concentration n-type, and p-type Ga is used.
The As layer 15 is n-type, the high-concentration n-type GaAs layer 16 is p-type, the n-type AlGaAs layer 17 is p-type, and the high-concentration n-type Ga is
The As layer 18 is a high-concentration p-type, the n-type electrode 19 is a p-type, and the p-type is
Even if the mold electrode 20 is an n-type, the same effect can be obtained.

【0030】[0030]

【発明の効果】上記の実施例のように、積層構造の途中
に、Al又はIn等の金属層を挿入することにより、転
位の動きが減速される。そのため、SiとGaAsの界
面で発生し、積層構造中を伝播している転位の上方向の
移動を阻止することができる。
As in the above embodiments, the movement of dislocations is slowed down by inserting a metal layer such as Al or In in the middle of the laminated structure. Therefore, it is possible to prevent upward movement of dislocations that occur at the interface between Si and GaAs and propagate in the laminated structure.

【0031】また、金属層に形成されたAlAs、In
AsはGaAsと同じ結晶構造を持ち、しかも、非常に
薄く歪んでいるため、その上に形成されるGaAs層は
エピタキシャル成長し、格子不整合による新たな転位が
発生しない。
AlAs and In formed on the metal layer
Since As has the same crystal structure as GaAs and is very thinly strained, the GaAs layer formed thereon grows epitaxially and new dislocations due to lattice mismatch do not occur.

【0032】そのため、積層構造上部に形成されるGa
As中の転位密度を市販GaAs基板とほぼ同程度の1
5cm-3以下まで低減でき、作製された半導体素子は
GaAs基板上に作製されたものに近い性能を示す。し
かも、基板として安価なSiを使用すれば、価格を1/
10程度にできる。
Therefore, Ga formed on the upper part of the laminated structure
The dislocation density in As is almost the same as that of a commercial GaAs substrate.
0 5 cm -3 can be reduced to below the semiconductor element produced exhibits a performance similar to that produced on a GaAs substrate. Moreover, if inexpensive Si is used as the substrate,
It can be about 10.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1の光電変換素子を有する半導
体装置の断面図。
FIG. 1 is a sectional view of a semiconductor device having a photoelectric conversion element according to a first embodiment of the present invention.

【図2】本発明の実施例2の光電変換素子を有する半導
体装置の断面図。
FIG. 2 is a sectional view of a semiconductor device having a photoelectric conversion element according to a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1,11…p型Si基板、2,12…高濃度p型GaA
sバッファ層、2´,12´…高濃度p型GaAs層、
3…Al層、4…AlAs層、5,15…p型GaAs
層、6,16…高濃度n型GaAs層、7,17…n型
AlGaAs層、8,18…高濃度n型GaAs層、
9,19…n型電極、10,20…p型電極、13…I
n層、14…InAs層。
1, 11 ... p-type Si substrate, 2, 12 ... high-concentration p-type GaA
s buffer layer, 2 ', 12' ... high-concentration p-type GaAs layer,
3 ... Al layer, 4 ... AlAs layer, 5, 15 ... P-type GaAs
Layers, 6, 16 ... High-concentration n-type GaAs layer, 7, 17 ... n-type AlGaAs layer, 8, 18 ... High-concentration n-type GaAs layer,
9, 19 ... N-type electrode, 10, 20 ... P-type electrode, 13 ... I
n layer, 14 ... InAs layer.

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】半導体基板、該半導体基板上に配置された
第1の化合物半導体の層、該第1の化合物半導体の層上
に積層された、所望の化合物半導体の構成元素の少なく
とも一種からなる金属層、該金属層の上に積層された、
金属層の元素を構成元素の一とする第2の化合物半導体
の層及び該第2の化合物半導体の層の上に積層された第
3の化合物半導体の層よりなり、上記半導体基板と第1
の化合物半導体は、その格子定数が異なり、上記第2の
化合物半導体と第3の化合物半導体は、同一の結晶構造
を持つことを特徴とする半導体積層構造。
1. A semiconductor substrate, a layer of a first compound semiconductor arranged on the semiconductor substrate, and at least one of constituent elements of a desired compound semiconductor laminated on the layer of the first compound semiconductor. A metal layer, laminated on the metal layer,
A second compound semiconductor layer having an element of the metal layer as one of the constituent elements and a third compound semiconductor layer laminated on the second compound semiconductor layer;
The compound semiconductor of (1) has a different lattice constant, and the second compound semiconductor and the third compound semiconductor have the same crystal structure.
【請求項2】請求項1記載の半導体積層構造において、
上記第2の化合物半導体の層の厚さは、実質的に一原子
層の厚さであることを特徴とする半導体積層構造。
2. The semiconductor laminated structure according to claim 1, wherein
The semiconductor laminated structure, wherein the second compound semiconductor layer has a thickness of substantially one atomic layer.
【請求項3】請求項1又は2記載の半導体積層構造にお
いて、上記第1、第2及び第3の化合物半導体は、いず
れもIII−V族化合物半導体であることを特徴とする半
導体積層構造。
3. The semiconductor laminated structure according to claim 1 or 2, wherein each of the first, second and third compound semiconductors is a III-V group compound semiconductor.
【請求項4】請求項1、2又は3記載の半導体積層構造
において、上記半導体基板は、Siであることを特徴と
する半導体積層構造。
4. The semiconductor laminated structure according to claim 1, 2 or 3, wherein the semiconductor substrate is Si.
【請求項5】請求項4記載の半導体積層構造において、
上記第1及び第3の化合物半導体は、GaAsであり、
上記第2の化合物半導体は、AlAsであり、上記金属
層は、Alからなることを特徴とする半導体積層構造。
5. The semiconductor laminated structure according to claim 4,
The first and third compound semiconductors are GaAs,
The second compound semiconductor is AlAs, and the metal layer is made of Al.
【請求項6】請求項4記載の半導体積層構造において、
上記第1及び第3の化合物半導体は、GaAsであり、
上記第2の化合物半導体は、InAsであり、上記金属
層は、Inからなることを特徴とする半導体積層構造。
6. The semiconductor laminated structure according to claim 4,
The first and third compound semiconductors are GaAs,
The semiconductor laminated structure, wherein the second compound semiconductor is InAs and the metal layer is made of In.
【請求項7】請求項1から6のいずれか一に記載の半導
体積層構造と、該半導体積層構造の上に配置された半導
体素子とからなることを特徴とする半導体装置。
7. A semiconductor device comprising the semiconductor laminated structure according to claim 1 and a semiconductor element arranged on the semiconductor laminated structure.
【請求項8】半導体基板上に、該半導体基板の格子定数
と異なる格子定数を持つ第1の化合物半導体の層を形成
する第1の工程、第1の化合物半導体の層上に、所望の
化合物半導体の構成元素の少なくとも一種からなる金属
層を形成する第2の工程、金属層を構成する金属の融点
以下の温度で、金属層の表面層を第2の化合物半導体に
変化させる第3の工程及び第2の化合物半導体の層の上
に、第2の化合物半導体と同一の結晶構造を持つ第3の
化合物半導体の層を形成する第4の工程を有することを
特徴とする半導体積層構造の製造方法。
8. A first step of forming a layer of a first compound semiconductor having a lattice constant different from that of the semiconductor substrate on a semiconductor substrate, the desired compound being formed on the layer of the first compound semiconductor. Second step of forming a metal layer composed of at least one of the constituent elements of the semiconductor, third step of changing the surface layer of the metal layer into a second compound semiconductor at a temperature equal to or lower than the melting point of the metal forming the metal layer And a fourth step of forming, on the second compound semiconductor layer, a third compound semiconductor layer having the same crystal structure as that of the second compound semiconductor. Method.
【請求項9】請求項8記載の半導体積層構造の製造方法
において、上記第2の化合物半導体に変化させた金属層
の表面層の厚さは、実質的に一原子層の厚さであること
を特徴とする半導体積層構造の製造方法。
9. The method for manufacturing a semiconductor laminated structure according to claim 8, wherein the thickness of the surface layer of the metal layer changed to the second compound semiconductor is substantially the thickness of one atomic layer. A method for manufacturing a semiconductor laminated structure, comprising:
【請求項10】請求項8又は9記載の半導体積層構造の
製造方法において、上記第3の工程は、上記金属層に、
上記第2の化合物半導体の構成元素の上記金属と異なる
元素を照射して行なうことを特徴とする半導体積層構造
の製造方法。
10. The method for manufacturing a semiconductor laminated structure according to claim 8 or 9, wherein the third step comprises:
A method for manufacturing a semiconductor laminated structure, which is carried out by irradiating an element different from the metal of the constituent elements of the second compound semiconductor.
【請求項11】請求項8、9又は10記載の半導体積層
構造の製造方法において、上記第1、第2及び第3の化
合物半導体は、いずれもIII−V族化合物半導体である
ことを特徴とする半導体積層構造の製造方法。
11. The method for manufacturing a semiconductor laminated structure according to claim 8, 9, or 10, wherein each of the first, second, and third compound semiconductors is a III-V group compound semiconductor. Method for manufacturing semiconductor laminated structure.
【請求項12】請求項8から11のいずれか一に記載の
半導体積層構造の製造方法により製造した半導体積層構
造の上に、化合物半導体接合部を形成し、該接合部を少
なくとも半導体素子の一部とすることを特徴とする半導
体装置の製造方法。
12. A compound semiconductor junction is formed on the semiconductor laminated structure produced by the method for producing a semiconductor laminated structure according to claim 8, and the junction is formed in at least one of semiconductor elements. A method of manufacturing a semiconductor device, comprising:
JP6015097A 1994-02-09 1994-02-09 Semiconductor laminated structure, semiconductor device and manufacturing method thereof Expired - Fee Related JP2546531B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6015097A JP2546531B2 (en) 1994-02-09 1994-02-09 Semiconductor laminated structure, semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6015097A JP2546531B2 (en) 1994-02-09 1994-02-09 Semiconductor laminated structure, semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH07226525A true JPH07226525A (en) 1995-08-22
JP2546531B2 JP2546531B2 (en) 1996-10-23

Family

ID=11879346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6015097A Expired - Fee Related JP2546531B2 (en) 1994-02-09 1994-02-09 Semiconductor laminated structure, semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2546531B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008053589A (en) * 2006-08-28 2008-03-06 National Institute For Materials Science METHOD OF FORMING INDIUM GALLIUM NITRIDE (InGaN) EPITAXIAL THIN FILM HAVING INDIUM NITRIDE (InN) OR HIGH INDIUM COMPOSITION

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008053589A (en) * 2006-08-28 2008-03-06 National Institute For Materials Science METHOD OF FORMING INDIUM GALLIUM NITRIDE (InGaN) EPITAXIAL THIN FILM HAVING INDIUM NITRIDE (InN) OR HIGH INDIUM COMPOSITION

Also Published As

Publication number Publication date
JP2546531B2 (en) 1996-10-23

Similar Documents

Publication Publication Date Title
US5685946A (en) Method of producing buried porous silicon-geramanium layers in monocrystalline silicon lattices
US5659188A (en) Capped anneal
JPH04335538A (en) Semiconductor device and manufacture thereof
JPH06252046A (en) Semiconductor device and its manufacture
JPH05275329A (en) Method for forming semiconductor substrate
US4914053A (en) Heteroepitaxial selective-area growth through insulator windows
JP3024584B2 (en) Method for manufacturing semiconductor device
US5258322A (en) Method of producing semiconductor substrate
JPH0766366A (en) Semiconductor multilayered structure and semiconductor device using same
JP2962918B2 (en) Method of forming silicon thin film and method of manufacturing solar cell
EP0449589A1 (en) Method of producing a SOI structure
US4925810A (en) Compound semiconductor device and a method of manufacturing the same
US5686350A (en) Method for fabricating defect-free compound semiconductor thin film on dielectric thin film
JP2546531B2 (en) Semiconductor laminated structure, semiconductor device and manufacturing method thereof
US5183776A (en) Heteroepitaxy by growth of thermally strained homojunction superlattice buffer layers
JPH05259077A (en) Semiconductor device and manufacture thereof
TWI360186B (en)
JP2547967B2 (en) Semiconductor laminated structure, manufacturing method thereof, and semiconductor device using the same
JP2902160B2 (en) Method for manufacturing semiconductor light emitting device
JPH0722312A (en) Method for manufacturing strain semiconductor film
JP2565908B2 (en) Compound semiconductor device
JP4701375B2 (en) Crystal growth method
JP2853524B2 (en) Method of forming selective strain region
JP2555885B2 (en) Germanium / gallium arsenide junction manufacturing method
JP2972230B2 (en) Joint structure

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

LAPS Cancellation because of no payment of annual fees