JPH07225935A - Magnetic recording medium and magnetic storage - Google Patents

Magnetic recording medium and magnetic storage

Info

Publication number
JPH07225935A
JPH07225935A JP1332994A JP1332994A JPH07225935A JP H07225935 A JPH07225935 A JP H07225935A JP 1332994 A JP1332994 A JP 1332994A JP 1332994 A JP1332994 A JP 1332994A JP H07225935 A JPH07225935 A JP H07225935A
Authority
JP
Japan
Prior art keywords
magnetic
recording medium
layer
medium
conductive film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1332994A
Other languages
Japanese (ja)
Inventor
Tomoo Yamamoto
朋生 山本
Emi Mangyo
恵美 萬行
Yuzuru Hosoe
譲 細江
Masaaki Futamoto
正昭 二本
Nobuyuki Inaba
信幸 稲葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1332994A priority Critical patent/JPH07225935A/en
Priority to US08/380,792 priority patent/US5650889A/en
Publication of JPH07225935A publication Critical patent/JPH07225935A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make DC bias sputtering adoptable even in the case of an electric nonconductive substrate and to obtain a magnetic recording medium having high coercive force and a large capacity magnetic storage. CONSTITUTION:Electric conductive films 12, 12' are formed on an electric nonconductive substrate 11 and then underlayers 13, 13' and magnetic layers 14, 14' are successively formed while ensuring the contact of each of the films 12, 12' with a substrate electrode and applying DC bias voltage. At this time, the product of residual magnetization and film thickness is regulated to 10-150G.mum and coercive force to 1,600O-4,000Oe.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は磁気ドラム,磁気テー
プ,磁気ディスク,磁気カード等の磁気記録媒体及び磁
気記憶装置に係り、特に、超高密度に適した薄膜型の磁
気記録媒体及びこのような磁気記録媒体を用いた磁気記
憶装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic recording medium such as a magnetic drum, a magnetic tape, a magnetic disk and a magnetic card and a magnetic storage device, and more particularly to a thin film type magnetic recording medium suitable for ultra high density. To a magnetic storage device using a different magnetic recording medium.

【0002】[0002]

【従来の技術】近年における電子計算機の目覚ましい発
展に伴い、情報化社会が発達し、個人で扱う情報量は増
加の一途をたどっている。これに従い、外部記憶装置の
大容量化,高速アクセス化は必要不可欠な課題である。
特に、磁気ディスク装置は高密度記憶に適した記憶装置
であり、高速,小型大容量化への要求は一段と強まって
いる。磁気ディスク装置に用いられる磁気記録媒体は、
酸化物磁性体の粉末を基板上に塗布した塗布型磁気記録
媒体と、金属磁性体の薄膜を基板上に蒸着あるいはスパ
ッタリングした薄膜型磁気記録媒体とが知られている。
この薄膜型磁気記録媒体は、塗布型磁気記録媒体に比べ
て記録膜中の磁性体の密度が高いため、より高密度の記
録に適している。そのため、現在製造されている磁気デ
ィスク装置の大半では薄膜磁気記録媒体が用いられるよ
うになってきている。
2. Description of the Related Art With the remarkable development of electronic computers in recent years, an information society has developed, and the amount of information handled by individuals has been increasing. Accordingly, increasing the capacity of the external storage device and increasing the speed of access are essential issues.
In particular, the magnetic disk device is a storage device suitable for high-density storage, and the demand for high speed, small size, and large capacity is further increasing. The magnetic recording medium used in the magnetic disk device is
A coating type magnetic recording medium in which a powder of an oxide magnetic material is coated on a substrate and a thin film type magnetic recording medium in which a thin film of a metal magnetic material is deposited or sputtered on the substrate are known.
This thin film type magnetic recording medium is suitable for higher density recording because the density of the magnetic substance in the recording film is higher than that of the coating type magnetic recording medium. Therefore, the thin film magnetic recording medium has come to be used in most of the magnetic disk devices manufactured at present.

【0003】薄膜磁気記録媒体の基板は、これまでNi
−PメッキAl−Mg合金が主に用いられてきた。しか
し最近では、持ち運び可能な小型コンピュータに磁気デ
ィスク装置が搭載されるようになり、衝撃に対する信頼
性を確保することが重要な課題となってきたため、より
硬質な強化ガラス,結晶化ガラス,カーボン基板等も用
いられるようになってきた。
The substrate of the thin film magnetic recording medium has hitherto been Ni.
-P plated Al-Mg alloys have been mainly used. However, recently, magnetic disk devices have been installed in small portable computers, and securing reliability against impact has become an important issue. Therefore, harder tempered glass, crystallized glass, carbon substrate Etc. have come to be used.

【0004】薄膜磁気記録媒体の一般的な構造は、基板
上に非磁性下地層,磁性層,保護層を順次形成したもの
がよく知られている。磁気ディスク装置の記憶容量を増
すには、薄膜磁気記録媒体の保磁力を高くする必要があ
る。最近この保磁力を高くする手法として、非磁性下地
層及び磁性層の成膜時に、基板に負のバイアス電圧を印
加するバイアススパッタリング法が注目されている。N
i−PメッキAl−Mg合金のような導電性がある基板
については、例えば、アイ・イー・イー・イートランザ
クションズ オン マグネティクス,26巻,1282
頁,1990年発行に記載されるようにDCバイアスが
用いられている。一方、強化ガラスのような導電性がな
い基板は、例えば、ダイジェスト オブ インターマグ
コンファレンス,EB−04頁,1993年4月13
〜16日開催に記載されるようにRFバイアスが用いら
れている。
As a general structure of a thin film magnetic recording medium, it is well known that a nonmagnetic underlayer, a magnetic layer and a protective layer are sequentially formed on a substrate. In order to increase the storage capacity of the magnetic disk device, it is necessary to increase the coercive force of the thin film magnetic recording medium. Recently, as a method of increasing the coercive force, a bias sputtering method, in which a negative bias voltage is applied to a substrate when a nonmagnetic underlayer and a magnetic layer are formed, has been attracting attention. N
For a substrate having conductivity such as an iP plated Al-Mg alloy, for example, IEE Transactions on Magnetics, 26, 1282
DC bias has been used as described in P., 1990. On the other hand, a non-conductive substrate such as tempered glass is disclosed in, for example, Digest of Intermag Conference, EB-04, April 13, 1993.
RF bias is used as described in ~ 16 days.

【0005】[0005]

【発明が解決しようとする課題】今後の高密度に対応す
る媒体の残留磁化膜厚積は、反磁界を小さくするために
150G・μm以下になるであろうと予想される。この
とき保磁力は最低でも1600Oeを確保したい。しか
し、通常のスパッタリング方式ではこの仕様を満足する
ことは難しい。そこで非磁性下地層及び磁性層の成膜時
に、基板に負のバイアス電圧を印加するバイアススパッ
タリング法を用いることが望ましい。従来の薄膜媒体の
作製方法では、今後の小型磁気ディスク装置に対応する
硬質な非導電性基板を用いた場合、RFバイアススパッ
タリング法を採用することしかできない。しかし、この
手法で媒体を生産すると、生産設備が大規模なものとな
ると同時に著しく生産効率が悪くなる。しかも、高密度
記録に対応できるための充分な電磁変換特性が得られな
い。
It is expected that the remanent magnetization film thickness product of the medium for high density in the future will be 150 G · μm or less in order to reduce the demagnetizing field. At this time, the coercive force should be at least 1600 Oe. However, it is difficult to satisfy this specification with a normal sputtering method. Therefore, it is desirable to use a bias sputtering method in which a negative bias voltage is applied to the substrate when forming the nonmagnetic underlayer and the magnetic layer. The conventional thin film medium manufacturing method can only adopt the RF bias sputtering method when a hard non-conductive substrate compatible with future small magnetic disk devices is used. However, when the medium is produced by this method, the production facility becomes large-scale and, at the same time, the production efficiency is remarkably deteriorated. Moreover, sufficient electromagnetic conversion characteristics for high density recording cannot be obtained.

【0006】媒体の残留磁化膜厚積が150G・μm以
下になった場合、これまでの誘導型の磁気ヘッドや再生
感度の低い磁気抵抗効果を用いて再生する記録再生分離
型ヘッドでは、媒体の持つ潜在的な特性を充分引き出す
ことは難しい。そこで、再生感度が高い磁気ヘッドが必
要不可欠となり、この磁気ヘッドに応じた信号処理回路
も組み合わせなければならない。さらには、信号を変調
/復調する回路も高密度記録に対応するものにする必要
がある。これらの要素技術を組み合わせることにより、
高密度記録に対応する装置を実現することができる。
When the remanent magnetization film thickness product of the medium becomes 150 G · μm or less, in the conventional inductive magnetic head and the recording / reproducing separated type head for reproducing by using the magnetoresistive effect having low reproducing sensitivity, It is difficult to bring out the full potential of the product. Therefore, a magnetic head having high reproduction sensitivity is indispensable, and a signal processing circuit corresponding to this magnetic head must be combined. Furthermore, the circuit for modulating / demodulating the signal must be compatible with high density recording. By combining these elemental technologies,
It is possible to realize an apparatus compatible with high density recording.

【0007】本発明の第一の目的は、非導電性基板を用
いた場合にもDCバイアススパッタリング法が使えるよ
うにすることにある。
A first object of the present invention is to make the DC bias sputtering method usable even when a non-conductive substrate is used.

【0008】本発明の第二の目的は、高密度記録時での
電磁変換特性が良好な磁気記録媒体を提供することにあ
る。
A second object of the present invention is to provide a magnetic recording medium having good electromagnetic conversion characteristics during high density recording.

【0009】本発明の第三の目的は、高密度記録時での
電磁変換特性が良好な磁気記録媒体の特性を充分に活か
せる大容量の磁気記憶装置を提供することにある。
A third object of the present invention is to provide a large-capacity magnetic storage device which can fully utilize the characteristics of a magnetic recording medium having a good electromagnetic conversion characteristic during high density recording.

【0010】[0010]

【課題を解決するための手段】上記第一の目的を達成す
るため、本発明は非導電性の基板に予め導電性のある膜
を形成し、前記導電膜にDCバイアス電圧を印加しなが
ら直接もしくは非磁性下地層を介して、磁性層を積層す
る。このとき、導電膜と基板電極治具とを接触させる箇
所は、情報を記録するための記録領域を確保しなければ
ならないことからある程度の制約が生じる。特に、円板
の中周部は記録領域として有効に活用したいため、ここ
で接触させることは望ましくない。一方、円板の最内周
の部分はスピンドルにチャッキングするため、膜が成膜
されても記録領域として使われない。また、外周部では
磁気ヘッドのスライダが円板面から外れてしまうため、
極端な外周部は記録領域は使われない。そこで、前記導
電膜と基板電極治具との電気的接触を確保する方法が媒
体の内周部、あるいは外周部で面接触、あるいは点接触
とする、または、媒体の内周部、あるいは外周部の側面
に廻り込んだ前記導電膜と面、あるいは点で接触する方
法であることが望ましい。さらに、バイアスの印加は磁
性層成膜時のみとしても同様な結果が得られるため、磁
性層成膜時のみのバイアス印加でもよい。但し、非磁性
下地層成膜時のみにバイアスを印加した場合には殆ど効
果がないため好ましくない。このようにバイアスを印加
して成膜した膜では、スパッタガスの濃度が高くなる、
Co(110)面の面間隔が大きくなるといった特徴が
現われる。
To achieve the first object, the present invention directly forms a conductive film on a non-conductive substrate and directly applies a DC bias voltage to the conductive film. Alternatively, a magnetic layer is laminated with a nonmagnetic underlayer interposed. At this time, a certain amount of restriction occurs because a recording area for recording information needs to be secured in a portion where the conductive film and the substrate electrode jig are in contact with each other. In particular, since it is desired to effectively utilize the middle portion of the disk as a recording area, it is not desirable to make contact here. On the other hand, the innermost portion of the disk is chucked by the spindle, so that even if a film is formed, it is not used as a recording area. In addition, since the slider of the magnetic head is removed from the disc surface at the outer peripheral portion,
The recording area is not used in the extreme outer periphery. Therefore, the method for ensuring electrical contact between the conductive film and the substrate electrode jig is to make surface contact or point contact at the inner or outer peripheral portion of the medium, or the inner or outer peripheral portion of the medium. It is desirable to use a method of contacting the conductive film wrapping around the side surface of the above with a surface or a point. Further, since the same result can be obtained by applying the bias only when forming the magnetic layer, the bias may be applied only when forming the magnetic layer. However, it is not preferable to apply the bias only when the non-magnetic underlayer is formed, because there is almost no effect. In the film thus formed by applying the bias, the concentration of the sputter gas becomes high.
The feature is that the Co (110) plane has a large interplanar spacing.

【0011】上記第二の目的を達成するため、本発明は
磁気記録媒体の残留磁化膜厚積を10G・μm以上15
0G・μm以下、保磁力を1600Oe以上4000O
e以下とする。このとき、前記磁性層を非磁性中間層で
分割した多層構造とすることがノイズを低減する上でよ
り望ましい。
In order to achieve the second object, the present invention sets the residual magnetization film thickness product of the magnetic recording medium to 10 G · μm or more and 15
0 G · μm or less, coercive force of 1600 Oe or more and 4000 O
e or less. At this time, it is more desirable to have a multilayer structure in which the magnetic layer is divided by a non-magnetic intermediate layer in order to reduce noise.

【0012】上記第三の目的を達成するため、本発明は
少なくとも磁極の一部に1.2T 以上の飽和磁束密度を
有する磁性材料を用いた記録専用の磁気ヘッド、及び巨
大磁気抵抗効果を利用した再生専用の磁気ヘッドを組み
合わせる。このとき、最尤復号による信号処理回路、及
び巨大磁気抵抗効果を利用した磁気ヘッドの再生信号の
非対称性を修正する回路を組み合わせ、磁気ヘッドのス
ライダの浮上高さを0.05μm 以下とすることがより
望ましい。
In order to achieve the third object, the present invention utilizes a recording-only magnetic head using a magnetic material having a saturation magnetic flux density of 1.2T or more in at least a part of a magnetic pole, and a giant magnetoresistive effect. The read-only magnetic head is combined. At this time, a signal processing circuit by maximum likelihood decoding and a circuit that corrects the asymmetry of the reproduction signal of the magnetic head using the giant magnetoresistive effect are combined to set the flying height of the slider of the magnetic head to 0.05 μm or less. Is more desirable.

【0013】本発明の磁気記録媒体の導電膜は、C,T
i,V,Cr,Cu,Zn,Nb,Mo,Ru,Rh,
Pd,Ag,Ta,W,Pt,Au,Ni−P,Cr−
Pが下地層,磁性層の結晶性,結晶配向性、及び結晶粒
径を制御する上で好ましい。また、これら元素を二種類
あるいは三種類以上混ぜ合わせたものを用いてもよい。
さらに、導電膜の表面に0.1nm 以上10nm以下程
度の酸化物層,窒素含有層、もしくは炭素含有層を形成
すると、保磁力を高める上でより好ましい。
The conductive film of the magnetic recording medium of the present invention comprises C, T
i, V, Cr, Cu, Zn, Nb, Mo, Ru, Rh,
Pd, Ag, Ta, W, Pt, Au, Ni-P, Cr-
P is preferable in controlling the crystallinity, crystal orientation, and crystal grain size of the underlayer and the magnetic layer. Also, a mixture of two or more of these elements may be used.
Further, it is more preferable to form an oxide layer, a nitrogen-containing layer, or a carbon-containing layer having a thickness of 0.1 nm or more and 10 nm or less on the surface of the conductive film in order to increase the coercive force.

【0014】本発明の磁気記録媒体の非磁性下地層は、
Cr,Mo,W,Ta,Nbまたはこれらを主たる成分
とするCr−P,Cr−Ti,Cr−V,Mo−Nb,
Mo−Pt,Mo−Ge,W−Cr,W−Ta,W−S
i等の合金とすることが、磁性層の結晶性,結晶配向
性、及び結晶粒径を制御する上で好ましい。非磁性下地
層の膜厚は0.1nm 以上、500nm以下の範囲であ
ることがS/Nを高める上でより好ましい。また、多層
磁気記録媒体構造とするためには、磁性層を分割するた
めに磁性層間に非磁性中間層を設けることが好ましく、
この場合には非磁性下地層と同様の組成であることが好
ましい。このときの中間層の膜厚は0.1nm以上5n
m以下とすることが、オーバーライト特性を高める上で
より好ましい。さらに、多層磁気記録媒体では非磁性中
間層を物理的な成膜法で実際に成膜しなくとも、磁性層
の成膜を一旦停止して再び成膜するということを繰り返
すだけでも、磁性層間に0.1nm 以上の酸化物層,窒
素含有層、もしくは炭素含有層が形成されるため、本手
法を用いてもよい。
The nonmagnetic underlayer of the magnetic recording medium of the present invention is
Cr, Mo, W, Ta, Nb or Cr-P, Cr-Ti, Cr-V, Mo-Nb containing these as main components
Mo-Pt, Mo-Ge, W-Cr, W-Ta, WS
The alloy such as i is preferable in controlling the crystallinity, crystal orientation, and crystal grain size of the magnetic layer. The thickness of the non-magnetic underlayer is more preferably 0.1 nm or more and 500 nm or less in order to improve the S / N. Further, in order to have a multilayer magnetic recording medium structure, it is preferable to provide a non-magnetic intermediate layer between the magnetic layers in order to divide the magnetic layer,
In this case, the composition is preferably the same as that of the nonmagnetic underlayer. At this time, the thickness of the intermediate layer is 0.1 nm or more and 5 n
It is more preferable that it is m or less in order to improve the overwrite characteristic. Further, in a multilayer magnetic recording medium, even if the nonmagnetic intermediate layer is not actually formed by a physical film forming method, it is possible to simply stop the film formation of the magnetic layer and repeat the film formation. Since an oxide layer, a nitrogen-containing layer, or a carbon-containing layer having a thickness of 0.1 nm or more is formed on the surface, this method may be used.

【0015】本発明の磁気記録媒体の磁性層は、CoC
rPt,CoCrTa,CoNiPt,CoNiTa,C
oSiPt,CoSiTa,CoCrPtB,CoCr
TaB等のCoを主たる成分とする磁性合金を用いるこ
とが、高い保磁力及び記録密度特性が得られるので好ま
しい。該磁性層の膜厚は、多層媒体も考慮すると1層当
たりの磁性層は0.2nm 以上、50nm以下の範囲で
あることがS/Nを高める上でより好ましい。
The magnetic layer of the magnetic recording medium of the present invention is CoC.
rPt, CoCrTa, CoNiPt, CoNiTa, C
oSiPt, CoSiTa, CoCrPtB, CoCr
It is preferable to use a magnetic alloy containing Co as a main component such as TaB because high coercive force and recording density characteristics can be obtained. The thickness of the magnetic layer is more preferably 0.2 nm or more and 50 nm or less per magnetic layer in consideration of the multilayer medium in order to improve the S / N.

【0016】[0016]

【作用】バイアススパッタリング法を用いることによっ
て保磁力が高くなる理由については現在のところ明確で
はないが、以下に示すような効果が考えられる。
The reason why the coercive force is increased by using the bias sputtering method is not clear at present, but the following effects can be considered.

【0017】(1)磁性膜中に含まれるスパッタガスの
濃度が増加し、このガスが磁性結晶粒内に取り込まれ、
磁気ひずみを誘起している。これと同時に、磁性結晶粒
の孤立化を促進させ、結晶粒間の相互作用を断ち切って
いる。 (2)基板表面にイオンが高速で衝突するため、表面エ
ネルギが高くなる(実質的な基板温度の上昇)。 (3)結合の弱い結晶の成長を抑制し、結晶成長を選択
的に制御することができる。 (4)積層面を清浄にする(不純物の除去)。
(1) The concentration of the sputtering gas contained in the magnetic film is increased, and this gas is taken into the magnetic crystal grains,
Inducing magnetostriction. At the same time, the isolation of the magnetic crystal grains is promoted, and the interaction between the crystal grains is cut off. (2) Ions collide with the surface of the substrate at high speed, resulting in high surface energy (substantially increase in substrate temperature). (3) It is possible to suppress the growth of weakly bonded crystals and selectively control the crystal growth. (4) Clean the laminated surface (remove impurities).

【0018】以上のような要因によって、磁性膜の磁気
異方性・ひずみが大きくなり、保磁力が高くなると解釈
できる。非導電性の基板を用いた場合にもDCバイアス
スパッタリング法が使えるようにするためには、予め基
板に導電性のある膜を形成しておけばよい。この導電膜
と基板電極との間で電気的接触を持たせて導通が確保で
きれば、容易にDCバイアスを印加することができる。
さらにこの導電膜の表面に0.1nm 以上10nm以下
程度の酸化物層,窒素含有層、もしくは炭素含有層を形
成すると保磁力がより向上するために好ましい。この程
度薄い酸化物層、窒素含有層、もしくは炭素含有層で
は、基板にバイアスを印加するための治具を接触したと
きによる傷、もしくはトンネル現象により導通が確保で
き、充分バイアスが印加できるため問題はない。
It can be construed that the magnetic anisotropy / strain of the magnetic film increases and the coercive force increases due to the above factors. In order to use the DC bias sputtering method even when using a non-conductive substrate, a conductive film may be formed on the substrate in advance. If electrical conduction can be secured between the conductive film and the substrate electrode to ensure continuity, a DC bias can be easily applied.
Further, it is preferable to form an oxide layer, a nitrogen-containing layer, or a carbon-containing layer having a thickness of 0.1 nm or more and 10 nm or less on the surface of the conductive film, because the coercive force is further improved. If the oxide layer, nitrogen-containing layer, or carbon-containing layer is as thin as this, conduction can be secured due to scratches or tunneling when a jig for applying a bias is brought into contact with the substrate, and sufficient bias can be applied. There is no.

【0019】本DCバイアススパッタリング法を用いて
保磁力は1600Oe以上を確保したまま、残留磁化膜
厚積を150G・μm以下とすることで、高い記録密度
特性を有することができる。しかし、残留磁化膜厚積を
10G・μmよりも小さくすると、熱揺らぎの影響が大
きくなり、バイアススパッタリング手法を用いても著し
く保磁力が劣化してしまう。しかも、10G・μm以下
とすると、あまりにも再生出力が小さくなり過ぎてしま
うため好ましくない。また、保磁力は1600Oe以上
とすることで、高記録密度時に高い再生出力を得られる
が、4000Oeよりも高くすると磁気ヘッドの書き込
み能力を遥かに超えてしまうため、オーバーライト特性
が著しく劣化し好ましくない。
By using the present DC bias sputtering method and keeping the coercive force at 1600 Oe or more and setting the residual magnetization film thickness product to 150 G · μm or less, a high recording density characteristic can be obtained. However, if the remanent magnetization film thickness product is smaller than 10 G · μm, the effect of thermal fluctuation increases, and the coercive force is significantly deteriorated even when the bias sputtering method is used. Moreover, if it is 10 G · μm or less, the reproduction output becomes too small, which is not preferable. Further, when the coercive force is 1600 Oe or more, a high reproduction output can be obtained at a high recording density, but when it is higher than 4000 Oe, the writing capability of the magnetic head is far exceeded, so that the overwrite characteristic is significantly deteriorated, which is preferable. Absent.

【0020】本手法を用いて作製する媒体の構造は、下
地層,磁性層,保護層といった磁性層が単層である構造
だけでなく、下地層,磁性層,非磁性中間層,磁性層,
非磁性中間層,……,保護層といったように多層磁性構
造であってもよい。多層磁性構造では個々の磁性層を薄
くし、磁性層間に膜厚0.1nm 以上の非磁性中間層を
介在させることによって、結晶粒を微細化したまま磁性
層を積層でき、しかも実質的に各層をほぼ磁気的に独立
とみなされるまでに交換相互作用を低減できる。この場
合には磁性層間の磁気的な相互作用を弱めることがで
き、ノイズを統計和に従って減少できるため、単層媒体
に比べてさらに低ノイズ化を実現することができる。出
力についても磁性層を多数積層することによって、再生
出力を高めることができる。ただしここで、非磁性中間
層を物理的な成膜法で実際に成膜しなくとも、磁性層の
成膜を、一旦、停止して再び成膜するということを繰り
返すだけでも、磁性層間に0.1nm 以上の酸化物層,
窒素含有層、もしくは炭素含有層が形成され、実質的に
磁性層間に非磁性中間層を設けたことと同じ効果をもた
らす。これらの理由から、磁性層間に非磁性中間層を設
けた多層磁気記録媒体では高いS/N(信号対雑音比)
が実現可能となる。
The structure of the medium manufactured using this method is not limited to the structure in which the magnetic layer such as the underlayer, the magnetic layer and the protective layer is a single layer, but also the underlayer, the magnetic layer, the non-magnetic intermediate layer, the magnetic layer,
It may have a multilayer magnetic structure such as a non-magnetic intermediate layer, ..., Protective layer. In the multi-layer magnetic structure, by thinning each magnetic layer and interposing a non-magnetic intermediate layer having a thickness of 0.1 nm or more between the magnetic layers, the magnetic layers can be laminated while the crystal grains are miniaturized, and substantially each layer is formed. Exchange interactions can be reduced to the point where they are considered to be nearly magnetically independent. In this case, the magnetic interaction between the magnetic layers can be weakened and the noise can be reduced according to the statistical sum, so that the noise can be further reduced as compared with the single layer medium. Regarding the output, the reproduction output can be increased by stacking a large number of magnetic layers. However, here, even if the non-magnetic intermediate layer is not actually formed by a physical film-forming method, the process of temporarily stopping the film formation of the magnetic layer and then forming the film again can be repeated. Oxide layer of 0.1 nm or more,
The nitrogen-containing layer or the carbon-containing layer is formed, and substantially the same effect as providing the non-magnetic intermediate layer between the magnetic layers is obtained. For these reasons, a high S / N (signal-to-noise ratio) is obtained in a multilayer magnetic recording medium in which a non-magnetic intermediate layer is provided between magnetic layers.
Can be realized.

【0021】本発明の磁気記録媒体と、少なくとも磁極
の一部に1.2T 以上の飽和磁束密度を有する磁性材料
を用いた記録専用の磁気ヘッドと、巨大磁気抵抗効果を
利用した再生専用の磁気ヘッドを組み合わせることによ
り、高品位の再生信号が得られ、従来に比べて2倍以上
の大容量磁気ディスク装置を実現することができる。こ
れは少なくとも磁極の一部に1.2T 以上の飽和磁束密
度を有する磁性材料を用いた記録専用の磁気ヘッドで
は、従来の磁気ヘッドに比べ記録磁界が大きくなり、高
い保磁力の媒体でも充分な記録が可能となり、オーバー
ライト特性が著しく向上し、しかも記録磁界が急峻にな
ることによって媒体ノイズが低く抑えられることによ
る。さらに巨大磁気抵抗効果を利用した再生専用の磁気
ヘッドでは、従来の誘導型磁気ヘッドに比べ5倍以上の
再生出力が得られることも大きな要因の一つである。こ
の媒体と磁気ヘッドの組合せに、さらに最尤復号による
信号処理回路と、巨大磁気抵抗効果を利用した磁気ヘッ
ドの再生信号の非対称性を修正する回路を組み合わせ、
磁気ヘッドのスライダの浮上高さを0.05μm 以下と
することにより、従来に比べて3倍以上の大容量磁気記
憶装置が実現できる。
A magnetic recording medium of the present invention, a recording-only magnetic head using a magnetic material having a saturation magnetic flux density of 1.2T or more in at least a part of the magnetic pole, and a reproduction-only magnetic utilizing the giant magnetoresistive effect. By combining the heads, a high-quality reproduction signal can be obtained, and a large-capacity magnetic disk device that is at least twice as large as the conventional one can be realized. This is because a recording-only magnetic head using a magnetic material having a saturation magnetic flux density of 1.2T or more in at least a part of the magnetic pole has a larger recording magnetic field than a conventional magnetic head, and a medium having a high coercive force is sufficient. This is because recording becomes possible, the overwrite characteristic is remarkably improved, and the recording magnetic field becomes steep, so that the medium noise is suppressed to a low level. Further, it is one of the major factors that the read-only magnetic head utilizing the giant magnetoresistive effect can obtain a read output more than 5 times that of the conventional induction type magnetic head. In addition to the combination of this medium and the magnetic head, a signal processing circuit by maximum likelihood decoding and a circuit for correcting the asymmetry of the reproduction signal of the magnetic head utilizing the giant magnetoresistive effect are combined.
By setting the flying height of the slider of the magnetic head to be 0.05 μm or less, it is possible to realize a large-capacity magnetic storage device that is three times or more compared with the conventional one.

【0022】[0022]

【実施例】【Example】

(実施例1)本発明の磁気記録媒体の断面図を図1に示
す。各層はスパッタリング法によって成膜した。非導電
性の基板11は強化ガラス基板,カナサイト(結晶化ガ
ラス)基板,SiC等のセラミックス基板,プラスチッ
ク基板,TiO基板,Ti合金基板等が用いられる。導
電膜12,12′は、C,Ti,V,Cr,Cu,Z
n,Nb,Mo,Ru,Rh,Pd,Ag,Ta,W,
Pt,Au,Ni−P,Cr−P、またはこれらを2種
類あるいは3種類以上混ぜ合わせたものが用いられる。
13,13′はCr、Mo,W,Ta,Nbまたはこれ
らを主たる成分とするCr−P,Cr−Ti,Cr−
V,Mo−Nb,Mo−Pt,Mo−Ge,W−Cr,
W−Ta,W−Si等の合金からなる非磁性下地層、1
4,14′はCoCrPt,CoCrTa,CoNiP
t,CoNiTa,CoSiPt,CoSiTa,Co
CrPtB,CoCrTaB等のCoを主たる成分とす
る磁性層である。なお、基板と導電膜の間に、基板表面
の不純物等の影響を低減するために、Ar等によりプラ
ズマ洗浄を施しても良い。また、15,15′はC,W
C,(WMo)C,(ZrNb)N,B4C ,水素含有
カーボン等からなる保護層、16,16′はパーフルオ
ロアルキルポリエーテル等からなる潤滑層である。媒体
の残留磁化膜厚積を10G・μm以上150G・μm以
下、保磁力を1600Oe以上4000Oe以下とする
ことは基板温度、He,Ne,Ar,Kr,Xe等のス
パッタガスの種類、ガス圧力、スパッタ時の投入電力を
組成、膜構成に応じて適正化することによって達成され
る。
(Example 1) FIG. 1 is a sectional view of a magnetic recording medium of the present invention. Each layer was formed by a sputtering method. As the non-conductive substrate 11, a tempered glass substrate, a canasite (crystallized glass) substrate, a ceramic substrate such as SiC, a plastic substrate, a TiO substrate, a Ti alloy substrate or the like is used. The conductive films 12 and 12 'are made of C, Ti, V, Cr, Cu, Z.
n, Nb, Mo, Ru, Rh, Pd, Ag, Ta, W,
Pt, Au, Ni-P, Cr-P, or a mixture of two or more of these is used.
13, 13 'are Cr, Mo, W, Ta, Nb or Cr-P, Cr-Ti, Cr- containing these as the main components.
V, Mo-Nb, Mo-Pt, Mo-Ge, W-Cr,
Non-magnetic underlayer made of an alloy such as W-Ta or W-Si, 1
4, 14 'are CoCrPt, CoCrTa, CoNiP
t, CoNiTa, CoSiPt, CoSiTa, Co
It is a magnetic layer containing Co such as CrPtB and CoCrTaB as a main component. Note that plasma cleaning may be performed with Ar or the like between the substrate and the conductive film in order to reduce the influence of impurities and the like on the substrate surface. Also, 15 and 15 'are C and W
Protective layers composed of C, (WMo) C, (ZrNb) N, B 4 C, hydrogen-containing carbon and the like, and 16 and 16 ′ are lubricating layers composed of perfluoroalkyl polyether and the like. Setting the remanent magnetization film thickness product of the medium to 10 G · μm or more and 150 G · μm or less and the coercive force to 1600 Oe or more and 4000 Oe or less means the substrate temperature, the type of sputtering gas such as He, Ne, Ar, Kr, and Xe, the gas pressure, This is achieved by optimizing the input power during sputtering according to the composition and film configuration.

【0023】本実施例に示す媒体は全て残留磁化膜厚積
が10G・μm以上150G・μm以下、保磁力が16
00Oe以上4000Oe以下の条件を満たしている。
All the media shown in this embodiment have a remanent magnetization film thickness product of 10 G · μm or more and 150 G · μm or less and a coercive force of 16 μm.
The condition of not less than 00 Oe and not more than 4000 Oe is satisfied.

【0024】外径95mmφの強化ガラス基板(コーニン
グ0313)からなる基板11に、基板温度は室温、A
rガス圧力は1.7mTorr、投入電力密度は5W/cm2
成膜条件でDCマグネトロンスパッタリング法を用い
て、導電膜12,12′としてCrを25nm成膜し
た。次いで、基板温度は300℃、Arガス圧力は1.
7mTorr、DCバイアス電圧は−100Vから−400
Vの範囲で変化させ、投入電力密度は5W/cm2 の成膜
条件でDCマグネトロンスパッタリング法(DCバイア
ス印加)を用いて、非磁性下地層13,13′としてC
rを250nm、磁性層14,14′としてCo−16
at%Cr−4at%Taを25nm順次成膜した。こ
のとき、導電膜12,12′の表面に導電性のある治具
を接触させ、非磁性下地層13,13′及び磁性層1
4,14′の積層面にDCバイアス電圧が印加するよう
にした。最後に保護層15,15′としてCを10nm
成膜した後、3nmのパーフルオロアルキルポリエーテ
ル系の潤滑層16,16′を形成した。
A substrate 11 made of a tempered glass substrate (Corning 0313) having an outer diameter of 95 mmφ is used.
25 nm of Cr was formed as the conductive films 12 and 12 'by the DC magnetron sputtering method under the film forming conditions of the r gas pressure of 1.7 mTorr and the input power density of 5 W / cm 2 . Next, the substrate temperature is 300 ° C. and the Ar gas pressure is 1.
7mTorr, DC bias voltage from -100V to -400
The non-magnetic underlayers 13 and 13 'are changed to C by using the DC magnetron sputtering method (DC bias application) under the film forming condition of the applied power density of 5 W / cm 2 while varying the V range.
r is 250 nm, and Co-16 is used as the magnetic layers 14 and 14 '.
At% Cr-4 at% Ta was sequentially formed in a thickness of 25 nm. At this time, a conductive jig is brought into contact with the surfaces of the conductive films 12 and 12 ', and the nonmagnetic underlayers 13 and 13' and the magnetic layer 1 are contacted.
A DC bias voltage was applied to the laminated surface of 4, 14 '. Finally, as protective layers 15 and 15 ', C is 10 nm
After the film formation, the 3 nm perfluoroalkyl polyether-based lubricating layers 16 and 16 'were formed.

【0025】また、比較例1の媒体として導電膜は設け
ず、実施例の成膜条件でバイアスを0Vとした以外は同
様な条件のもとで、図2に示すような媒体を作製した。
As the medium of Comparative Example 1, a medium as shown in FIG. 2 was produced under the same conditions except that the conductive film was not provided and the bias was 0 V under the film forming conditions of the example.

【0026】ここで、図1と図2の媒体構造を比較する
と、本実施例である図1に示す媒体では非磁性下地層1
3,13′、磁性層14,14′、及び保護層15,1
5′の面積が小さくなっていることがわかる。これは導
電膜に治具を外周部で接触させたため、外周部に導電膜
以降の膜が積層できなかったことに起因する。この他に
も導電膜と基板電極との導通を確保する手法として、内
周部で接触させたり、あるいは導電膜が基板側面へ廻り
込んだところと接触させても良い。さらに接触面積につ
いても、ディスク一周全面で接触しなくとも点接触で良
いことが容易に類推できる。
Here, comparing the medium structures of FIG. 1 and FIG. 2, in the medium shown in FIG.
3, 13 ', magnetic layers 14, 14', and protective layers 15, 1
It can be seen that the area of 5'is smaller. This is because the jig was brought into contact with the conductive film at the outer peripheral portion, so that the film after the conductive film could not be laminated on the outer peripheral portion. In addition to this, as a method for ensuring electrical continuity between the conductive film and the substrate electrode, the conductive film may be contacted at the inner peripheral portion or may be contacted with the conductive film around the side surface of the substrate. Further, regarding the contact area, it can be easily inferred that point contact may be sufficient without contacting the entire circumference of the disk.

【0027】図3は実施例1、及び比較例1として作製
した媒体の保磁力を示す。DCバイアス電圧を印加する
ことによって保磁力は高くなり、−200Vのバイアス
印加のときに保磁力が最大値を示している。さらにバイ
アスを“−”方向に大きくすると保磁力は小さくなって
いき、−400Vのバイアス印加時にはバイアスを印加
しない媒体と同程度にまで保磁力が低くなってしまう。
以上のことから、バイアスを印加する範囲は−400V
以上、−30V未満程度が良いことがわかる。
FIG. 3 shows the coercive force of the media produced as Example 1 and Comparative Example 1. The coercive force is increased by applying the DC bias voltage, and the coercive force shows the maximum value when the bias of -200V is applied. Further, when the bias is increased in the "-" direction, the coercive force becomes smaller, and when a bias of -400 V is applied, the coercive force becomes as low as that of a medium to which no bias is applied.
From the above, the range to apply the bias is -400V
As described above, it is understood that the voltage of less than −30V is preferable.

【0028】なお、本実施例の媒体と同様な成膜条件の
もとで磁性膜の組成をCo−14at%Cr−6at%
Ta,Co−18at%Cr−8at%Pt,Co−3
0at%Ni−5at%Pt,Co−20at%Ni−
10at%Cr,Co−16at%Si−6at%T
a,Co−20at%Si−10at%Pt,Co−1
5at%Cr−4at%Ta−4at%B,Co−16
at%Cr−8at%Pt−4at%Bと変えても、保
磁力の絶対値に多少の差異は見られるものの同様な結果
が得られた。また、導電膜12,12′を成膜した後、
一旦、真空を破って大気にさらすことによって導電膜表
面に薄い酸化層を設けたところ、保磁力が約100から
400Oe程度向上した。さらに、バイアスを磁性層成
膜時のみに印加しても同様な結果が得られたが、下地膜
成膜時のみに印加した場合には保磁力は改善されず、バ
イアスの効果はほとんど見られなかった。
The composition of the magnetic film was changed to Co-14 at% Cr-6 at% under the same film forming conditions as the medium of this embodiment.
Ta, Co-18 at% Cr-8 at% Pt, Co-3
0 at% Ni-5 at% Pt, Co-20 at% Ni-
10 at% Cr, Co-16 at% Si-6 at% T
a, Co-20 at% Si-10 at% Pt, Co-1
5 at% Cr-4 at% Ta-4 at% B, Co-16
Even if it was changed to at% Cr-8 at% Pt-4 at% B, similar results were obtained although there were some differences in the absolute value of the coercive force. After forming the conductive films 12 and 12 ',
Once a thin oxide layer was formed on the surface of the conductive film by breaking the vacuum and exposing it to the atmosphere, the coercive force was improved by about 100 to 400 Oe. Further, similar results were obtained when the bias was applied only during the formation of the magnetic layer, but when the bias was applied only during the formation of the underlayer, the coercive force was not improved and the effect of the bias was hardly seen. There wasn't.

【0029】(実施例2)基板に2.5 インチのカナサ
イト(結晶化ガラス)基板を用い、図4に示す構造の多層
磁気記録媒体を作製した。基板温度は室温、Xeガス圧
力は1.7mTorr、投入電力密度は5W/cm2 の成膜条
件でDCマグネトロンスパッタリング法を用いて、導電
膜42,42′としてCrを50nm成膜した。次い
で、基板温度は300℃、Xeガス圧力は1.7mTorr
、DCバイアス電圧は−100Vから−400Vの範
囲で変化させ、投入電力密度は5W/cm2 の成膜条件で
DCマグネトロンスパッタリング法(DCバイアス印加)
を用いて、非磁性下地層43,43′としてCr−15
at%Tiを150nm、第一磁性層44,44′とし
てCo−19at%Cr−8at%Ptを12nm成膜
した。さらに非磁性中間層45,45′としてCr−1
5at%Tiを2nm、第二磁性層46,46′として
Co−19at%Cr−8at%Ptを12nm成膜
し、磁性層が2層の媒体構造にした。最後に保護層4
7,47′として水素含有カーボンを10nm成膜した
後、3nmのパーフルオロアルキルポリエーテル系の潤
滑層48,48′を形成した。
Example 2 A 2.5-inch canasite (crystallized glass) substrate was used as a substrate to prepare a multilayer magnetic recording medium having the structure shown in FIG. The substrate temperature was room temperature, the Xe gas pressure was 1.7 mTorr, and the input power density was 5 W / cm 2 under the film forming conditions using the DC magnetron sputtering method, and Cr was deposited to 50 nm as the conductive films 42 and 42 ′. Next, the substrate temperature is 300 ° C and the Xe gas pressure is 1.7 mTorr.
, DC bias voltage was changed in the range of -100V to -400V, and the applied power density was DC magnetron sputtering method (DC bias application) under the film forming condition of 5W / cm 2.
By using Cr-15 as the non-magnetic underlayer 43, 43 '.
At% Ti was formed in a thickness of 150 nm, and Co-19 at% Cr-8 at% Pt was formed in a thickness of 12 nm as the first magnetic layers 44 and 44 '. Further, Cr-1 is used as the non-magnetic intermediate layer 45, 45 '.
5 at% Ti was deposited to 2 nm, and Co-19 at% Cr-8 at% Pt was deposited to 12 nm as the second magnetic layers 46 and 46 'to form a medium structure having two magnetic layers. Finally protective layer 4
After forming hydrogen-containing carbon to a thickness of 10 nm as 7,47 ', lubricating layers 48 and 48' of 3 nm of perfluoroalkylpolyether type were formed.

【0030】また実施例1と同様にして、比較例2の媒
体として導電膜は設けず、実施例の成膜条件でバイアス
を0Vとした以外は同様な条件の媒体を作製した。
In the same manner as in Example 1, a medium was prepared under the same conditions as Comparative Example 2 except that no conductive film was provided and the bias was 0 V under the film forming conditions of Example.

【0031】図5は実施例2、及び比較例2として作製
した媒体の保磁力を示す。この結果も実施例1と同様な
結果が得られ、バイアスを印加した媒体の方が高い保磁
力を有することがわかった。なお、磁性層の層数を3
層,4層,5層と変化させても同様な結果が得られた。
さらに、各磁性層の組成を同じとせずに、独立に変化さ
せた場合にも同様な結果が得られた。
FIG. 5 shows the coercive force of the media prepared as Example 2 and Comparative Example 2. This result was similar to that of Example 1, and it was found that the medium to which the bias was applied had a higher coercive force. The number of magnetic layers is 3
Similar results were obtained by changing the number of layers, 4 layers, and 5 layers.
Further, similar results were obtained when the compositions of the magnetic layers were not the same but were changed independently.

【0032】(実施例3)実施例1及び実施例2の媒体
について、少なくとも磁極の一部に1.2T 以上の飽和
磁束密度を有する磁性材料を用いた記録専用の磁気ヘッ
ドと、巨大磁気抵抗効果を利用した再生専用の磁気ヘッ
ドを組み合わせて電磁変換特性を測定した。測定条件と
しては線記録密度は180kFCI、トラック幅は2μ
m、記録用ヘッドのギャップ長は0.2μm、再生用ヘ
ッドのシールド間隔は0.2μm、磁気ヘッドのスライ
ダの浮上高さは0.04μm とした。この条件で測定し
たS/N(信号対雑音比)は、実施例1の媒体では保磁
力が最も高かった−200Vのバイアスを印加して作製
した媒体が最も優れ、35dBであった。その他の媒体
でも32dBは確保することができた。また、実施例2
の媒体でも保磁力が最も高かった−200Vのバイアス
を印加して作製した媒体が最も優れ、38dBであっ
た。その他の媒体でも33dBは確保することができ
た。装置を正常に動作することができる必要S/Nがお
よそ30dBであることを考えると、本発明の磁気記録
媒体は充分な電磁変換特性を有していると言える。実施
例2の媒体の方が実施例1の媒体よりも優れたS/Nを
有することができた理由は、ノイズが著しく小さかった
ためである。ただし、実際の量産を考えると、あえてオ
ーバースペックにしてコストをあげる必要がなく、安価
で仕様にあった構造の媒体とする方が望ましい。
(Embodiment 3) With respect to the media of Embodiments 1 and 2, at least a part of the magnetic poles is a recording-only magnetic head using a magnetic material having a saturation magnetic flux density of 1.2 T or more, and a giant magnetic resistance. The electromagnetic conversion characteristics were measured by combining a read-only magnetic head utilizing the effect. The measurement conditions are a linear recording density of 180 kFCI and a track width of 2 μm.
m, the gap length of the recording head was 0.2 μm, the shield interval of the reproducing head was 0.2 μm, and the flying height of the slider of the magnetic head was 0.04 μm. The S / N (signal-to-noise ratio) measured under these conditions was 35 dB, which was the highest in the medium produced by applying a bias of -200 V, which had the highest coercive force in the medium of Example 1. With other media, 32 dB could be secured. Example 2
The medium having the highest coercive force was also the highest in the medium (4), and the medium produced by applying a bias of -200 V was the highest, and was 38 dB. 33 dB could be secured for other media. It can be said that the magnetic recording medium of the present invention has a sufficient electromagnetic conversion characteristic, considering that the required S / N for operating the device normally is about 30 dB. The reason that the medium of Example 2 could have a better S / N than the medium of Example 1 was that the noise was significantly smaller. However, in consideration of actual mass production, it is not necessary to intentionally increase the specifications to raise the cost, and it is preferable to use a medium having a structure that is inexpensive and conforms to the specifications.

【0033】(実施例4)本発明の磁気記憶装置の一例
の上面図を図6(a)に、そのAA′線断面図を図6
(b)に示す。磁気記録媒体61は、磁気記録媒体駆動
部62に連結する保持具に保持され、磁気記録媒体61
のそれぞれの面に対向して磁気ヘッド63が配置され
る。磁気ヘッド63によって再生した信号は、記録再生
信号処理系64によって波形処理される。巨大磁気抵抗
効果を利用したヘッドの再生波形では、このヘッド素子
特有の問題により、正と負の大きさが非対称となるた
め、これを修復することが必要である。さらにこの修復
した信号を最尤復号による信号処理LSIを通すことに
より、極めて低いエラーレートの信号処理回路を構築す
ることが重要である。これらの波形処理が記録再生信号
処理系64によって行われている。磁気ヘッド63は浮
上高さ0.05μm 以下で安定低浮上をさせ、さらに
0.4μm 以下のヘッド位置決め精度で所望のトラック
に磁気ヘッド駆動部65によりヘッドを駆動する。以上
の部品を組み合わせることによって、従来に比べ3倍以
上の記憶容量を持った高密度磁気記憶装置を実現するこ
とができた。また、記録再生信号処理系64から最尤復
号による信号処理回路と、巨大磁気抵抗効果を利用した
磁気ヘッドの再生信号の非対称性を修正する回路を取り
除いた場合でも従来に比べ2倍以上の記憶容量を持った
磁気記憶装置を実現することができた。
(Embodiment 4) FIG. 6A is a top view of an example of the magnetic memory device of the present invention, and FIG.
It shows in (b). The magnetic recording medium 61 is held by a holder connected to the magnetic recording medium driving unit 62, and the magnetic recording medium 61 is held.
The magnetic head 63 is arranged so as to face each surface of the. The signal reproduced by the magnetic head 63 is waveform-processed by the recording / reproducing signal processing system 64. In the reproducing waveform of the head utilizing the giant magnetoresistive effect, the positive and negative magnitudes become asymmetric due to the problem peculiar to the head element, and it is necessary to repair this. Further, it is important to construct a signal processing circuit having an extremely low error rate by passing the restored signal through a signal processing LSI by maximum likelihood decoding. These waveform processing is performed by the recording / reproducing signal processing system 64. The magnetic head 63 is stably floated at a flying height of 0.05 μm or less, and the head is driven by a magnetic head drive unit 65 to a desired track with a head positioning accuracy of 0.4 μm or less. By combining the above components, it was possible to realize a high-density magnetic storage device having a storage capacity three times or more that of the conventional one. Further, even if the signal processing circuit for maximum likelihood decoding and the circuit for correcting the asymmetry of the reproduction signal of the magnetic head utilizing the giant magnetoresistive effect are removed from the recording / reproducing signal processing system 64, the storage capacity is more than twice that of the conventional one. A magnetic storage device having a capacity could be realized.

【0034】以上の実施例では、ディスク状の磁気記録
媒体とそれを用いた磁気記憶装置について例を述べてき
たが、本発明は片面のみに磁性層を有するテープ状,カ
ード状の媒体、及びこれを用いた磁気記憶装置にも適用
できる。
In the above embodiments, an example of a disk-shaped magnetic recording medium and a magnetic storage device using the same was described. However, the present invention is a tape-shaped or card-shaped medium having a magnetic layer only on one side, and It can also be applied to a magnetic storage device using this.

【0035】[0035]

【発明の効果】本発明の磁気記録媒体は、非導電性の基
板を用いた媒体に導電性のある膜を予め成膜した後、こ
の導電膜と基板電極との接触を確保してDCバイアス電
圧を印加しながら下地層、及び磁性層を順次成膜するこ
とにより、高い保磁力を有し、高密度記録に対応できる
ような電磁変換特性に向上することができる。また、本
発明は磁性層を非磁性中間層で分割する多層磁気記録媒
体にも応用することができる。さらに、この磁気記録媒
体と、少なくとも磁極の一部に1.2T 以上の飽和磁束
密度を有する磁性材料を用いた記録専用の磁気ヘッド,
巨大磁気抵抗効果を利用した再生専用の磁気ヘッド,最
尤復号による信号処理回路、及び巨大磁気抵抗効果を利
用した磁気ヘッドの再生信号の非対称性を修正する回路
を組み合わせ、磁気ヘッドのスライダの浮上高さを0.
05μm 以下とすることにより、高品位な再生出力、
及び極めて低いエラーレートが得られ、従来の磁気記憶
装置に比較して大容量高密度の磁気記憶装置が得られ
る。
According to the magnetic recording medium of the present invention, a conductive film is formed in advance on a medium using a non-conductive substrate, and then contact between the conductive film and the substrate electrode is ensured to form a DC bias. By sequentially forming the underlayer and the magnetic layer while applying a voltage, it is possible to improve the electromagnetic conversion characteristics that have a high coercive force and are compatible with high density recording. The present invention can also be applied to a multilayer magnetic recording medium in which a magnetic layer is divided by a non-magnetic intermediate layer. Furthermore, this magnetic recording medium and a magnetic head dedicated to recording using a magnetic material having a saturation magnetic flux density of 1.2 T or more in at least a part of the magnetic pole,
A magnetic head dedicated to reproduction that uses the giant magnetoresistive effect, a signal processing circuit using maximum likelihood decoding, and a circuit that corrects the asymmetry of the playback signal of the magnetic head that utilizes the giant magnetoresistive effect are combined to fly the slider of the magnetic head. Height to 0.
By making the thickness below 05 μm, high-quality playback output,
In addition, an extremely low error rate can be obtained, and a large-capacity and high-density magnetic storage device can be obtained as compared with a conventional magnetic storage device.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の磁気記録媒体の断面構造を示す説明
図。
FIG. 1 is an explanatory diagram showing a cross-sectional structure of a magnetic recording medium of the present invention.

【図2】従来の磁気記録媒体の断面構造を示す説明図。FIG. 2 is an explanatory diagram showing a cross-sectional structure of a conventional magnetic recording medium.

【図3】本発明の磁気記録媒体と従来の磁気記録媒体の
保磁力を比較した説明図。
FIG. 3 is an explanatory diagram comparing the coercive force of the magnetic recording medium of the present invention with that of a conventional magnetic recording medium.

【図4】本発明の磁気記録媒体の断面構造を示す説明
図。
FIG. 4 is an explanatory diagram showing a cross-sectional structure of a magnetic recording medium of the present invention.

【図5】本発明の磁気記録媒体と従来の磁気記録媒体の
保磁力を比較した説明図。
FIG. 5 is an explanatory diagram comparing the coercive force of the magnetic recording medium of the present invention with that of a conventional magnetic recording medium.

【図6】本発明の磁気記憶装置の上面と断面構造を示す
説明図。
FIG. 6 is an explanatory diagram showing a top surface and a cross-sectional structure of a magnetic memory device of the present invention.

【符号の説明】[Explanation of symbols]

11…非導電性基板、12,12′…導電膜、13,1
3′…非磁性下地層、14,14′…Co系合金磁性
層、15,15′…保護層、16,16′…潤滑層。
11 ... Non-conductive substrate, 12, 12 '... Conductive film, 13, 1
3 '... non-magnetic underlayer, 14, 14' ... Co-based alloy magnetic layer, 15, 15 '... protective layer, 16, 16' ... lubricating layer.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 二本 正昭 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 稲葉 信幸 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Masaaki Ninomoto 1-280 Higashi Koikekubo, Kokubunji, Tokyo Inside Central Research Laboratory, Hitachi, Ltd. (72) Nobuyuki Inaba 1-280 Higashi Koikeku, Kokubunji, Tokyo Hitachi Ltd. Central Research Laboratory

Claims (15)

【特許請求の範囲】[Claims] 【請求項1】非導電性の基板に予め導電性の膜を形成
し、前記導電膜にDCバイアス電圧を印加しながら直接
もしくは非磁性下地層を介して磁性層を積層する媒体で
あり、残留磁化膜の厚積を10G・μm以上150G・
μm以下、保磁力を1600Oe以上4000Oe以下
とすることを特徴とする磁気記録媒体。
1. A medium in which a conductive film is previously formed on a non-conductive substrate, and a magnetic layer is laminated directly or through a non-magnetic underlayer while applying a DC bias voltage to the conductive film, The thickness of the magnetized film is 10G ・ μm or more and 150G ・
A magnetic recording medium having a coercive force of 1600 Oe or more and 4000 Oe or less.
【請求項2】請求項1において、前記媒体の内周部、あ
るいは外周部で前記磁性層が部分的に積層されていない
領域がある磁気記録媒体。
2. The magnetic recording medium according to claim 1, wherein there is a region where the magnetic layer is not partially laminated on an inner peripheral portion or an outer peripheral portion of the medium.
【請求項3】請求項1または2において、前記導電膜が
前記媒体の内周部、あるいは外周部の側面に廻り込み、
この箇所で前記磁性層に部分的に積層されていない領域
がある磁気記録媒体。
3. The conductive film according to claim 1, wherein the conductive film wraps around a side surface of an inner peripheral portion or an outer peripheral portion of the medium,
A magnetic recording medium having a region which is not partially laminated on the magnetic layer at this portion.
【請求項4】非導電性の基板に予め導電性の膜を形成
し、前記導電膜にDCバイアス電圧を印加しながら直接
もしくは非磁性下地層を介して磁性層を積層し、さらに
この上に保護層を積層する媒体であり、前記媒体の内周
部、あるいは外周部で前記磁性層が部分的に積層されて
いない領域があることを特徴とする磁気記録媒体。
4. A conductive film is previously formed on a non-conductive substrate, and a magnetic layer is laminated directly or with a non-magnetic underlayer on the conductive film while applying a DC bias voltage, and further on this. A magnetic recording medium, which is a medium in which a protective layer is laminated, characterized in that there is a region where the magnetic layer is not partially laminated in an inner peripheral portion or an outer peripheral portion of the medium.
【請求項5】請求項4において、前記導電膜が前記媒体
の内周部、あるいは外周部の側面に廻り込み、この箇所
で前記磁性層に部分的に積層されていない領域がある磁
気記録媒体。
5. The magnetic recording medium according to claim 4, wherein the conductive film wraps around a side surface of an inner peripheral portion or an outer peripheral portion of the medium, and there is a region which is not partially laminated on the magnetic layer at this portion. .
【請求項6】請求項4または5において、前記磁性層中
のAr,Kr,Xe等のスパッタガス濃度が前記保護層
中よりも高濃度である磁気記録媒体。
6. The magnetic recording medium according to claim 4, wherein the sputter gas concentration of Ar, Kr, Xe or the like in the magnetic layer is higher than that in the protective layer.
【請求項7】請求項4,5または6において、前記膜面
に平行なCo(110)面の面間隔が膜面から20度以
上傾斜したCo(110)面の面間隔よりも大きい磁気
記録媒体。
7. The magnetic recording according to claim 4, wherein the interplanar spacing of the Co (110) plane parallel to the film plane is larger than the interplanar spacing of the Co (110) plane inclined by 20 degrees or more from the film plane. Medium.
【請求項8】請求項1,2,3,4,5,6または7に
おいて、前記導電膜の表面に0.1nm以上10nm以
下程度の酸化物層,窒素含有層、もしくは炭素含有層を
形成した磁気記録媒体。
8. The oxide film, the nitrogen-containing layer, or the carbon-containing layer having a thickness of about 0.1 nm to 10 nm is formed on the surface of the conductive film according to claim 1, 2, 3, 4, 5, 6 or 7. Magnetic recording medium.
【請求項9】請求項1,2,3,4,5,6,7または
8において、前記導電膜はC,Ti,V,Cr,Cu,
Zn,Nb,Mo,Ru,Rh,Pd,Ag,Ta,
W,Pt,Au,Ni−P,Cr−Pの中から選ばれた
少なくとも1種を主たる成分とする磁気記録媒体。
9. The conductive film according to claim 1, 2, 3, 4, 5, 6, 7 or 8, wherein C, Ti, V, Cr, Cu,
Zn, Nb, Mo, Ru, Rh, Pd, Ag, Ta,
A magnetic recording medium containing, as a main component, at least one selected from W, Pt, Au, Ni-P, and Cr-P.
【請求項10】請求項1,2,3,4,5,6,7,8
または9において、前記非磁性下地層中のAr,Kr,
Xe等のスパッタガス濃度が前記磁性層中よりも低濃度
である磁気記録媒体。
10. Claims 1, 2, 3, 4, 5, 6, 7, 8
Alternatively, in 9, the Ar, Kr,
A magnetic recording medium in which the concentration of sputtering gas such as Xe is lower than that in the magnetic layer.
【請求項11】請求項1,2,3,4,5,6,7,
8,9または10において、前記磁性層を非磁性中間層
で分割した多層構造である磁気記録媒体。
11. Claims 1, 2, 3, 4, 5, 6, 7,
8. A magnetic recording medium having a multilayer structure according to 8, 9 or 10 in which the magnetic layer is divided by a non-magnetic intermediate layer.
【請求項12】請求項1,2,3,4,5,6,7,
8,9,10または11において、前記磁気記録媒体を
記録方向に駆動する駆動部と、前記磁気記録媒体のそれ
ぞれの面に対向して配置された磁気ヘッドと、前記磁気
ヘッドを前記磁気記録媒体に対して相対運動させる手段
と、前記磁気ヘッドへの入力信号と前記磁気ヘッドから
の出力信号を波形処理する記録再生信号処理系とを含む
磁気記憶装置。
12. Claims 1, 2, 3, 4, 5, 6, 7,
8, 9, 10 or 11, a drive unit for driving the magnetic recording medium in the recording direction, a magnetic head arranged to face each surface of the magnetic recording medium, and the magnetic head for the magnetic recording medium. And a recording / reproducing signal processing system for waveform-processing an input signal to the magnetic head and an output signal from the magnetic head.
【請求項13】請求項12において、前記磁気ヘッドが
記録専用の誘導型磁気ヘッドと、再生専用の磁気抵抗効
果を利用した磁気ヘッドとを組み合わせた記録再生分離
型ヘッドである磁気記憶装置。
13. The magnetic storage device according to claim 12, wherein the magnetic head is a recording / reproducing separated type head in which an inductive magnetic head dedicated to recording and a magnetic head utilizing a magnetoresistive effect dedicated to reproducing are combined.
【請求項14】請求項13において、少なくとも磁極の
一部に1.2T 以上の飽和磁束密度を有する磁性材料を
用いた前記記録専用の誘導型磁気ヘッドと、前記磁気抵
抗効果を利用した再生専用の磁気ヘッドとを組み合わせ
た前記記録再生分離型ヘッドを用いた磁気記憶装置。
14. The induction type magnetic head for recording only, wherein at least a part of the magnetic pole is made of a magnetic material having a saturation magnetic flux density of 1.2 T or more, and reproduction only using the magnetoresistive effect. A magnetic storage device using the recording / reproducing separated type head in combination with the magnetic head of.
【請求項15】請求項12,13または14において、
最尤復号による信号処理回路、及び巨大磁気抵抗効果を
利用した磁気ヘッドの再生信号の非対称性を修正する回
路を組み合わせ、磁気ヘッドのスライダの浮上高さを
0.05μm 以下とする磁気記憶装置。
15. The method according to claim 12, 13 or 14,
A magnetic storage device in which a signal processing circuit by maximum likelihood decoding and a circuit for correcting an asymmetry of a reproduction signal of a magnetic head using a giant magnetoresistive effect are combined to set a flying height of a slider of the magnetic head to 0.05 μm or less.
JP1332994A 1994-02-07 1994-02-07 Magnetic recording medium and magnetic storage Pending JPH07225935A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP1332994A JPH07225935A (en) 1994-02-07 1994-02-07 Magnetic recording medium and magnetic storage
US08/380,792 US5650889A (en) 1994-02-07 1995-01-30 Magnetic recording medium containing heavy rare gas atoms, and a magnetic transducing system using the medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1332994A JPH07225935A (en) 1994-02-07 1994-02-07 Magnetic recording medium and magnetic storage

Publications (1)

Publication Number Publication Date
JPH07225935A true JPH07225935A (en) 1995-08-22

Family

ID=11830113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1332994A Pending JPH07225935A (en) 1994-02-07 1994-02-07 Magnetic recording medium and magnetic storage

Country Status (1)

Country Link
JP (1) JPH07225935A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2320361A (en) * 1996-12-11 1998-06-17 Silmag Sa Optimized recording medium-magnetic head assembly
JP2011018440A (en) * 2010-09-21 2011-01-27 Toshiba Corp Magnetic recording medium, magnetic recording device, and method for manufacturing magnetic recording medium

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2320361A (en) * 1996-12-11 1998-06-17 Silmag Sa Optimized recording medium-magnetic head assembly
GB2320361B (en) * 1996-12-11 2000-12-06 Silmag Sa Optimized recording medium-magnetic head assembly
JP2011018440A (en) * 2010-09-21 2011-01-27 Toshiba Corp Magnetic recording medium, magnetic recording device, and method for manufacturing magnetic recording medium

Similar Documents

Publication Publication Date Title
US5650889A (en) Magnetic recording medium containing heavy rare gas atoms, and a magnetic transducing system using the medium
US9728216B2 (en) Feromagnetically coupled magnetic recording media
US6372367B1 (en) Magnetic recording medium, method for producing the same and magnetic recording apparatus using the same
JPH11339240A (en) Magnetic recording medium and magnetic disk device
JP3892401B2 (en) Manufacturing method of disk substrate for perpendicular magnetic recording medium, and manufacturing method of perpendicular magnetic recording disk
JP2004303376A (en) Perpendicular magnetic recording medium, and magnetic recording/reproducing device using the same
JP2005339768A (en) Magnetic recording system using three-layer laminated medium having improved signal-to-noise ratio
JPH06349047A (en) Magnetic recording medium and magnetic storage device
JP3372101B2 (en) Magnetic recording medium, magnetic recording / reproducing device, and method of manufacturing magnetic recording medium
JPH07225935A (en) Magnetic recording medium and magnetic storage
JP3359706B2 (en) Magnetic recording media
JP3643536B2 (en) Perpendicular magnetic recording medium and magnetic storage device
WO1998006093A1 (en) Magnetic recording medium and magnetic storage device using the medium
JP2002324313A (en) Manufacturing method of magnetic recording medium
JP2001351226A (en) Magnetic recording medium, method for producing the same and magnetic recorder
JP2000339657A (en) Magnetic recording medium
JP2001250223A (en) Magnetic recording medium and magnetic recorder
WO1996027187A1 (en) Magnetic recording medium and magnetic storage device
JP2000348334A (en) Magnetic recording medium and magnetic disk device
JP2991688B2 (en) Magnetic recording medium and magnetic recording / reproducing device
JP2000123345A (en) Magnetic recording medium and magnetic disk device
US20060019125A1 (en) Magnetic recording medium and production method thereof as well as magnetic disc device
JP3658586B2 (en) Magnetic recording medium, method for manufacturing the same, and magnetic storage device
JP2549769B2 (en) Magnetic recording media
JP3275167B2 (en) Magnetic recording medium and magnetic storage device