JPH0722293A - Leadless chip solid electrolytic capacitor and production thereof - Google Patents

Leadless chip solid electrolytic capacitor and production thereof

Info

Publication number
JPH0722293A
JPH0722293A JP15046593A JP15046593A JPH0722293A JP H0722293 A JPH0722293 A JP H0722293A JP 15046593 A JP15046593 A JP 15046593A JP 15046593 A JP15046593 A JP 15046593A JP H0722293 A JPH0722293 A JP H0722293A
Authority
JP
Japan
Prior art keywords
resin
solid electrolytic
electrolytic capacitor
chip type
leadless chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15046593A
Other languages
Japanese (ja)
Other versions
JP2513410B2 (en
Inventor
Hiromichi Taniguchi
博通 谷口
Masashi Oi
正史 大井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP5150465A priority Critical patent/JP2513410B2/en
Publication of JPH0722293A publication Critical patent/JPH0722293A/en
Application granted granted Critical
Publication of JP2513410B2 publication Critical patent/JP2513410B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

PURPOSE:To prevent swelling and cracking by forming the exterior resin thinner on the mounting surface and sucking surface than on the side surface. CONSTITUTION:A capacitor element 5a planted with an anode lead 4a is masked on the outer peripheral surface thereof except two parallel surfaces, i.e., the mounting surface and the sucking surface. It is then subjected to electrostatic powder painting of powder resin and heat treated after the mask is removed thus forming a resin layer of 250mum thick. Subsequently, the anode lead and the surface opposing the lead planting surface are masked and subjected to electrostatic powder painting of powder resin. After removing the mask, it is heat treated to form a resin exterior 2b. Consequently, the resin layer is formed by 250mum thick on the mounting and sucking surfaces and by 125mum thick on the side surface. An anode electrode 1b and a cathode electrode 3b of solder layer are then formed on a conductor layer formed by applying a silver paste to the anode lead and the periphery thereof, and to the surface opposing the lead planting surface and the periphery thereof.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はチップ型固体電解コンデ
ンサおよびその製造方法に関し、特にリードレスチップ
型の樹脂外装形態とその外装方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a chip type solid electrolytic capacitor and a method of manufacturing the same, and more particularly to a leadless chip type resin outer package and its outer packaging method.

【0002】[0002]

【従来の技術】従来、表面実装にプリント配線板を取り
付けるチップ型固体電解コンデンサには図2に示すよう
にトランスファーモールド成形により絶縁樹脂外装し、
リード端子を用いて外部電極端子を導出したモールドタ
イプがあった。このタイプは外形寸法精度が高く実装性
に優れるという利点があったが、トランスファーモール
ド工法には成形できる樹脂外装厚の薄層化に限界がある
事と、リード端子を用いる事から外装寸法が大きくコン
デンサの体積効率が低いという欠点があった。
2. Description of the Related Art Conventionally, a chip type solid electrolytic capacitor for mounting a printed wiring board on a surface mount is covered with an insulating resin by transfer molding as shown in FIG.
There is a mold type in which the external electrode terminals are led out using the lead terminals. This type had the advantage of high accuracy in external dimensions and excellent mountability, but the transfer molding method has a limit to the thin resin outer layer thickness that can be molded, and since the lead terminals are used, the outer dimension is large. There is a drawback that the volumetric efficiency of the capacitor is low.

【0003】そこで、図3に示す特公昭61−3280
8にある様に、簡易外装法により外装しリード端子を用
いず直接外部電極端子を導出することにより外形寸法の
小型化と体積効率の向上をはかったリードレスの簡易外
装タイプがあるが、このタイプのリードレスチップ型固
体電解コンデンサは例えば特公昭61−35808の様
に静電塗装法を用いている為、図4に示す様に外装が全
ての面で均一な厚さとなっている。
Therefore, Japanese Patent Publication No. 6-3280 shown in FIG.
As shown in No. 8, there is a leadless simple exterior type in which the external dimensions are reduced and the volume efficiency is improved by directly applying external electrode terminals without using lead terminals by applying the external packaging method. Since the leadless chip type solid electrolytic capacitor of the type uses an electrostatic coating method as disclosed in, for example, Japanese Patent Publication No. 61-35808, the exterior has a uniform thickness on all surfaces as shown in FIG.

【0004】[0004]

【発明が解決しようとする課題】この従来のリードレス
チップ型固体電解コンデンサは前述の理由により樹脂外
装厚が全ての面で均一であるが、外装厚を決定づける条
件は三つあり第1は実装ハンドリング時の機械的ストレ
スからのコンデンサ素子の保護、第2は実装加熱時の熱
ストレスからの保護、そして第3はコンデンサ素子と外
部雰囲気との遮断である。この三条件が必要とする外装
厚は外装各面に対して異なるが、従来の製法及び構造で
は全ての面で外装厚が均一であるために上記条件中必要
とする最大の外装厚が全ての面に適用され、その結果体
積効率が低下するという問題点があった。
In this conventional leadless chip type solid electrolytic capacitor, the resin outer package thickness is uniform on all sides for the reasons described above, but there are three conditions that determine the outer package thickness. Protection of the capacitor element from mechanical stress at the time of handling, second is protection from thermal stress at the time of mounting heating, and third is isolation between the capacitor element and the external atmosphere. The exterior thickness required by these three conditions is different for each exterior surface, but since the exterior thickness is uniform on all surfaces in the conventional manufacturing method and structure, the maximum exterior thickness required under all the above conditions is However, there is a problem in that the volume efficiency is reduced as a result.

【0005】加えて、コンデンサ素子は水分を吸着し易
いが実装加熱時にガス化した水分の圧力は外装に遮断さ
れて上昇し、外装樹脂をのばしてフクレあるいはクラッ
チを生じさせるという問題点があった。
In addition, although the capacitor element easily adsorbs moisture, the pressure of the moisture gasified during mounting heating is blocked by the exterior and rises, and the exterior resin is extended to cause blisters or clutches. .

【0006】また、従来の製造方法では粉体塗装法を用
いているので塗装時に任意の面に対し他と差別して樹脂
外装厚をコントロールする事ができないという問題点が
あり、形成後の機械的あるいは薬品処理等による外装厚
のコントロールはコンデンサ素子損傷の恐れがあるため
に実施できないという問題点があった。
Further, since the powder coating method is used in the conventional manufacturing method, there is a problem in that it is not possible to control the resin exterior thickness on an arbitrary surface during coating in a manner different from other surfaces. However, there is a problem in that the thickness of the outer casing cannot be controlled because of the possibility of damage to the capacitor element due to mechanical or chemical treatment.

【0007】[0007]

【課題を解決するための手段】本発明のチップ型固体電
解コンデンサは弁作用金属を用いた陽極体表面に誘電体
層,固体電解質層,陰極導電体層を形成して成るコンデ
ンサ素子の陽極導出部と陰極導出部を除く全外周面上に
絶縁樹脂を被着,硬化して樹脂外装を形成し、その樹脂
外装から露出した陽極導出部とその周辺部および陰極導
出部とその周辺部にそれぞれ少なくとも1層以上の導電
体層を形成し陽極電極および陰極電極と成し全体を構成
するリードレスチップ型固体電解コンデンサにおいて樹
脂外装をその実装面および吸着面における厚みより側面
の厚みを小さくしている。
In the chip type solid electrolytic capacitor of the present invention, a dielectric element, a solid electrolyte layer, and a cathode conductor layer are formed on the surface of an anode body using a valve metal, and an anode of a capacitor element is led out. Part and the cathode lead-out portion are covered with an insulating resin and cured to form a resin exterior, and the anode lead-out portion and its peripheral portion exposed from the resin exterior and the cathode lead-out portion and its peripheral portion are exposed. In a leadless chip type solid electrolytic capacitor in which at least one or more conductor layers are formed to constitute an anode electrode and a cathode electrode, and the resin exterior is made to have a side surface thickness smaller than the mounting surface and the adsorption surface. There is.

【0008】また本発明の製造方法はコンデンサ素子の
少なくとも1面以上をマスクして絶縁樹脂を被着しマス
クを外した後、加熱硬化を行なう工程を少なくとも2回
以上繰り返して樹脂外装を形成する。
Further, in the manufacturing method of the present invention, after at least one surface of the capacitor element is masked, the insulating resin is applied and the mask is removed, the step of performing heat curing is repeated at least twice to form the resin exterior. .

【0009】[0009]

【実施例】次に本発明のリードレスチップ型固体電解コ
ンデンサおよびその製造方法について図面を参照して説
明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, a leadless chip type solid electrolytic capacitor of the present invention and a method for manufacturing the same will be described with reference to the drawings.

【0010】図1(a)は本発明の一実施例であるリー
ドレスチップ型固体電解コンデンサのプリント配線板へ
の表面実装時の斜視図であり、図1(b)は図1(a)
に示したリードレスチップ型化固電解コンデンサの縦断
面斜視図であり図1(c)は図1(a)に示したリード
レスチップ型固体電解コンデンサの横断面斜視図であ
る。
FIG. 1 (a) is a perspective view of a leadless chip type solid electrolytic capacitor according to an embodiment of the present invention when it is surface-mounted on a printed wiring board, and FIG. 1 (b) is FIG. 1 (a).
FIG. 1C is a vertical sectional perspective view of the leadless chip type solid electrolytic capacitor shown in FIG. 1, and FIG. 1C is a lateral sectional perspective view of the leadless chip type solid electrolytic capacitor shown in FIG. 1A.

【0011】図1(a)に示す様に、本発明のリードレ
スチップ型固体電解コンデンサは陽極電極1a,陰極電
極3aおよび樹脂外装2aにより構成され、特にプリン
ト配線板8に接着する面を実装面、これに対向する面を
吸着面とし上記2面を除く樹脂外装2面を側面と呼ぶこ
ととする。
As shown in FIG. 1 (a), the leadless chip type solid electrolytic capacitor of the present invention is composed of an anode electrode 1a, a cathode electrode 3a and a resin sheath 2a, and in particular, the surface to be adhered to the printed wiring board 8 is mounted. The surface and the surface opposite thereto are the suction surfaces, and the two resin exterior surfaces other than the above two surfaces are called the side surfaces.

【0012】図1(b)に示す様に、弁作用金属を用い
陽極リード4aを植立した陽極体上に公知の技術により
誘電体層,固体電解質層,陰極導電体層(以上図示略)
が順次形成されてコンデンサ素子5aが構成されてい
る。
As shown in FIG. 1 (b), a dielectric layer, a solid electrolyte layer, and a cathode conductor layer (these are not shown) are formed on the anode body in which the anode lead 4a is planted by using a valve metal by a known technique.
Are sequentially formed to form the capacitor element 5a.

【0013】次に予じめ実装面および吸着面となる事を
予定する互いに平行な2面を除くコンデンサ素子全外周
面にマスクを施し、エポキシ系粉体樹脂を用いて50K
V,5秒の条件で静電粉体塗装を行った後、マスクを外
し、100℃,5分の熱処理を行い250μm厚の樹脂
層を形成する。
Next, a mask is applied to the entire outer peripheral surface of the capacitor element except for the two parallel surfaces, which are expected to become the mounting surface and the suction surface, and epoxy resin powder is used for 50K.
After performing electrostatic powder coating under conditions of V and 5 seconds, the mask is removed and heat treatment is performed at 100 ° C. for 5 minutes to form a resin layer having a thickness of 250 μm.

【0014】つづいて新たに陽極リードと陽極リード植
立面の対向面にマスクを施しエポキシ系粉体樹脂を用い
て50KV,5秒の条件で静電粉体塗装を行った後マス
クを外し150℃,100分の熱処理を行って樹脂外装
2bを形成する。これによって実装面および吸着面での
樹脂層は250μm厚となり、側面での厚みは125μ
m厚とした。次に、陽極リードとその周辺部および陽極
リード植立面の対向面とその周辺部に銀ペーストを塗布
して150℃,30分の熱処理を行い導電体層(図示
略)を形成しつづいて260℃の溶融状態にある共晶は
んだ中に全体を浸漬し上記導電体層上にはんだ層(図示
略)を形成して陽極電極1b,陰極電極3bとなし、リ
ードレスチップ型固体電解コンデンサを構成する。
Next, a mask is newly provided on the opposite surface of the anode lead and the surface where the anode lead is erected, and electrostatic powder coating is performed using an epoxy-based powder resin under the conditions of 50 KV and 5 seconds, and then the mask is removed. Heat treatment is performed at 100 ° C. for 100 minutes to form the resin exterior 2b. As a result, the resin layer on the mounting surface and the suction surface is 250 μm thick, and the thickness on the side surface is 125 μm.
m thickness. Next, a silver paste is applied to the anode lead and its peripheral portion and the surface opposite to the anode lead embedding surface and its peripheral portion, and heat treatment is performed at 150 ° C. for 30 minutes to form a conductor layer (not shown). The whole is immersed in a eutectic solder in a molten state at 260 ° C. to form a solder layer (not shown) on the conductor layer to form an anode electrode 1b and a cathode electrode 3b. Configure.

【0015】この実施例と図3の特公昭61−3280
8にある従来例として全面250μm厚の外装樹脂外装
したサンプルを各々1000個用意しピーク温度240
℃のリフローによる実装試験を行い、外装のフクレ,ク
ラックの発生状態を観察した結果を表1に示す。
This embodiment and the Japanese Patent Publication No. 6-3280 shown in FIG.
As a conventional example in FIG. 8, 1000 samples each having a 250 μm-thick exterior resin coating were prepared, and a peak temperature of 240
Table 1 shows the results of observing the occurrence of blisters and cracks on the exterior of the packaging test by reflowing at ℃.

【0016】[0016]

【表1】 [Table 1]

【0017】この実施例では両側面の樹脂外装の厚みの
減少分として約250μmの寸法小型化効果があり、ま
た表1より外装のフクレ,クラック発生防止効果を有す
る事が明らかである。
In this embodiment, there is a size-reducing effect of about 250 μm as a reduction in the thickness of the resin outer casing on both sides, and it is clear from Table 1 that there is an effect of preventing blisters and cracks in the outer casing.

【0018】さらに実装面,吸着面はともに従来のまま
(約250μm)とし、両側面についてその厚みを10
0〜300μmの間で25μmきざみにサンプル製作
し、これを各1000個実装試験に供して外装のフク
レ,クラックの発生状態を観察した結果を図5に示す。
Further, both the mounting surface and the suction surface remain the same as before (about 250 μm), and the thickness of both side surfaces is 10
FIG. 5 shows the results of observing the state of occurrence of blisters and cracks on the exterior of each sample, which was produced by mounting a sample in the increments of 25 μm in the range of 0 to 300 μm.

【0019】但し実装はピーク温度240℃の温風リフ
ローにて行った。
However, mounting was performed by hot air reflow with a peak temperature of 240 ° C.

【0020】図5から明らかなごとく、側面の樹脂外装
厚を150μm以下とすることでクラックやフクレの発
生を防止できることがわかる。
As is apparent from FIG. 5, the occurrence of cracks and blisters can be prevented by setting the thickness of the side surface resin coating to 150 μm or less.

【0021】尚この効果は外装に於いて、側面の肉厚が
従来よりも薄く(約60%以下)通気性に優れるため実
装加熱時の圧力上昇が回避できることにより得られるも
のである。
This effect is obtained because the thickness of the side surface of the exterior is thinner than that of the conventional case (about 60% or less) and the air permeability is excellent, so that the pressure rise during mounting heating can be avoided.

【0022】一方、リードレスチップ型固体電解コンデ
ンサに於ける外装樹脂層の実装面及び吸着面での厚みは
自動実装機により実装されることを考えると、所定の厚
みが要求される。そこで、両側面は常に100μmの厚
みとして実装面及び吸着面の厚みと等しく、50〜30
0μmの間で25μmきざみにサンプル製作し、これを
各1000個実装機にかけて実装前後の漏れ電流不良発
生率を確認した。この結果を図6に示す。
On the other hand, in the leadless chip type solid electrolytic capacitor, the thickness of the mounting surface and the suction surface of the exterior resin layer is required to be a predetermined value in consideration of mounting by an automatic mounting machine. Therefore, the thickness of both side surfaces is always 100 μm, which is equal to the thickness of the mounting surface and the suction surface, and is 50 to 30 mm.
Samples were manufactured at intervals of 0 μm in steps of 25 μm, and each sample was mounted on 1000 mounting machines to confirm the occurrence rate of leakage current defects before and after mounting. The result is shown in FIG.

【0023】但し実装機の実装衝撃は1.8kgfであ
る。
However, the mounting impact of the mounting machine is 1.8 kgf.

【0024】図6から明らかなように、実装面および吸
着面における外装樹脂の厚みが175μmより薄くなる
と緩衝材としての効果を失い不良が発生するので、その
厚みは175μm以上でなければならないことがわか
る。側面は実装機による圧力が印加されないので薄くて
も問題はないが、100μm以上あることが望まれる。
As is apparent from FIG. 6, when the thickness of the exterior resin on the mounting surface and the suction surface is less than 175 μm, the effect as a cushioning material is lost and a defect occurs, so that the thickness must be 175 μm or more. Recognize. Since no pressure is applied by the mounting machine to the side surface, there is no problem even if it is thin, but it is desirable that the thickness is 100 μm or more.

【0025】以上のことをまとめると、外装樹脂の厚み
は実装面および吸着面において175μm以上であり、
側面において150μm以下とすることにより本発明の
目的とするリードレスチップ型固体電解コンデンサが得
られる。すなわち両者の厚みの差は75μm以上ある。
そして側面での厚みは実装面および吸着面の厚みの60
%以下であることが望ましい。
To summarize the above, the thickness of the exterior resin is 175 μm or more on the mounting surface and the suction surface,
By setting the side surface to 150 μm or less, the leadless chip type solid electrolytic capacitor intended by the present invention can be obtained. That is, the difference in thickness between the two is 75 μm or more.
The thickness on the side surface is 60 times the thickness of the mounting surface and the suction surface.
% Or less is desirable.

【0026】また外装形成手段として、粉体樹脂を用
い、空気の流れと機械的な振動とを与えることで生じる
粉体の流動化を利用し、加熱したコンデンサ素子を粉体
樹脂雰囲気中に浸漬することで被着する、いわゆる流動
浸漬法を用いて製造した本発明のリードレスチップ型固
体電解コンデンサに於いても同様の効果を確認した。
Further, as the exterior forming means, powdered resin is used, and fluidization of the powder generated by applying air flow and mechanical vibration is utilized to immerse the heated capacitor element in the powdered resin atmosphere. The same effect was confirmed also in the leadless chip type solid electrolytic capacitor of the present invention manufactured by using the so-called fluidized dipping method, which is deposited by the above.

【0027】また本実施例では外装に於いて側面2面の
肉厚をともに薄く形成したが、1面のみでもさらに約1
/2倍(従来の約1/4倍)の肉厚とすることでも同様
の効果が確認できた。
Further, in this embodiment, both the two side surfaces of the exterior are made thin, but even if only one surface is formed, it is about 1 more.
The same effect could be confirmed by making the thickness twice as much (about 1/4 of the conventional thickness).

【0028】[0028]

【発明の効果】以上説明したように本発明は、マスクを
2回用いて2度の塗装により外装を形成する事で外装厚
を各面ごとにコントロールする事が可能となり、且つ、
この製造方法を用い実装面,吸着面の外装厚に比して他
の2面を従来必要とすると考えられていた厚み(約25
0μm)より大幅に薄く(60%程度以下)する事で、
実装加熱時の通気性を改善し外装のフクレ,クラックの
発生を防止するという効果を有する。
As described above, according to the present invention, the exterior thickness can be controlled for each surface by forming the exterior by applying the mask twice and coating twice.
Using this manufacturing method, the thickness of the mounting surface and the suction surface, which are conventionally thought to require the other two surfaces (about 25
By making it much thinner (about 60% or less),
It has the effect of improving air permeability during mounting heating and preventing blisters and cracks on the exterior.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)は本発明の一実施例のリードレスチップ
型固体電解コンデンサのプリント配線板への表面実装時
の斜視図、(b)は(a)に示すリードレスチップ型固
体電解コンデンサの縦断面斜視図、(c)は(a)に示
すリードレスチップ型固体電解コンデンサの横断面斜視
図。
FIG. 1A is a perspective view of a leadless chip type solid electrolytic capacitor of one embodiment of the present invention when it is surface-mounted on a printed wiring board, and FIG. 1B is a leadless chip type solid electrolytic shown in FIG. FIG. 3C is a vertical cross-sectional perspective view of the capacitor, and FIG. 6C is a horizontal cross-sectional perspective view of the leadless chip type solid electrolytic capacitor shown in FIG.

【図2】従来のチップ型固体電解コンデンサの一例の断
面図。
FIG. 2 is a sectional view of an example of a conventional chip-type solid electrolytic capacitor.

【図3】従来のリードレスチップ型固体電解コンデンサ
の一例の縦断面図。
FIG. 3 is a vertical cross-sectional view of an example of a conventional leadless chip type solid electrolytic capacitor.

【図4】図3に示すリードレスチップ型固体電解コンデ
ンサの横断面図。
4 is a cross-sectional view of the leadless chip type solid electrolytic capacitor shown in FIG.

【図5】外装樹脂厚みと外装のフクレ,クラックの発生
との関係を示す特性図。
FIG. 5 is a characteristic diagram showing the relationship between the thickness of exterior resin and the occurrence of blisters and cracks on the exterior.

【図6】外装樹脂厚みと自動実装機による実装後の漏れ
電流不良発生率との関係を示す特性図。
FIG. 6 is a characteristic diagram showing the relationship between the external resin thickness and the leakage current defect occurrence rate after mounting by an automatic mounting machine.

【符号の説明】[Explanation of symbols]

1a,1b,1c 陽極電極 2a,2b,2c,2d,2e,2f 外装樹脂 3a,3b,3c,3d 陰極電極 4a,4b 陽極リード 5a,5b,5c,5d,5e コンデンサ素子 6 外部陽極リード 7 外部陰極リード 8 プリント配線板 9 陽極ランド 10 陰極ランド 1a, 1b, 1c Anode electrode 2a, 2b, 2c, 2d, 2e, 2f Exterior resin 3a, 3b, 3c, 3d Cathode electrode 4a, 4b Anode lead 5a, 5b, 5c, 5d, 5e Capacitor element 6 External anode lead 7 External cathode lead 8 Printed wiring board 9 Anode land 10 Cathode land

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 弁作用金属を用いた陽極体表面に誘電体
層,固体電解質層,陰極導電体層を形成して成るコンデ
ンサ素子の陽極導出部と陰極導出部を除く全外周面上に
絶縁樹脂を被着,硬化して樹脂外装を形成し、前記樹脂
外装から露出した陽極導出部とその周辺部および陰極導
出部とその周辺部にそれぞれ少なくとも1層以上の導電
体層を形成して陽極電極および陰極電極を形成したリー
ドレスチップ型固体電解コンデンサにおいて、前記樹脂
外装が少くとも2種以上の肉厚を有することを特徴とす
るリードレスチップ型固体電解コンデンサ。
1. A capacitor element formed by forming a dielectric layer, a solid electrolyte layer, and a cathode conductor layer on the surface of an anode body using a valve metal, and insulating the entire outer peripheral surface excluding the anode lead-out portion and the cathode lead-out portion. A resin is applied and cured to form a resin sheath, and at least one or more conductor layers are formed on the anode lead-out portion and its peripheral portion and the cathode lead-out portion and its peripheral portion exposed from the resin sheath, respectively, and the anode is formed. A leadless chip type solid electrolytic capacitor in which an electrode and a cathode electrode are formed, wherein the resin coating has a thickness of at least two kinds.
【請求項2】 前記樹脂外装のプリント配線板への実装
面とこれに平行な吸着面との肉厚に比して残る2面のう
ち少なくとも1面の肉厚が薄いことを特徴とする請求項
1記載のリードレスチップ型固体電解コンデンサ。
2. The thickness of at least one of the remaining two surfaces is smaller than the thickness of the mounting surface of the resin exterior on the printed wiring board and the suction surface parallel to the mounting surface. Item 2. A leadless chip type solid electrolytic capacitor according to item 1.
【請求項3】 前記薄い方の肉厚は厚い方の60%以下
であることを特徴とする請求項2記載のリードレスチッ
プ型固体電解コンデンサ。
3. The leadless chip type solid electrolytic capacitor according to claim 2, wherein the thin wall thickness is 60% or less of the thick wall thickness.
【請求項4】 前記コンデンサ素子の少なくとも1面以
上をマスクして絶縁樹脂を被着しマスクを外した後、加
熱硬化を行なう工程を少なくとも2回以上繰り返して樹
脂外装を形成する事を特徴とするリードレスチップ型固
体電解コンデンサの製造方法。
4. A resin exterior is formed by masking at least one surface or more of the capacitor element, applying an insulating resin, removing the mask, and then performing heat curing at least twice. Method for manufacturing leadless chip type solid electrolytic capacitor.
【請求項5】 前記絶縁樹脂の被着方法が粉体樹脂を用
い静電場を利用した静電粉体塗装法である事を特徴とす
る請求項4記載のリードレスチップ型固体電解コンデン
サの製造方法。
5. The production of a leadless chip type solid electrolytic capacitor according to claim 4, wherein the method of depositing the insulating resin is an electrostatic powder coating method using a powder resin and an electrostatic field. Method.
【請求項6】 前記絶縁樹脂の被着方法が粉体樹脂を用
い、空気の流れと機械的な振動とを与えることで生じる
粉体の流動化を利用し、加熱したコンデンサ素子を粉体
樹脂雰囲気中に浸漬することで被着する流動浸漬法であ
る事を特徴とする請求項4記載のリードレスチップ型固
体電解コンデンサの製造方法。
6. The method for depositing the insulating resin uses a powder resin, and the fluidization of the powder generated by applying a flow of air and mechanical vibration is used to make the heated capacitor element a powder resin. The method for producing a leadless chip type solid electrolytic capacitor according to claim 4, wherein the method is a fluidized dipping method in which the liquid dipping method is applied by dipping in an atmosphere.
JP5150465A 1993-06-22 1993-06-22 Leadless chip type solid electrolytic capacitor and manufacturing method thereof Expired - Fee Related JP2513410B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5150465A JP2513410B2 (en) 1993-06-22 1993-06-22 Leadless chip type solid electrolytic capacitor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5150465A JP2513410B2 (en) 1993-06-22 1993-06-22 Leadless chip type solid electrolytic capacitor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH0722293A true JPH0722293A (en) 1995-01-24
JP2513410B2 JP2513410B2 (en) 1996-07-03

Family

ID=15497516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5150465A Expired - Fee Related JP2513410B2 (en) 1993-06-22 1993-06-22 Leadless chip type solid electrolytic capacitor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2513410B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2412243A (en) * 2004-03-02 2005-09-21 Vishay Sprague Inc A surface mount chip capacitor
JP2009088307A (en) * 2007-10-01 2009-04-23 Nichicon Corp Solid electrolytic capacitor
JP2009117468A (en) * 2007-11-02 2009-05-28 Nichicon Corp Chip-like solid electrolytic capacitor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58182423U (en) * 1982-03-26 1983-12-05 日立コンデンサ株式会社 chip type capacitor
JPH0287613A (en) * 1988-09-26 1990-03-28 Nec Corp Manufacture of chip-type solid electrolytic capacitor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58182423U (en) * 1982-03-26 1983-12-05 日立コンデンサ株式会社 chip type capacitor
JPH0287613A (en) * 1988-09-26 1990-03-28 Nec Corp Manufacture of chip-type solid electrolytic capacitor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2412243A (en) * 2004-03-02 2005-09-21 Vishay Sprague Inc A surface mount chip capacitor
GB2412243B (en) * 2004-03-02 2008-02-13 Vishay Sprague Inc Surface mount chip capacitor
JP2009088307A (en) * 2007-10-01 2009-04-23 Nichicon Corp Solid electrolytic capacitor
JP2009117468A (en) * 2007-11-02 2009-05-28 Nichicon Corp Chip-like solid electrolytic capacitor

Also Published As

Publication number Publication date
JP2513410B2 (en) 1996-07-03

Similar Documents

Publication Publication Date Title
US6054755A (en) Semiconductor package with improved moisture vapor relief function and method of fabricating the same
CA1043189A (en) Fabrication techniques for multilayer ceramic modules
US5841192A (en) Injection molded ball grid array casing
JPH05129473A (en) Resin-sealed surface-mounting semiconductor device
KR100932006B1 (en) Method for manufacturing solid-state electronic component
US10461044B2 (en) Wafer level fan-out package and method of manufacturing the same
KR102068426B1 (en) Manufacturing method of ceramic packaging substrate with copper plating perimeter dam
JP2513410B2 (en) Leadless chip type solid electrolytic capacitor and manufacturing method thereof
KR19990013984A (en) Method for sealing electronic parts with resin
US9474162B2 (en) Circuit substrate and method of manufacturing same
JP2003101181A (en) Circuit board, production method therefor and electronic device
US4688322A (en) Solid electrolyte chip capacitor method
JPH02301183A (en) Manufacture of mounting type circuit component
TWM506375U (en) A die package using dielectric coated leads
JP3243943B2 (en) Manufacturing method of ceramic electronic components
US10269686B1 (en) Method of improving adhesion between molding compounds and an apparatus thereof
TWI550728B (en) Package structure and manufacturing method thereof
US10461004B2 (en) Integrated circuit substrate and method of producing thereof
KR101025775B1 (en) Lead frame and method of manufacturing semiconductor package using the same
JPH04260363A (en) Integrated circuit component and manufacture thereof
JP2570143B2 (en) Chip type solid electrolytic capacitor and method of manufacturing the same
JP2778441B2 (en) Chip type solid electrolytic capacitor and method of manufacturing the same
JPH09148105A (en) Electronic part and its manufacturing method
JP2001156208A (en) Producing method for semiconductor package
JP2000058374A (en) Electronic component and manufacture thereof

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960312

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090430

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100430

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees