JP2570143B2 - Chip type solid electrolytic capacitor and method of manufacturing the same - Google Patents

Chip type solid electrolytic capacitor and method of manufacturing the same

Info

Publication number
JP2570143B2
JP2570143B2 JP5280992A JP28099293A JP2570143B2 JP 2570143 B2 JP2570143 B2 JP 2570143B2 JP 5280992 A JP5280992 A JP 5280992A JP 28099293 A JP28099293 A JP 28099293A JP 2570143 B2 JP2570143 B2 JP 2570143B2
Authority
JP
Japan
Prior art keywords
lead
anode
resin layer
solid electrolytic
anode lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5280992A
Other languages
Japanese (ja)
Other versions
JPH07135125A (en
Inventor
博通 谷口
節 向野
大輔 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP5280992A priority Critical patent/JP2570143B2/en
Publication of JPH07135125A publication Critical patent/JPH07135125A/en
Application granted granted Critical
Publication of JP2570143B2 publication Critical patent/JP2570143B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、チップ型固体電解コン
デンサおよびその製造方法に関し、特に、コンデンサ素
子に外装を施した後に、陽極端子及び陰極端子を外装上
に形成すると同時にコンデンサ素子の陽極リード及び陰
極導電体とそれぞれ接続して得られる型のチップ型固体
電解コンデンサ及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a chip-type solid electrolytic capacitor and a method of manufacturing the same, and more particularly, to a method of forming an anode terminal and a cathode terminal on an exterior of a capacitor element after forming the exterior of the capacitor element and simultaneously forming an anode lead of the capacitor element. And a chip-type solid electrolytic capacitor obtained by being connected to a cathode conductor and a method for manufacturing the same.

【0002】[0002]

【従来の技術】従来のチップ型固体電解コンデンサは図
6に示す様に、公知の技術によって製造したコンデンサ
素子3の両端に外部陽・陰極リード14,13を接続し
た後、トランスファーモールド成型などにより外装して
組み立てている。しかし、この構造のチップ型固体電解
コンデンサは外装樹脂層12Aと陽・陰極リード端子1
4,13との接続部分に体積をとられるために体積効率
が低い。
2. Description of the Related Art As shown in FIG. 6, a conventional chip-type solid electrolytic capacitor is formed by connecting external positive and negative leads 14 and 13 to both ends of a capacitor element 3 manufactured by a known technique, and then performing transfer molding or the like. It is assembled with the exterior. However, the chip-type solid electrolytic capacitor of this structure has the exterior resin layer 12A and the positive / negative lead terminal 1A.
The volume efficiency is low because the volume is taken up at the connection portion with 4,13.

【0003】このようなことから、体積効率を高めコン
デンサを小型化するために、まず先にコンデンサ素子に
外装を施してから、その外装樹脂上に外部の回路との接
続端子となる陽極端子と陰極端子とを形成し、それら両
端子を形成するとき同時に、両端子とコンデンサ素子の
陽極リード及び陰極導電体とをそれぞれ接続してしまう
構造の、いわゆるリードレスタイプのチップ型固体電解
コンデンサが幾つか提案されている。
[0003] In view of the above, in order to increase the volumetric efficiency and reduce the size of the capacitor, first, the capacitor element is provided with an exterior, and then the anode terminal, which serves as a connection terminal to an external circuit, is provided on the exterior resin. A so-called leadless type chip-type solid electrolytic capacitor having a structure in which a cathode terminal is formed, and both terminals are simultaneously connected to the anode lead and the cathode conductor of the capacitor element when forming both terminals. Or has been proposed.

【0004】例えば、特公昭61−31609号公報
(特願昭56−159229号公報。以下、第1の公報
と記す)には、図7に断面図を示すように、導電体層1
7,めっき層18及びはんだ層8からなる三層構造の陽
・陰極端子が外装樹脂層12B上に形成されている構造
のチップ型固体電解コンデンサが開示されている。陽・
陰極端子は、コンデンサ側面の外装樹脂層12B上と素
子3の端面上に形成されており、この端面部分で、陽極
リード1の突出部及び素子の陰極導体部分に接続してい
る。
[0004] For example, Japanese Patent Publication No. 61-31609 (Japanese Patent Application No. 56-159229, hereinafter referred to as the first publication) discloses a conductor layer 1 as shown in the sectional view of FIG.
A chip-type solid electrolytic capacitor having a structure in which a positive / negative terminal having a three-layer structure composed of a plating layer 18 and a solder layer 8 is formed on an exterior resin layer 12B is disclosed. Sun
The cathode terminal is formed on the exterior resin layer 12B on the side of the capacitor and on the end face of the element 3, and is connected to the protruding portion of the anode lead 1 and the cathode conductor of the element at this end face.

【0005】又、特開平4−99011号公報(特願平
2−208507号公報。以下、第2の公報と記す)に
は、図8に断面図を示すように、上記第1の公報記載の
チップ型固体電解コンデンサと同様の構造で、陽極端子
がめっき層18とはんだ層8とからなる二層構造、陰極
端子が導電体層17とめっき層18とはんだ層8からな
る三層構造の電解コンデンサが開示されている。
Further, Japanese Patent Application Laid-Open No. Hei 4-99011 (Japanese Patent Application No. 2-208507, hereinafter referred to as a second publication) describes the first publication as shown in the sectional view of FIG. The anode terminal has the same structure as that of the chip-type solid electrolytic capacitor described above, and the anode terminal has a two-layer structure including the plating layer 18 and the solder layer 8, and the cathode terminal.
The terminals consist of the conductor layer 17, the plating layer 18, and the solder layer 8.
Disclosed is a three-layer electrolytic capacitor.

【0006】上記二つの公報に記載されたチップ型の固
体電解コンデンサはいずれも、コンデンサ素子3に植立
された陽極リード1が外装樹脂層12Bから更に飛び出
しており、この外装樹脂層外部に突出した部分で、外部
の回路との接続端子となる陽極端子と接続されている。
従って、体積効率という点からは、この陽極リード1の
外装樹脂層12Bからの突出部分に改良を加えれば、効
率をもっと高めることができる余地がある。
In each of the chip-type solid electrolytic capacitors described in the above two publications, the anode lead 1 implanted in the capacitor element 3 further protrudes from the exterior resin layer 12B and projects outside the exterior resin layer. This portion is connected to an anode terminal serving as a connection terminal for an external circuit.
Therefore, from the viewpoint of volumetric efficiency, there is room for further improving the efficiency by improving the protruding portion of the anode lead 1 from the exterior resin layer 12B.

【0007】実開平2−137025号公報(実願平1
−43732号公報。以下、第3の公報と記す)には、
図9に断面図を示すように、上記陽極リードの外装樹脂
層からの突出部分を無くして更に体積効率の上昇を図っ
たチップ型電解コンデンサが開示されている。この公報
記載の固体電解コンデンサでは、コンデンサ素子3形成
直後に陽極リード1を切断して素子端面からの突出部分
を無くし、その切断露出面上に導電体層17,めっき層
18及びはんだ層8からなる三層構造の陽極端子を形成
することによって、陽極リード15と陽極端子とを接続
している。
[0007] Japanese Utility Model Application Laid-Open No. 2-137025 (Jpn.
-43732. Hereinafter, referred to as a third publication)
As shown in the cross-sectional view of FIG. 9, there is disclosed a chip-type electrolytic capacitor in which the projecting portion of the anode lead from the exterior resin layer is eliminated to further increase the volumetric efficiency. In the solid electrolytic capacitor described in this publication, the anode lead 1 is cut immediately after the formation of the capacitor element 3 to eliminate a protruding portion from the element end face, and the conductor layer 17, the plating layer 18 and the solder layer 8 By forming an anode terminal having a three-layer structure, the anode lead 15 and the anode terminal are connected.

【0008】[0008]

【発明が解決しようとする課題】前述した三つの公報に
開示されたチップ型固体電解コンデンサには、その電極
端子の構造により下記の問題点があった。
The chip-type solid electrolytic capacitors disclosed in the above three publications have the following problems due to the structure of the electrode terminals.

【0009】(1)陽極リード1と陽極端子との接続を
外装樹脂層12Bの表面で行っているので、接続信頼性
を確保するためには0.3mm〜0.5mmの陽極リー
ド突出長が必要であるが、この突出のためにコンデンサ
としての体積効率が7%〜15%低下する。
(1) Since the connection between the anode lead 1 and the anode terminal is made on the surface of the exterior resin layer 12B, the projection length of the anode lead of 0.3 mm to 0.5 mm is required to secure the connection reliability. Although necessary, this protrusion reduces the volumetric efficiency of the capacitor by 7% to 15%.

【0010】(2)コンデンサ素子3の陰極導電体層表
面の一部を外装樹脂層から露出させる為に、静電粉体塗
装法による外装樹脂層の形成工程に於いて予めマスキン
グして粉体樹脂がその部分に付着しないようにするか、
または、塗装後にエアブロー等によって付着した粉体樹
脂を除去する事が必要となるので、製造工数が増大し、
コストが上昇する。
(2) In order to expose a part of the surface of the cathode conductor layer of the capacitor element 3 from the exterior resin layer, the powder is formed by masking in advance in the step of forming the exterior resin layer by the electrostatic powder coating method. Do not allow the resin to adhere to that area,
Or, it is necessary to remove the powder resin adhered by air blow or the like after painting, so the number of manufacturing steps increases,
Costs rise.

【0011】(3)実開平2−137025号公報記載
の様なコンデンサでは、陽極リード切断を工程の初期に
行うので、その後の処理が単品処理となる事、また高い
加工精度を要求される事から、更に工数の増大、コスト
上昇を行う。
(3) In a capacitor as disclosed in Japanese Utility Model Laid-Open No. 2-137025, the anode lead is cut at an early stage of the process, so that the subsequent process is a single-piece process and high processing accuracy is required. Therefore, the number of steps and the cost are further increased.

【0012】従って、本発明は、陽極リードの外装端面
からの突出のない、体積効率の高いチップ型固体電解コ
ンデンサを安価に提供することを目的とするものであ
る。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a chip-type solid electrolytic capacitor having high volumetric efficiency, which does not protrude from the outer end surface of the anode lead, at a low cost.

【0013】[0013]

【課題を解決するための手段】本発明のチップ型固体電
解コンデンサは、一方の端面から陽極リードが導出され
た弁作用金属からなる陽極体に前記弁作用金属の酸化皮
膜、固体電解質層及び陰極導電体層をこの順に形成して
なるコンデンサ素子と、前記コンデンサ素子の外面を、
前記陽極リードが導出される側の端面にあってはその端
面上に形成された溌水性樹脂層を介して覆う外装樹脂層
と、前記外装樹脂層の前記陽極リード導出側の端面及び
その端面に連なる側面端部の上に形成されて外部の回路
との接続端子となる陽極端子と、前記外装樹脂層の前記
陽極リード導出側の端面に対向する側の端面及びその対
向する側の端面に連なる側面端部の上に形成されて外部
の回路との接続端子となる陰極端子とを含むチップ型固
体電界コンデンサにおいて、前記陽極端子が、少くと
も、前記コンデンサ素子の前記陽極リード導出面を含む
部分上に形成された前記外装樹脂層内の連続する空孔内
に充填された第1の接続用導電体により、前記陽極リー
ドに接続され、前記陰極端子が、前記コンデンサ素子の
前記陽極リード導出面に対向する面を含む部分上に形成
された前記外装樹脂層内の連続する空孔内に充填された
第2の接続用導電体により、前記陰極導電体層に接続さ
れていることを特徴とする。
According to the present invention, there is provided a chip-type solid electrolytic capacitor comprising an anode body made of a valve action metal having an anode lead extending from one end face, an oxide film of the valve action metal, a solid electrolyte layer and a cathode. A capacitor element formed by forming a conductor layer in this order, and the outer surface of the capacitor element,
The end face of the side from which the anode lead is led out
An exterior resin layer covering through a water-repellent resin layer formed on the surface, an end face of the exterior resin layer on the anode lead lead-out side and
An anode terminal to which the connection terminal with an external circuit is formed on the side end portion continuous to the end face, the said exterior resin layer
The end face on the side opposite to the end face on the anode lead lead-out side and its pair
A chip-type solid electrolytic capacitor including a cathode terminal formed on a side end connected to an end surface on the opposite side and serving as a connection terminal for an external circuit, wherein the anode terminal is at least the capacitor element. The first connection conductor filled in continuous holes in the exterior resin layer formed on the portion including the anode lead lead-out surface is connected to the anode lead, and the cathode terminal is connected to the capacitor. The element is connected to the cathode conductor layer by a second connection conductor filled in continuous holes in the exterior resin layer formed on a portion including a surface opposite to the anode lead lead-out surface of the element. It is characterized by having been done.

【0014】上記チップ型固体電解コンデンサは、一方
の面から陽極リードが導出された弁作用金属からなる陽
極体に前記弁作用金属の酸化皮膜、固体電解質層及び陰
極導電体層をこの順に形成してコンデンサ素子を形成す
る工程と、静電粉体塗装法を用い前記陽極リードの所定
部分を除く前記コンデンサ素子の全外周面上に粉体樹脂
を付着させた後この粉体樹脂のゲル化温度より低い温度
で熱処理することによって、連続する空孔を内部に含む
外装樹脂層を形成する第1の外装形成工程と、前記コン
デンサ素子の前記陽極リード導出面を含む部分及び前記
陽極リード導出面に対向する面を含む部分上の前記外装
樹脂層内の前記空孔に接続用導電体を充填する第1の電
極端子形成工程と、前記粉体樹脂のゲル化温度より高い
温度で熱処理することにより、前記外装樹脂層の前記接
続用導電体が充填された以外の部分の前記空孔を消滅さ
せ密にさせる第2の外装形成工程と、前記外装樹脂層の
前記陽極リード導出面側の端面及び端部側面を含む部分
上に少くとも一層以上の導電体層からなる陽極端子を形
成し、前記外装樹脂層の前記陽極リード導出面に対向す
る面側の端面及び端部側面を含む部分上に少くとも一層
以上の導電体層からなる陰極端子を形成する第2の電極
端子形成工程とを含む製造方法によって製造される。
The chip-type solid electrolytic capacitor has an oxide film of the valve action metal, a solid electrolyte layer and a cathode conductor layer formed in this order on an anode body made of a valve action metal having an anode lead led out from one surface. Forming a capacitor element by applying a powdered resin onto the entire outer peripheral surface of the capacitor element except for a predetermined portion of the anode lead using an electrostatic powder coating method, and then forming a gelling temperature of the powdered resin. By performing a heat treatment at a lower temperature, a first exterior forming step of forming an exterior resin layer including continuous pores therein, and a portion including the anode lead lead-out surface and the anode lead lead-out surface of the capacitor element. A first electrode terminal forming step of filling the holes in the exterior resin layer on the portion including the opposing surface with a conductor for connection, and performing a heat treatment at a temperature higher than the gelling temperature of the powder resin With this, a second exterior forming step of eliminating and densely forming the voids in a portion of the exterior resin layer other than the portion filled with the connection conductor, and a step of forming the exterior resin layer on the side of the anode lead lead-out surface. Forming an anode terminal comprising at least one or more conductor layers on a portion including the end surface and the end side surface, and a portion including the end surface and the end side surface on the side of the exterior resin layer facing the anode lead lead-out surface; A second electrode terminal forming step of forming a cathode terminal comprising at least one or more conductor layers thereon.

【0015】[0015]

【実施例】次に、本発明の好適な実施例について、図面
を参照して説明する。図1(a)は、本発明の第1の実
施例の断面図である。又、図1(b)は、本発明の第2
の実施例の断面図である。
Next, a preferred embodiment of the present invention will be described with reference to the drawings. FIG. 1A is a sectional view of a first embodiment of the present invention. FIG. 1B shows a second embodiment of the present invention.
It is sectional drawing of the Example of FIG.

【0016】図1(a)を参照すると、本発明の第1の
実施例によるチップ型固体電解コンデンサは、陽極リー
ド1が外装樹脂層(カーボン充填部5。後述)から突出
していない点が上記第1の公報及び第2の公報記載の固
体電解コンデンサとは異なっている。更に、導電体層7
及びはんだ層8の二層からなる陽・陰極端子が、カーボ
ン充填部5を介して、陽極リード1及びコンデンサ素子
3の陰極側導電体にそれぞれ接続している点が、前述し
た第3の公報記載の固体電解コンデンサとも異ってい
る。
Referring to FIG. 1A, the chip-type solid electrolytic capacitor according to the first embodiment of the present invention is characterized in that the anode lead 1 does not protrude from the exterior resin layer (carbon filling portion 5; described later). This is different from the solid electrolytic capacitors described in the first and second publications. Further, the conductor layer 7
The third publication discloses that the positive / negative terminal composed of two layers of the solder layer 8 is connected to the anode lead 1 and the cathode-side conductor of the capacitor element 3 via the carbon filling portion 5, respectively. It is also different from the described solid electrolytic capacitor.

【0017】又、図1(b)を参照すると、本発明の第
2の実施例は、第1の実施例に対して、カーボン充填部
5に替えてめっき充填部11が用いられ、陽・陰極端子
がはんだ層8の一層構造となっている点で異っている
が、それぞれの作用は第1の実施例におけると同様であ
る。
Referring to FIG. 1 (b), the second embodiment of the present invention differs from the first embodiment in that a plating filling portion 11 is used instead of the carbon filling portion 5, and The difference is that the cathode terminal has a single-layer structure of the solder layer 8, but the respective operations are the same as in the first embodiment.

【0018】以下に、これら実施例の製造工程につい
て、先ず第1の実施例の製造工程から説明する。図2
(a)から図3(b)は、本発明の第1の実施例の断面
を製造工程順に示す図である。
Hereinafter, the manufacturing steps of these embodiments will be described first, starting from the manufacturing steps of the first embodiment. FIG.
FIGS. 3A to 3B are views showing a cross section of the first embodiment of the present invention in the order of manufacturing steps.

【0019】初めに、従来公知の方法により、陽極リー
ド1を植立したタンタルから成る陽極体上に撥水性樹脂
層2、酸化タンタル皮膜層、固体電解質層及び陰極導電
体層(以上、図示省略)を順次形成して、図2(a)に
示すようなコンデンサ素子3を得る。
First, a water-repellent resin layer 2, a tantalum oxide film layer, a solid electrolyte layer, and a cathode conductor layer (not shown) are formed on a tantalum anode body having an anode lead 1 planted thereon by a conventionally known method. ) Are sequentially formed to obtain a capacitor element 3 as shown in FIG.

【0020】次に、図2(b)に示す様に、コンデンサ
素子3の全外周面上に50〜200μmにメッシュカッ
トしたエポキシ粉体樹脂4を静電塗装法を用いて100
〜300μmの厚さ付着させた後、85〜125℃の雰
囲気中で60〜100秒間加熱する。このとき、粉体樹
脂は、図2(b)中の拡大断面図に示すように、粉体粒
子間に5〜15μmの空孔を保持したままで互いの表面
が接着し合う。
Next, as shown in FIG. 2B, an epoxy powder resin 4 mesh-cut to 50 to 200 μm is coated on the entire outer peripheral surface of the capacitor element 3 by an electrostatic coating method.
After depositing a thickness of 300300 μm, it is heated in an atmosphere at 85 to 125 ° C. for 60 to 100 seconds. At this time, as shown in the enlarged sectional view in FIG. 2B, the surfaces of the powder resin adhere to each other while maintaining the pores of 5 to 15 μm between the powder particles.

【0021】次に、図3(a)に示す様に、1μm以下
にメッシュカットしたカーボン粉末を界面活性剤を用い
て水に拡散させたカーボン液を、陽極リード1周辺部お
よびその対向面(紙面下側の端面)上に塗布した後、室
温で30〜60分間自然乾燥させる。このとき、カーボ
ン粉末が粉体樹脂層内の空孔内に入り込み、カーボン充
填部5が形成される。つづいて150〜160℃の雰囲
気中で30〜60分間加熱すると粉体樹脂はゲル化し、
カーボン充填部5を除く部分の空孔が消滅して完全硬化
し、100〜200μm厚の絶縁外装樹脂層6が形成さ
れる。
Next, as shown in FIG. 3A, a carbon liquid obtained by diffusing carbon powder mesh-cut to 1 μm or less into water using a surfactant is applied to the periphery of the anode lead 1 and its facing surface ( After coating on the lower end surface of the paper), air-dry at room temperature for 30 to 60 minutes. At this time, the carbon powder enters the pores in the powder resin layer, and the carbon filled portion 5 is formed. Subsequently, when heated in an atmosphere of 150 to 160 ° C. for 30 to 60 minutes, the powder resin gels,
The voids in the portion excluding the carbon filling portion 5 disappear and are completely cured, and the insulating exterior resin layer 6 having a thickness of 100 to 200 μm is formed.

【0022】次に、図3(b)に示す様に、陽極リード
1周辺部と素子の端部側面上および陽極リード導出面と
は反対の面とその端部側面上の外装樹脂層上に銀ペース
トを塗布し、150〜160℃の雰囲気中で30〜60
分間加熱硬化して10〜30μm厚の導電体層7を形成
する。その後、240℃の共晶はんだ浴により10〜3
0μm厚のはんだ層8を形成して陽・陰極端子とする。
Next, as shown in FIG. 3 (b), the outer peripheral resin layer on the peripheral portion of the anode lead 1 and on the side surface of the end of the element and on the surface opposite to the anode lead lead-out surface and on the side surface of the end portion. Apply silver paste, and in an atmosphere of 150 to 160 ° C, 30 to 60
Heat curing for 10 minutes to form a conductive layer 7 having a thickness of 10 to 30 μm. Then, 10 to 3 is applied by a eutectic solder bath at 240 ° C.
A positive / negative terminal is formed by forming a solder layer 8 having a thickness of 0 μm.

【0023】最後に陽極リード1を切断して、図1
(a)に示す第1の実施例のチップ型タンタル固体電解
コンデンサを完成する。
Finally, the anode lead 1 is cut, and FIG.
A chip type tantalum solid electrolytic capacitor of the first embodiment shown in FIG.

【0024】次に、第2の実施例について説明する。図
4(a)〜図5(b)は本発明の第2の実施例のチップ
型固体電解コンデンサの断面を製造工程順に示す断面図
である。先ず、第1の実施例と同様にして、従来公知の
方法によりタンタルのコンデンサ素子3を得る(図4
(a))。
Next, a second embodiment will be described. FIGS. 4A to 5B are cross-sectional views showing a cross section of a chip-type solid electrolytic capacitor according to a second embodiment of the present invention in the order of manufacturing steps. First, in the same manner as in the first embodiment, a tantalum capacitor element 3 is obtained by a conventionally known method (FIG. 4).
(A)).

【0025】次に、図4(b)に示す様に、コンデンサ
素子3の肩部周辺にエポキシ液状樹脂を幅1〜1.5m
mで帯状に塗布し、120〜150℃の雰囲気中で30
〜60分間加熱して完全硬化させ10〜20μm厚の絶
縁樹脂層9を形成する。
Next, as shown in FIG. 4B, an epoxy liquid resin is applied around the shoulder of the capacitor element 3 to a width of 1 to 1.5 m.
m in a band shape, and in an atmosphere of 120 to 150 ° C for 30 minutes.
Heat it for ~ 60 minutes to completely cure it to form an insulating resin layer 9 having a thickness of 10-20 µm.

【0026】次に、図5(a)に示す様に、第1の実施
例と同様にしてエポキシ粉体樹脂4を付着させ、加熱処
理して粉体粒子間の空孔を残して表面どうしを接着させ
る。
Next, as shown in FIG. 5 (a), the epoxy powder resin 4 is adhered in the same manner as in the first embodiment, and is heat-treated to leave the pores between the powder particles and to keep the surfaces together. To adhere.

【0027】次に、図5(b)に示す様に、パラジウム
アミン化合物を酢酸ブチルに溶解させためっき触媒付与
剤を陽極リード1周辺部とその端部側面および陽極リー
ド導出面に対向する面とその端部側面上に塗布し30分
以上室温乾燥した後、無電解ニッケルめっき浴を行って
5〜10μm厚のめっき層10を形成する。つづいて第
1の実施例と同様に、150〜160℃の雰囲気中で加
熱してめっき層10を除く部分の空孔を消滅させて10
0〜200μm厚の絶縁外装樹脂層6を形成する。
Next, as shown in FIG. 5 (b), a plating catalyst imparting agent obtained by dissolving a palladium amine compound in butyl acetate is applied to the periphery of the anode lead 1 and the side surface of the end and the surface facing the anode lead lead-out surface. And dried at room temperature for 30 minutes or more, and then electroless nickel plating bath is performed to form a plating layer 10 having a thickness of 5 to 10 μm. Then, similarly to the first embodiment, heating is performed in an atmosphere at 150 to 160 ° C. to eliminate holes in a portion except for the plating layer 10, thereby obtaining 10.
The insulating sheath resin layer 6 having a thickness of 0 to 200 μm is formed.

【0028】つづいて240℃の共晶はんだ浴により1
0〜30μm厚のはんだ層8を形成し、陽・陰極端子と
する。
Then, the eutectic solder bath at 240 ° C.
A solder layer 8 having a thickness of 0 to 30 μm is formed to serve as a positive / negative terminal.

【0029】最後に陽極リード1を切断して、図1
(b)に示す第2の実施例のチップ型タンタル固体電解
コンデンサを完成する。
Finally, the anode lead 1 is cut, and FIG.
A chip-type tantalum solid electrolytic capacitor according to the second embodiment shown in FIG.

【0030】表1に、本発明の第1および第2の実施例
によるチップ型固体電解コンデンサ並びに従来の技術に
よるコンデンサのそれぞれついて、体積効率と製造工数
とを比較して示す。尚、同表において、従来例1〜従来
例4とは、下記のチップ型固体電解コンデンサを意味す
る。 従来例1…トランスファモールド成形により得られるチ
ップ型固体電解コンデンサ(図6参照)。 従来例2…第1の公報に開示されたチップ型固体電解コ
ンデンサ(図7参照)。 従来例3…第2の公報に開示されたチップ型固体電解コ
ンデンサ(図8参照)。 従来例4…第3の公報に開示されたチップ型固体電解コ
ンデンサ(図9参照)。
Table 1 shows a comparison between the volume efficiency and the number of manufacturing steps for each of the chip-type solid electrolytic capacitors according to the first and second embodiments of the present invention and the conventional capacitor. In the table, Conventional Examples 1 to 4 mean the following chip-type solid electrolytic capacitors. Conventional Example 1 A chip-type solid electrolytic capacitor obtained by transfer molding (see FIG. 6). Conventional Example 2 A chip-type solid electrolytic capacitor disclosed in the first publication (see FIG. 7). Conventional Example 3 A chip-type solid electrolytic capacitor disclosed in the second publication (see FIG. 8). Conventional example 4 ... A chip type solid electrolytic capacitor disclosed in the third publication (see FIG. 9).

【0031】尚また、表1に示す数値は体積効率及び製
造工数とも、従来例1における値を100としたときの
値である。
The numerical values shown in Table 1 are values when both the volume efficiency and the number of manufacturing steps are set to 100 in the conventional example 1.

【0032】[0032]

【表1】 [Table 1]

【0033】表1を参照すると、本発明の第1の実施例
及び第2の実施例ともに、いずれの従来例よりも体積効
率が向上し製造工数が削減されていることがわかる。
Referring to Table 1, it can be seen that both the first embodiment and the second embodiment of the present invention have improved volumetric efficiency and reduced the number of manufacturing steps as compared with any of the conventional examples.

【0034】[0034]

【発明の効果】以上説明した様に、本発明は陽極リード
と陽極端子の接続を外装樹脂層の厚さ分の中で行ってい
るので、陽極リード突出部を必要としない。従って、寸
法の短縮化が可能となり体積効率が向上する。
As described above, according to the present invention, since the connection between the anode lead and the anode terminal is made within the thickness of the exterior resin layer, no anode lead protrusion is required. Therefore, the size can be reduced, and the volume efficiency is improved.

【0035】更に、陰極取り出し部を絶縁外装樹脂層か
ら露出させるためのマスキング工程等が不要となるの
で、製造工数の削減、コストダウンが可能である。
Further, since a masking step or the like for exposing the cathode extraction portion from the insulating sheath resin layer is not required, the number of manufacturing steps and cost can be reduced.

【0036】本発明によれば、体積効率に優れた小型の
チップ型固体電解コンデンサを安価に提供できる。
According to the present invention, a small chip type solid electrolytic capacitor having excellent volume efficiency can be provided at low cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例によるチップ型固体電解
コンデンサ及び第2の実施例によるチップ型固体電解コ
ンデンサの断面図である。
FIG. 1 is a sectional view of a chip type solid electrolytic capacitor according to a first embodiment of the present invention and a chip type solid electrolytic capacitor according to a second embodiment.

【図2】本発明の第1の実施例によるチップ型固体電解
コンデンサの断面を製造工程順に示す図である。
FIG. 2 is a view showing a cross section of the chip-type solid electrolytic capacitor according to the first embodiment of the present invention in the order of manufacturing steps.

【図3】本発明の第1の実施例によるチップ型固体電解
コンデンサの断面を製造工程順に示す図であって、図2
に示す工程以降の工程に関する図である。
FIG. 3 is a diagram showing a cross section of the chip-type solid electrolytic capacitor according to the first embodiment of the present invention in the order of manufacturing steps, and FIG.
FIG. 7 is a view related to the steps after the step shown in FIG.

【図4】本発明の第2の実施例によるチップ型固体電解
コンデンサの断面を製造工程順に示す図である。
FIG. 4 is a diagram showing a cross section of a chip-type solid electrolytic capacitor according to a second embodiment of the present invention in the order of manufacturing steps.

【図5】本発明の第2の実施例によるチップ型固体電解
コンデンサの断面を製造工程順に示す図であって、図4
に示す工程以降の工程に関する図である。
FIG. 5 is a diagram showing a cross section of a chip-type solid electrolytic capacitor according to a second embodiment of the present invention in the order of manufacturing steps, and FIG.
FIG. 7 is a view related to the steps after the step shown in FIG.

【図6】外装をトランスファモールド成形により施した
従来のチップ型固体電解コンデンサの断面図である。
FIG. 6 is a cross-sectional view of a conventional chip-type solid electrolytic capacitor having an exterior formed by transfer molding.

【図7】従来のリードレスタイプチップ型固体電解コン
デンサの一例の構造を示す断面図である。
FIG. 7 is a sectional view showing the structure of an example of a conventional leadless type chip solid electrolytic capacitor.

【図8】従来のリードスタイプチップ型固体電解コンデ
ンサの他の例の構造を示す断面図である。
FIG. 8 is a cross-sectional view showing the structure of another example of a conventional lead-type chip-type solid electrolytic capacitor.

【図9】従来のリードスタイプチップ型固体電解コンデ
ンサの更に他の例の構造を示す断面図である。
FIG. 9 is a sectional view showing the structure of still another example of the conventional lead-type chip solid electrolytic capacitor.

【符号の説明】[Explanation of symbols]

1 陽極リード 2 撥水性樹脂層 3 コンデンサ素子 4 エポキシ粉体樹脂 5 カーボン充填部 6,12A,12B 外装樹脂層 7,17 導電体層 8 はんだ層 9 絶縁樹脂層 10,18 めっき層 11 めっき充填部 13 外部陰極リード 14 外部陽極リード DESCRIPTION OF SYMBOLS 1 Anode lead 2 Water-repellent resin layer 3 Capacitor element 4 Epoxy powder resin 5 Carbon filling part 6,12A, 12B Outer resin layer 7,17 Conductor layer 8 Solder layer 9 Insulating resin layer 10,18 Plating layer 11 Plating filling part 13 External cathode lead 14 External anode lead

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 一方の端面から陽極リードが導出された
弁作用金属からなる陽極体に前記弁作用金属の酸化皮
膜、固体電解質層及び陰極導電体層をこの順に形成して
なるコンデンサ素子と、前記コンデンサ素子の外面を、
前記陽極リードが導出される側の端面にあってはその端
面上に形成された溌水性樹脂層を介して覆う外装樹脂層
と、前記外装樹脂層の前記陽極リード導出側の端面及び
その端面に連なる側面端部の上に形成されて外部の回路
との接続端子となる陽極端子と、前記外装樹脂層の前記
陽極リード導出側の端面に対向する側の端面及びその対
向する側の端面に連なる側面端部の上に形成されて外部
の回路との接続端子となる陰極端子とを含むチップ型固
体電界コンデンサにおいて、 前記陽極端子が、少くとも、前記コンデンサ素子の前記
陽極リード導出面を含む部分上に形成された前記外装樹
脂層内の連続する空孔内に充填された第1の接続用導電
体により、前記陽極リードに接続され、 前記陰極端子が、前記コンデンサ素子の前記陽極リード
導出面に対向する面を含む部分上に形成された前記外装
樹脂層内の連続する空孔内に充填された第2の接続用導
電体により、前記陰極導電体層に接続されていることを
特徴とするチップ型固体電解コンデンサ。
1. A capacitor element comprising an anode body made of a valve action metal having an anode lead led out from one end face, on which an oxide film of the valve action metal, a solid electrolyte layer and a cathode conductor layer are formed in this order, The outer surface of the capacitor element,
The end face of the side from which the anode lead is led out
An exterior resin layer covering through a water-repellent resin layer formed on the surface, an end face of the exterior resin layer on the anode lead lead-out side and
An anode terminal to which the connection terminal with an external circuit is formed on the side end portion continuous to the end face, the said exterior resin layer
The end face on the side opposite to the end face on the anode lead lead-out side and its pair
A chip-type solid electrolytic capacitor including a cathode terminal formed on a side end connected to an end surface on the opposite side and serving as a connection terminal for an external circuit, wherein the anode terminal is at least the capacitor element. A first connection conductor filled in continuous holes in the exterior resin layer formed on a portion including the anode lead lead-out surface, the first connection conductor being connected to the anode lead, and the cathode terminal being connected to the capacitor The element is connected to the cathode conductor layer by a second connection conductor filled in continuous holes in the exterior resin layer formed on a portion including a surface opposite to the anode lead lead-out surface of the element. A chip-type solid electrolytic capacitor characterized in that:
【請求項2】 請求項1記載のチップ型固体電解コンデ
ンサにおいて、 前記弁作用金属がタンタルであることを特徴とするチッ
プ型固体電解コンデンサ。
2. The solid electrolytic capacitor according to claim 1, wherein said valve metal is tantalum.
【請求項3】 請求項1又は請求項2記載のチップ型固
体電解コンデンサにおいて、 前記第1の接続用導電体及び前記第2の接続用導電体
が、導電性微粉末及び金属めっきのいずれかであること
を特徴とするチップ型固体電解コンデンサ。
3. The chip-type solid electrolytic capacitor according to claim 1, wherein the first connection conductor and the second connection conductor are one of conductive fine powder and metal plating. A chip-type solid electrolytic capacitor characterized by the following.
【請求項4】 一方の面から陽極リードが導出された弁
作用金属からなる陽極体に前記弁作用金属の酸化皮膜、
固体電解質層及び陰極導電体層をこの順に形成してコン
デンサ素子を形成する工程と、 静電粉体塗装法を用い前記陽極リードの所定部分を除く
前記コンデンサ素子の全外周面上に粉体樹脂を付着させ
た後この粉体樹脂のゲル化温度より低い温度で熱処理す
ることによって、連続する空孔を内部に含む外装樹脂層
を形成する第1の外装形成工程と、 前記コンデンサ素子の前記陽極リード導出面を含む部分
及び前記陽極リード導出面に対向する面を含む部分上の
前記外装樹脂層内の前記空孔に接続用導電体を充填する
第1の電極端子形成工程と、 前記粉体樹脂のゲル化温度より高い温度で熱処理するこ
とにより、前記外装樹脂層の前記接続用導電体が充填さ
れた以外の部分の前記空孔を消滅させ密にさせる第2の
外装形成工程と、 前記外装樹脂層の前記陽極リード導出面側の端面及び端
部側面を含む部分上に少くとも一層以上の導電体層から
なる陽極端子を形成し、前記外装樹脂層の前記陽極リー
ド導出面に対向する面側の端面及び端部側面を含む部分
上に少くとも一層以上の導電体層からなる陰極端子を形
成する第2の電極端子形成工程とを含むことを特徴とす
る請求項1又は請求項2記載のチップ型固体電解コンデ
ンサの製造方法。
4. An anode body made of a valve action metal having an anode lead led out from one surface, an oxide film of the valve action metal,
Forming a capacitor element by forming a solid electrolyte layer and a cathode conductor layer in this order; and forming a powder resin on the entire outer peripheral surface of the capacitor element except for a predetermined portion of the anode lead using an electrostatic powder coating method. And then heat-treating at a temperature lower than the gelling temperature of the powdered resin to form a packaged resin layer containing continuous pores therein, and the anode of the capacitor element A first electrode terminal forming step of filling a connection conductor into the hole in the exterior resin layer on a portion including a lead lead-out surface and a portion including a surface facing the anode lead lead-out surface; A heat treatment at a temperature higher than the gelling temperature of the resin, a second exterior formation step of eliminating and densely forming the voids in the portion of the exterior resin layer other than the portion filled with the connection conductor; Exterior resin An anode terminal comprising at least one or more conductor layers is formed on a portion including an end surface and an end side surface of the layer on the side of the anode lead lead-out surface, and a surface side of the exterior resin layer facing the anode lead lead-out surface. A second electrode terminal forming step of forming a cathode terminal composed of at least one or more conductive layers on a portion including the end face and the end side face of the second electrode terminal. Manufacturing method of chip type solid electrolytic capacitor.
JP5280992A 1993-11-10 1993-11-10 Chip type solid electrolytic capacitor and method of manufacturing the same Expired - Fee Related JP2570143B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5280992A JP2570143B2 (en) 1993-11-10 1993-11-10 Chip type solid electrolytic capacitor and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5280992A JP2570143B2 (en) 1993-11-10 1993-11-10 Chip type solid electrolytic capacitor and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH07135125A JPH07135125A (en) 1995-05-23
JP2570143B2 true JP2570143B2 (en) 1997-01-08

Family

ID=17632755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5280992A Expired - Fee Related JP2570143B2 (en) 1993-11-10 1993-11-10 Chip type solid electrolytic capacitor and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2570143B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7085127B2 (en) * 2004-03-02 2006-08-01 Vishay Sprague, Inc. Surface mount chip capacitor
JP4574544B2 (en) * 2005-12-28 2010-11-04 Necトーキン株式会社 Solid electrolytic capacitor

Also Published As

Publication number Publication date
JPH07135125A (en) 1995-05-23

Similar Documents

Publication Publication Date Title
US4017773A (en) Solid valve-metal capacitor with buried graphite in the particles in the electrolyte
US5036434A (en) Chip-type solid electrolytic capacitor and method of manufacturing the same
JP2001267181A (en) Chip type solid electrolytic capacitor
JP2541357B2 (en) Manufacturing method of chip type solid electrolytic capacitor
US5168434A (en) Fuse-incorporated, chip-type solid electrolytic capacitor
JPH04119624A (en) Solid electrolytic capacitor
JP2570143B2 (en) Chip type solid electrolytic capacitor and method of manufacturing the same
JPH0997748A (en) Tantalum solid electrolytic capacitor and manufacture thereof
JP3104245B2 (en) Solid electrolytic capacitors
JPH04216608A (en) Manufacture of solid electrolytic capacitor
JP2001196266A (en) Method of manufacturing chip-like electronic component
JPH05326341A (en) Manufacture of solid electrolytic capacitor
JPH09180964A (en) Manufacture of solid-state electrolytic chip capacitor
JP2959028B2 (en) Chip type solid electrolytic capacitor
JP2946657B2 (en) Chip type solid electrolytic capacitor
JP3158448B2 (en) Method for manufacturing solid electrolytic capacitor
JPS6293920A (en) Manufacture of solid electrolytic capacitor
JPH0345524B2 (en)
JPH0731532Y2 (en) Chip type solid electrolytic capacitor
JPH10233346A (en) Manufacture of solid electrolytic chip capacitor
JPH0555090A (en) Manufacture of chip type solid electrolytic capacitor
JPH0373511A (en) Chip-type solid electrolytic capacitor
JPH05152171A (en) Chip type solid electrolytic capacitor
JPH04360508A (en) Manufacture of solid-state electrolytic capacitor
JPH0997745A (en) Tantalum solid electrolytic capacitor and manufacture thereof

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960820

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091024

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees