JPH07222927A - Dimerization catalyst of lower alpha-olefin - Google Patents

Dimerization catalyst of lower alpha-olefin

Info

Publication number
JPH07222927A
JPH07222927A JP6006582A JP658294A JPH07222927A JP H07222927 A JPH07222927 A JP H07222927A JP 6006582 A JP6006582 A JP 6006582A JP 658294 A JP658294 A JP 658294A JP H07222927 A JPH07222927 A JP H07222927A
Authority
JP
Japan
Prior art keywords
catalyst
potassium
carrier
methylpentene
surface area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6006582A
Other languages
Japanese (ja)
Inventor
Kanji Nakagawa
貫次 中川
Hiroshi Shimazaki
寛史 島崎
Makoto Matsuo
信 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP6006582A priority Critical patent/JPH07222927A/en
Priority to US08/223,443 priority patent/US5474963A/en
Priority to GB9406823A priority patent/GB2276833A/en
Publication of JPH07222927A publication Critical patent/JPH07222927A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To obtain a catalyst having good selectivity while keeping activity by using an arihydrous potassium compd. composed of a mixture of potassium fluoride and potassium carbonate as a carrier and setting the specific surface area of the carrier to a definite value or more. CONSTITUTION:A catalyst for producing a dimer or co-dimer of lower alpha-olefin is obtained by supporting an alkali metal on a compression molded granular carrier consisting of an anhydrous potassium compd. and carbon. As the anhydrous potassium compd., a mixture of potassium fluoride and potassium carbonate is used. The specific surface area of the compression molded granular carrier is set to 0.25m<2>/g or more. This catalyst is improved in the selectivity to an objective product while keeping activity and, when this catalyst is used in the production of 4-methylpentene-1 by the dimerization of propylene, the formation of 4-methylpentene-2 being an isomer hard to separate is reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、低級α−オレフィンの
二量化または共二量化触媒に関する。詳しくは、活性に
優れ、特に目的生成物の選択率の改善された低級α−オ
レフィンの二量化触媒に関する。
FIELD OF THE INVENTION The present invention relates to a catalyst for dimerizing or codimerizing lower α-olefins. More specifically, it relates to a dimerization catalyst for lower α-olefins, which has excellent activity, and in particular, has improved selectivity of a target product.

【0002】[0002]

【従来の技術及びその問題点】低級α−オレフィンの二
量体または共二量体を製造するための触媒として、従来
から支持体にアルカリ金属を担持した触媒が多数提案さ
れている。これらの触媒の中でも、工業的規模での実施
に際しては支持体として圧縮成型粒状担体を用いること
が有利であるが、そうした触媒の大部分は活性、選択性
共に低かったり、活性は高くても選択率が低いなどの欠
点があり、有効に利用できるものは少なかった。特に、
目的生成物の選択性は工業生産では最重要項目であるた
め、その改善が強く望まれていた。
2. Description of the Related Art As a catalyst for producing a dimer or a co-dimer of a lower α-olefin, many catalysts in which an alkali metal is supported on a support have been proposed. Among these catalysts, it is advantageous to use a compression-molded granular carrier as a support for carrying out on an industrial scale. However, most of such catalysts have low activity and low selectivity, or even high activity is selected. There are some drawbacks such as low rate, and few of them can be used effectively. In particular,
Since the selectivity of the target product is the most important item in industrial production, its improvement has been strongly desired.

【0003】圧縮成型粒状触媒としては、無水炭酸カリ
ウムと炭素とかなる圧縮成型粒状担体に金属ナトリウム
を担持させた触媒が、特公昭59-40503号公報、特公昭59
-40504号公報、特公昭59-40506号公報、特開平 3-42043
号公報に開示されている。また、特公昭59-40505号公報
には、無水炭酸カリウムと炭素からなる圧縮成型粒状担
体に金属ナトリウム、炭酸カリウム、炭素とからなる混
合物を担持した触媒が開示されている。これらの触媒を
用いたプロピレン二量化反応では、目的生成物である4-
メチルペンテン-1の選択率は90〜93%と比較的よいもの
の、まだ十分に高いとは言えない。特開昭62-38240号公
報には炭酸カリウムと炭素からなるペレットを酸化処理
し、それに金属カリウムを担持した触媒が、米国特許第
4727213号には炭酸カリウム、アルミン酸カルシウム、
炭素からなるペレットに金属カリウムを担持した触媒、
米国特許第4835330 号には炭酸カリウム、炭素のペレッ
トにガラス粉と金属カリウムを担持した触媒が開示され
ているが、どれも4-メチルペンテン-1の選択率は低く、
最高でも90%しかない欠点を有していた。
As the compression-molded granular catalyst, a catalyst in which metallic sodium is supported on a compression-molded granular carrier composed of anhydrous potassium carbonate and carbon is disclosed in JP-B-59-40503 and JP-B-59-59.
-40504, JP-B-59-40506, JP-A-3-42043
It is disclosed in the publication. Further, Japanese Patent Publication No. 59-40505 discloses a catalyst in which a mixture of metallic sodium, potassium carbonate and carbon is carried on a compression molded granular carrier comprising anhydrous potassium carbonate and carbon. In the propylene dimerization reaction using these catalysts, the desired product, 4-
The selectivity of methylpentene-1 is relatively good at 90-93%, but it is not yet high enough. Japanese Unexamined Patent Publication No. 62-38240 discloses a catalyst obtained by oxidizing a pellet made of potassium carbonate and carbon and carrying metal potassium on the pellet.
No. 4727213 has potassium carbonate, calcium aluminate,
A catalyst in which metal potassium is supported on a pellet made of carbon,
U.S. Pat.No. 4,835,330 discloses potassium carbonate, a catalyst in which glass powder and metallic potassium are supported on carbon pellets, but the selectivity of 4-methylpentene-1 is low,
It had the disadvantage that it was only 90% at maximum.

【0004】また、4-メチルペンテン-1以外の副生異性
体として、4-メチルペンテン-2、2-メチルペンテン-2、
ヘキセン類などがあるが、中でも、4-メチルペンテン-2
は、4-メチルペンテン-1と沸点の差が小さく蒸留精製工
程で分離しにくいため、4-メチルペンテン-1の製品純度
が低下する問題点があり、特に4-メチルペンテン-2の生
成が少ない触媒が求められていた。(プロピレン二量体
の各異性体の沸点 4-メチルペンテン-1:53.9℃、cis-
4-メチルペンテン-2:56.3℃、trans-4-メチルペンテン
-2:58.6℃、2-メチルペンテン-1:60.7℃、ヘキセン-
1:63.5℃、cis-ヘキセン-3:66.4℃、trans-ヘキセン-
3:67.1℃、2-メチルペンテン-2:67.3℃、trans-ヘキ
セン-2:67.9℃、cis-ヘキセン-2:68.8℃)
As a by-product isomer other than 4-methylpentene-1, 4-methylpentene-2, 2-methylpentene-2,
There are hexenes, but among them, 4-methylpentene-2
Has a small boiling point difference with 4-methylpentene-1 and is difficult to separate in the distillation and purification step, so that there is a problem that the product purity of 4-methylpentene-1 is lowered, and particularly, 4-methylpentene-2 is not produced. There was a need for less catalyst. (Boiling point of each isomer of propylene dimer 4-methylpentene-1: 53.9 ℃, cis-
4-methylpentene-2: 56.3 ° C, trans-4-methylpentene
-2: 58.6 ° C, 2-methylpentene-1: 60.7 ° C, hexene-
1: 63.5 ° C, cis-hexene-3: 66.4 ° C, trans-hexene-
3: 67.1 ° C, 2-methylpentene-2: 67.3 ° C, trans-hexene-2: 67.9 ° C, cis-hexene-2: 68.8 ° C)

【発明が解決しようとする課題】この発明の目的は、低
級α−オレフィンの二量化または共二量化において、活
性を維持しつつ、目的生成物への選択性を改善すること
ができる触媒を提供することである。さらに、プロピレ
ンの二量化による4-メチルペンテン-1の製造に使用した
場合、分離しにくい異性体の4-メチルペンテン-2の生成
が少ない触媒を提供することである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a catalyst capable of improving the selectivity to a target product while maintaining the activity in the dimerization or codimerization of lower α-olefin. It is to be. Another object of the present invention is to provide a catalyst which, when used in the production of 4-methylpentene-1 by dimerization of propylene, produces less isomer 4-methylpentene-2, which is difficult to separate.

【0005】[0005]

【課題を解決するための手段】本発明は、無水カリウム
化合物と炭素とからなる圧縮成型粒状担体に、アルカリ
金属を担持させてなる触媒において、(a)該無水カリウ
ム化合物がフッ化カリウムと炭酸カリウムとの混合物で
あり、(b)該圧縮成型粒状担体の比表面積が、0.25m2/g
以上であることを特徴とする低級α−オレフィンの二量
化触媒に関する。
The present invention provides a catalyst comprising an alkali metal supported on a compression-molded granular carrier comprising an anhydrous potassium compound and carbon, wherein (a) the anhydrous potassium compound is potassium fluoride and carbonic acid. A mixture with potassium, (b) the specific surface area of the compression-molded granular carrier is 0.25 m 2 / g
The present invention relates to a lower α-olefin dimerization catalyst characterized by the above.

【0006】本発明においては、無水カリウム化合物と
して、フッ化カリウムと炭酸カリウムとの混合物を用い
る。フッ化カリウムと炭酸カリウムの混合割合は、特に
制限はないが、該無水カリウム化合物全重量に対して、
フッ化カリウムが10〜80重量%の範囲及び炭酸カリウム
が90〜20重量%の範囲であることが好ましい。さらに、
特にフッ化カリウムが20〜70重量%の範囲及び炭酸カリ
ウムが80〜30重量%の範囲であることが好ましい。上記
の範囲である触媒は目的生成物の選択率及び金属ナトリ
ウムの担持性が、より良好である。無水カリウム化合物
として、フッ化カリウムと炭酸カリウム以外に、少量の
塩化カリウム、臭化カリウム、ヨウ化カリウム等のハロ
ゲン化カリウム、硫酸カリウム、硝酸カリウム、ケイ酸
カリウム、ケイフッ化カリウム等を含有してもよい。
In the present invention, a mixture of potassium fluoride and potassium carbonate is used as the anhydrous potassium compound. The mixing ratio of potassium fluoride and potassium carbonate is not particularly limited, but with respect to the total weight of the anhydrous potassium compound,
It is preferable that potassium fluoride is in the range of 10 to 80% by weight and potassium carbonate is in the range of 90 to 20% by weight. further,
Particularly, it is preferable that potassium fluoride is in the range of 20 to 70% by weight and potassium carbonate is in the range of 80 to 30% by weight. The catalyst having the above range is more excellent in the selectivity of the target product and the supportability of sodium metal. As the anhydrous potassium compound, in addition to potassium fluoride and potassium carbonate, a small amount of potassium halide such as potassium chloride, potassium bromide, potassium iodide, potassium sulfate, potassium nitrate, potassium silicate, potassium silicofluoride, etc. may be contained. Good.

【0007】本発明の圧縮成型粒状担体においては、そ
の比表面積が重要な意味を持つ。アルミナやシリカなど
と異なり、炭酸カリウムやフッ化カリウムなどの無水カ
リウム化合物粉末はその比表面積が小さいことが知られ
ているが、それらの圧縮成型粒状担体の比表面積は、圧
縮による圧密化のためにさらに小さくなってしまう。本
発明の圧縮成型粒状担体のアルカリ金属担持前の比表面
積が0.25m2/g以上が必要である。比表面積が0.25m2/gよ
り小さいと目的生成物の選択率が低下してしまう。それ
に加えて、比表面積が0.25m2/gを大きく下まわると、ア
ルカリ金属が担体に充分吸収されず、アルカリ金属担持
量を所望の値まで上げることができなくなる。あるい
は、未担持のアルカリ金属でべとついたり、触媒同士が
くっつき合ったりして、反応用触媒として使用できなく
なる。比表面積の特に好ましい範囲は 0.3〜30m2/gであ
る。
The specific surface area of the compression-molded granular carrier of the present invention has an important meaning. It is known that, unlike alumina and silica, anhydrous potassium compound powders such as potassium carbonate and potassium fluoride have a small specific surface area, but the specific surface area of these compression-molded granular carriers is due to compaction due to compression. Becomes even smaller. The specific surface area of the compression-molded granular carrier of the present invention before supporting an alkali metal needs to be 0.25 m 2 / g or more. If the specific surface area is less than 0.25 m 2 / g, the selectivity of the target product will decrease. In addition, when the specific surface area is much lower than 0.25 m 2 / g, the alkali metal is not sufficiently absorbed by the carrier and it becomes impossible to raise the amount of the alkali metal supported to a desired value. Alternatively, the unsupported alkali metal becomes sticky, or the catalysts stick to each other and cannot be used as a reaction catalyst. A particularly preferable range of the specific surface area is 0.3 to 30 m 2 / g.

【0008】本発明で使用するアルカリ金属の具体例と
しては、ナトリウム、カリウム、それらの混合物などが
挙げられる。一般的には、ナトリウム金属の反応活性
は、カリウム金属の反応活性に比べるとかなり低いが、
ナトリウム金属とフッ化カリウムや炭酸カリウムとを加
熱下に接触させることで、容易にナトリウム金属が交換
反応を起こし、フッ化ナトリウムや炭酸ナトリウムとカ
リウム金属を生成するので、担持前のアルカリ金属成分
としてナトリウム金属を単独で使用することもできる。
特に、本発明では、担持前のアルカリ金属成分としてナ
トリウムを用いた触媒が選択性向上効果が著しい。
Specific examples of the alkali metal used in the present invention include sodium, potassium and a mixture thereof. In general, the reaction activity of sodium metal is considerably lower than that of potassium metal,
By contacting sodium metal with potassium fluoride or potassium carbonate under heating, sodium metal easily undergoes an exchange reaction to produce sodium fluoride or sodium carbonate and potassium metal. It is also possible to use sodium metal alone.
In particular, in the present invention, the catalyst using sodium as the alkali metal component before loading has a remarkable selectivity improving effect.

【0009】アルカリ金属の使用量は、特に制限はない
が、触媒全重量に対して 1〜10重量%が好ましく、特に
1.5〜 6重量%が好ましい。一般的にはアルカリ金属の
担持量を増やすと単位触媒重量当たりの生産速度が増す
ので工業的に有利であるが、過度に増やしても除熱が困
難になったり、選択性が低下したりするので好ましくな
い。
The amount of the alkali metal used is not particularly limited, but is preferably 1 to 10% by weight, based on the total weight of the catalyst.
1.5 to 6% by weight is preferred. Generally, increasing the amount of the alkali metal supported increases the production rate per unit weight of the catalyst, which is industrially advantageous, but it is difficult to remove heat even if the amount is excessively increased, or the selectivity decreases. It is not preferable.

【0010】本発明で使用する炭素としては、活性炭、
グラファイト、カーボンブラックなどが挙げられる。こ
れら炭素を単独で使用してもよいが、 2種以上の混合物
で使用しても良い。特に、グラファイトが好適に使用で
きる。
The carbon used in the present invention is activated carbon,
Examples include graphite and carbon black. These carbons may be used alone or in a mixture of two or more. Particularly, graphite can be preferably used.

【0011】本発明においては、炭素の使用量は特に制
限はないが、触媒全重量に対して 0.2〜 3.0重量%が好
ましい。
In the present invention, the amount of carbon used is not particularly limited, but is preferably 0.2 to 3.0% by weight based on the total weight of the catalyst.

【0012】本発明においては、炭素と無水カリウム化
合物原粉を十分に混合し、この混合原粉を打錠成型機、
圧縮成型機、ペレタイザー等によって圧縮成型すること
によって、担体を製造することができる。
In the present invention, carbon and an anhydrous potassium compound raw powder are thoroughly mixed, and the mixed raw powder is compressed into a tablet molding machine,
The carrier can be produced by compression molding with a compression molding machine, pelletizer, or the like.

【0013】無水カリウム化合物は圧縮成型前の混合原
粉として、炭素を含まない状態の疎充填嵩密度が 0.6g/
mlを下まわると流れが悪くなり圧縮成型ができなくなっ
てしまう。 1.2g/mlを超えると成型は容易であるが、得
られる粒状担体は比表面積の小さな緻密なものとなって
しまう。フッ化カリウム、炭酸カリウム原粉はそのまま
混合して使用してもよいし、各々を粉砕、もしくは造粒
後混合してもよい。あるいは、混合後に粉砕してもよ
い。
The anhydrous potassium compound is used as a mixed raw powder before compression molding and has a loosely packed bulk density of 0.6 g / carbon-free state.
If it goes below ml, the flow will be poor and compression molding will not be possible. When it exceeds 1.2 g / ml, the molding is easy, but the obtained granular carrier has a small specific surface area and becomes dense. The potassium fluoride and potassium carbonate raw powders may be used as they are as they are, or they may be pulverized or granulated and then mixed. Alternatively, it may be pulverized after mixing.

【0014】圧縮成型粒状担体の形状は特に限定される
ものではないが、通常、円筒状、ペレット状、球状等で
あり、粒径は、通常、 0.5mm以上、好ましくは、1 〜10
mmの範囲である。担体の強度は特に限定されるものでは
ないが、 1.5〜20kg(半径方向圧壊強度)の範囲であれ
ばよい。
The shape of the compression-molded granular carrier is not particularly limited, but is usually cylindrical, pelletized, spherical, etc., and the particle size is usually 0.5 mm or more, preferably 1-10.
The range is mm. The strength of the carrier is not particularly limited, but may be in the range of 1.5 to 20 kg (radial crushing strength).

【0015】担体は、アルカリ金属担持前に乾燥する必
要がある。50〜 200℃で減圧乾燥したり、 200〜 600℃
で常圧焼成したりすることが好ましい。減圧乾燥のみ、
常圧焼成のみ、あるいはその両方の操作を行ってもよ
い。
The carrier must be dried before supporting the alkali metal. Dry under reduced pressure at 50-200 ℃ or 200-600 ℃
It is preferable to perform normal pressure firing. Only vacuum drying,
Only normal pressure firing or both may be performed.

【0016】アルカリ金属の担体への担持方法として
は、例えば、乾燥もしくは焼成した担体をアルカリ金属
の融点以上の温度、好ましくは 200〜450 ℃の温度で不
活性ガス雰囲気下、攪拌混合することによって行うこと
ができる。担持前のアルカリ金属成分として、ナトリウ
ム金属を用いた場合は、この担持操作時にナトリウム金
属が交換反応を起こしてカリウム金属を生成する。本発
明の触媒は、上記のアルカリ金属担持処理によっても、
圧壊強度の大きな低下は見られず、実用触媒として有効
に用いることができる。
The method for supporting the alkali metal on the carrier is, for example, by stirring and mixing the dried or calcined carrier at a temperature not lower than the melting point of the alkali metal, preferably at a temperature of 200 to 450 ° C. under an inert gas atmosphere. It can be carried out. When sodium metal is used as the alkali metal component before loading, the sodium metal causes an exchange reaction during the loading operation to produce potassium metal. The catalyst of the present invention is also treated by the above alkali metal supporting treatment.
No significant decrease in crush strength was observed, and it can be effectively used as a practical catalyst.

【0017】本発明の二量化方法に使用される低級α−
オレフィンの具体例としては、エチレン、プロピレン、
1-ブテン、イソブチレン、1-ペンテン、1-ヘキセンなど
が挙げられる。これらの低級α−オレフィンを用いた二
量化または共二量化のなかでも、プロピレンの二量化に
よる4-メチルペンテン-1の製造、プロピレンとエチレン
との共二量化による1-ペンテンの製造、1-ブテンとエチ
レンとの共二量化による3-メチルペンテン-1の製造、イ
ソブチレンとエチレンとの共二量化による2-メチルペン
テン-1の製造などに用いることができる。特に、プロピ
レンの二量化による4-メチルペンテン-1の製造に好適に
用いることができる。
Lower α-used in the dimerization method of the present invention
Specific examples of the olefin include ethylene, propylene,
1-butene, isobutylene, 1-pentene, 1-hexene and the like can be mentioned. Among the dimerizations or codimerizations using these lower α-olefins, the production of 4-methylpentene-1 by the dimerization of propylene, the production of 1-pentene by the codimerization of propylene and ethylene, 1- It can be used for production of 3-methylpentene-1 by co-dimerization of butene and ethylene, production of 2-methylpentene-1 by co-dimerization of isobutylene and ethylene, and the like. In particular, it can be preferably used for the production of 4-methylpentene-1 by dimerization of propylene.

【0018】本発明の触媒を用いる二量化または共二量
化反応は、加熱下に気相法あるいは液相法で行うことが
できるが、特に気相固定床方式によるのが好ましい。気
相法にて反応を行う場合、反応温度は、通常、50〜 250
℃、好ましくは、80〜 200℃の範囲である。反応圧力は
20〜 200kg/cm2G の範囲である。α−オレフィンの液空
間速度(LHSV)は、通常、 0.5〜 10h-1、好ましくは 1
〜7h-1の範囲である。
The dimerization or co-dimerization reaction using the catalyst of the present invention can be carried out by a gas phase method or a liquid phase method under heating, but a gas phase fixed bed system is particularly preferable. When carrying out the reaction by the gas phase method, the reaction temperature is usually 50 to 250.
C., preferably in the range of 80 to 200.degree. The reaction pressure is
It is in the range of 20 to 200 kg / cm 2 G. The liquid hourly space velocity (LHSV) of α-olefin is usually 0.5 to 10 h -1 , preferably 1
The range is from ~ 7h -1 .

【0019】[0019]

【発明の効果】本発明の触媒は、低級α−オレフィンの
二量化または共二量化反応において、活性を維持しつ
つ、目的生成物への選択性を改善することができる。さ
らに、プロピレンの二量化による4-メチルペンテン-1の
製造に使用した場合、分離しにくい異性体の4-メチルペ
ンテン-2の生成が少ない特徴を有している。
INDUSTRIAL APPLICABILITY The catalyst of the present invention can improve the selectivity to a desired product while maintaining the activity in the dimerization or codimerization reaction of lower α-olefin. Furthermore, when it is used for the production of 4-methylpentene-1 by the dimerization of propylene, it is characterized in that the isomer 4-methylpentene-2, which is difficult to separate, is less produced.

【0020】[0020]

【実施例】以下に本発明の実施例を説明する。EXAMPLES Examples of the present invention will be described below.

【0021】実施例1 平均粒径 270μm 、疎充填嵩密度1.148g/ml 、BET法
比表面積 0.09 m2/gのフッ化カリウム粉末50重量部と、
平均粒径 250μm 、嵩密度0.953g/ml 、比表面積 0.84
m2/gの炭酸カリウム粉末50重量部とを混合後、粉砕処理
を行った。粉砕後の嵩密度は0.908g/ml であった。この
粉砕原粉に0.99重量%のグラファイト粉末を加えよく混
合した後、直径3mm 、高さ3mm の円筒状の担体に打錠成
型した。木屋式硬度計を用いて測定した圧壊強度(半径
方向)は 4.2kgであった。 100℃で22hr減圧乾燥後の比
表面積は 0.54 m2/gであった。この乾燥担体に窒素雰囲
気下で2.50重量%の金属ナトリウムを加え、 370℃で 4
hr攪拌して触媒を調製した。担体のナトリウム吸い込み
が良いため、触媒はサラサラしており、触媒表面のベタ
ツキは全く見られなかった。この触媒66.98gを触媒部容
積54ml、内径21mmの管状反応器に充填して、反応圧力 1
00kg/cm2G 、反応温度 150℃に保持してプロピレンを液
空間速度(LHSV)は、5.1h-1にて供給して連続流通反応
を行った。プロピレンの転化率は15.4%、4-メチルペン
テン-1の選択率は93.8%であった。担体と触媒の処理条
件と物性及び反応結果を、表1、表2および表3にまと
めて示した。
Example 1 50 parts by weight of potassium fluoride powder having an average particle diameter of 270 μm, a loosely packed bulk density of 1.148 g / ml and a BET specific surface area of 0.09 m 2 / g,
Average particle size 250μm, bulk density 0.953g / ml, specific surface area 0.84
After mixing with 50 parts by weight of m 2 / g potassium carbonate powder, pulverization treatment was performed. The bulk density after pulverization was 0.908 g / ml. After adding 0.99% by weight of graphite powder to this pulverized raw powder and mixing them well, they were tablet-molded into a cylindrical carrier having a diameter of 3 mm and a height of 3 mm. The crush strength (radial direction) measured using a Kiya type hardness meter was 4.2 kg. The specific surface area after drying under reduced pressure at 100 ° C. for 22 hours was 0.54 m 2 / g. 2.50% by weight of metallic sodium was added to the dried carrier under a nitrogen atmosphere, and the mixture was stored at 370 ° C for 4 hours.
The catalyst was prepared by stirring for hr. The catalyst was smooth because the carrier absorbed sodium well, and no stickiness was observed on the surface of the catalyst. 66.98 g of this catalyst was filled in a tubular reactor with a catalyst volume of 54 ml and an inner diameter of 21 mm, and the reaction pressure was 1
The continuous flow reaction was carried out by supplying propylene at a liquid hourly space velocity (LHSV) of 5.1 h −1 while maintaining the reaction temperature at 00 kg / cm 2 G and the reaction temperature at 150 ° C. The conversion of propylene was 15.4% and the selectivity of 4-methylpentene-1 was 93.8%. The treatment conditions, physical properties and reaction results of the carrier and catalyst are summarized in Table 1, Table 2 and Table 3.

【0022】実施例2 平均粒径 280μm 、嵩密度1.198g/ml 、BET法比表面
積 0.07 m2/gのフッ化カリウム粉末50重量部と、実施例
1で用いた炭酸カリウム粉末50重量部とを混合後、粉砕
処理を行った。粉砕後の嵩密度は0.893g/ml であった。
この粉砕原粉を用いて表1に示した担体を打錠成型し
た。この担体を表1の条件で乾燥し、実施例1と同様の
方法により、ナトリウム担持及び反応を行った。触媒部
容積54mlに充填可能な触媒重量は61.24gであった。担体
と触媒の処理条件と物性及び反応結果を、表1、表2お
よび表3にまとめて示した。
Example 2 50 parts by weight of potassium fluoride powder having an average particle size of 280 μm, bulk density of 1.198 g / ml and BET specific surface area of 0.07 m 2 / g and 50 parts by weight of potassium carbonate powder used in Example 1 After being mixed, the mixture was pulverized. The bulk density after pulverization was 0.893 g / ml.
The carrier shown in Table 1 was tableted using this pulverized raw powder. This carrier was dried under the conditions shown in Table 1, and carried and reacted in the same manner as in Example 1. The weight of the catalyst that could be filled in the catalyst portion volume of 54 ml was 61.24 g. The treatment conditions, physical properties and reaction results of the carrier and catalyst are summarized in Table 1, Table 2 and Table 3.

【0023】実施例3 平均粒径 240μm 、嵩密度1.253g/ml 、BET法比表面
積 0.11 m2/gのフッ化カリウム粉末の粉砕処理を行っ
た。この粉砕フッ化カリウム50重量部と、実施例1で用
いた炭酸カリウム粉末50重量部とを混合した。混合粉末
の嵩密度は1.036g/ml であった。この混合原粉を用いて
表1に示した担体を打錠成型した。この担体を表1の条
件で乾燥、焼成し、実施例1と同様の方法により、ナト
リウム担持及び反応を行った。担体と触媒の処理条件と
物性及び反応結果を、表1、表2および表3にまとめて
示した。
Example 3 A potassium fluoride powder having an average particle size of 240 μm, a bulk density of 1.253 g / ml and a BET specific surface area of 0.11 m 2 / g was pulverized. 50 parts by weight of this ground potassium fluoride was mixed with 50 parts by weight of the potassium carbonate powder used in Example 1. The bulk density of the mixed powder was 1.036 g / ml. The carriers shown in Table 1 were tableted using this mixed raw powder. The carrier was dried and calcined under the conditions shown in Table 1, and sodium loading and reaction were carried out in the same manner as in Example 1. The treatment conditions, physical properties and reaction results of the carrier and catalyst are summarized in Table 1, Table 2 and Table 3.

【0024】実施例4 嵩密度0.401g/ml 、BET法比表面積 0.56 m2/gのフッ
化カリウム微粉末を加湿造粒後、 100℃で20hr減圧乾燥
した。この造粒フッ化カリウム粉末50重量部と、実施例
1で用いた炭酸カリウム粉末50重量部とを混合した。混
合粉末の嵩密度は0.961g/ml であった。この混合原粉を
用いて表1に示した担体を打錠成型した。この担体を表
1の条件で乾燥し、実施例1と同様の方法により、ナト
リウム担持及び反応を行った。
Example 4 A potassium fluoride fine powder having a bulk density of 0.401 g / ml and a BET specific surface area of 0.56 m 2 / g was wet-granulated and dried under reduced pressure at 100 ° C. for 20 hours. 50 parts by weight of this granulated potassium fluoride powder and 50 parts by weight of the potassium carbonate powder used in Example 1 were mixed. The bulk density of the mixed powder was 0.961 g / ml. The carriers shown in Table 1 were tableted using this mixed raw powder. This carrier was dried under the conditions shown in Table 1, and carried and reacted in the same manner as in Example 1.

【0025】反応前に触媒分析を以下の方法で行った。
窒素雰囲気下で触媒にブチルセロソルブ、次いで水を加
え、発生した水素ガスをガスビュレットに捕集した。発
生ガス量は、担持ナトリウム量から計算される水素量と
同じであった。この触媒の23Na固体NMRスペクトル
(3M NaCl 水溶液基準)には、ナトリウム金属に帰属さ
れる1133ppm 前後のピークは全く見られず、0ppm付近の
Naイオンに帰属されるピークしか見られなかった。担体
と触媒の処理条件と物性及び反応結果を、表1、表2お
よび表3にまとめて示した。
Prior to the reaction, catalyst analysis was performed by the following method.
Butyl cellosolve and then water were added to the catalyst under a nitrogen atmosphere, and the generated hydrogen gas was collected in a gas buret. The amount of generated gas was the same as the amount of hydrogen calculated from the amount of supported sodium. In the 23 Na solid-state NMR spectrum (based on 3M NaCl aqueous solution) of this catalyst, no peak around 1133 ppm attributed to sodium metal was found at all, and a peak around 0 ppm was observed.
Only the peak attributed to Na ion was seen. The treatment conditions, physical properties and reaction results of the carrier and catalyst are summarized in Table 1, Table 2 and Table 3.

【0026】実施例5 実施例4で用いたフッ化カリウム微粉末20重量部を造粒
せずに、実施例1で用いた炭酸カリウム粉末80重量部と
を混合した。混合粉末の嵩密度は0.769g/ml であった。
この混合原粉を用いて表1に示した担体を打錠成型し
た。この担体を表1の条件で焼成し、実施例1と同様の
方法により、ナトリウム担持及び反応を行った。担体と
触媒の処理条件と物性及び反応結果を、表1、表2およ
び表3にまとめて示した。
Example 5 20 parts by weight of the potassium fluoride fine powder used in Example 4 was mixed with 80 parts by weight of the potassium carbonate powder used in Example 1 without granulating. The bulk density of the mixed powder was 0.769 g / ml.
The carriers shown in Table 1 were tableted using this mixed raw powder. This carrier was calcined under the conditions shown in Table 1, and sodium loading and reaction were carried out in the same manner as in Example 1. The treatment conditions, physical properties and reaction results of the carrier and catalyst are summarized in Table 1, Table 2 and Table 3.

【0027】実施例6 フッ化カリウムと炭酸カリウムの混合割合を30:70(重
量%)とした他は、実施例3と同様にして混合粉末を調
製した。混合粉末の嵩密度は1.021g/ml であった。この
混合原粉を用いて表1に示した担体を打錠成型した。こ
の担体を表1の条件で焼成し、実施例1と同様の方法に
より、ナトリウム担持及び反応を行った。担体と触媒の
処理条件と物性及び反応結果を、表1、表2および表3
にまとめて示した。
Example 6 A mixed powder was prepared in the same manner as in Example 3 except that the mixing ratio of potassium fluoride and potassium carbonate was 30:70 (% by weight). The bulk density of the mixed powder was 1.021 g / ml. The carriers shown in Table 1 were tableted using this mixed raw powder. This carrier was calcined under the conditions shown in Table 1, and sodium loading and reaction were carried out in the same manner as in Example 1. The treatment conditions and physical properties of the carrier and the catalyst and the reaction results are shown in Table 1, Table 2 and Table 3.
Are summarized in.

【0028】実施例7 フッ化カリウムと炭酸カリウムの混合割合を60:40(重
量%)とした他は、実施例3と同様にして混合粉末を調
製した。混合粉末の嵩密度は1.030g/ml であった。この
混合原粉を用いて表1に示した担体を打錠成型した。こ
の担体を表1の条件で乾燥し、実施例1と同様の方法に
より、ナトリウム担持及び反応を行った。担体と触媒の
処理条件と物性及び反応結果を、表1、表2および表3
にまとめて示した。
Example 7 A mixed powder was prepared in the same manner as in Example 3 except that the mixing ratio of potassium fluoride and potassium carbonate was 60:40 (% by weight). The bulk density of the mixed powder was 1.030 g / ml. The carriers shown in Table 1 were tableted using this mixed raw powder. This carrier was dried under the conditions shown in Table 1, and carried and reacted in the same manner as in Example 1. The treatment conditions and physical properties of the carrier and the catalyst and the reaction results are shown in Table 1, Table 2 and Table 3.
Are summarized in.

【0029】比較例1、2 無水カリウム化合物として実施例1で用いた炭酸カリウ
ム粉末のみを使用し、粉砕なしでそのまま用いた以外
は、実施例1と同様の方法により、打錠、焼成、担持、
反応を行った。
Comparative Examples 1 and 2 Tableting, firing and loading were carried out in the same manner as in Example 1 except that only the potassium carbonate powder used in Example 1 was used as the anhydrous potassium compound and used as it was without crushing. ,
The reaction was carried out.

【0030】実施例と4同様にして、反応前に比較例1
の触媒を分析した。発生ガス量は、担持ナトリウム量か
ら計算される水素量と同じであった。この触媒の23Na
固体NMRスペクトル(3M NaCl 水溶液基準)には、ナ
トリウム金属に帰属される1133ppm 前後のピークは全く
見られず、0ppm付近のNaイオンに帰属されるピークしか
見られなかった。担体と触媒の処理条件と物性及び反応
結果を、表1、表2および表3にまとめて示した。
In the same manner as in Example 4, Comparative Example 1 before the reaction
Was analyzed. The amount of generated gas was the same as the amount of hydrogen calculated from the amount of supported sodium. 23 Na of this catalyst
In the solid-state NMR spectrum (based on 3M NaCl aqueous solution), no peak around 1133 ppm attributed to sodium metal was observed at all, and only a peak attributed to Na ion around 0 ppm was observed. The treatment conditions, physical properties and reaction results of the carrier and catalyst are summarized in Table 1, Table 2 and Table 3.

【0031】比較例3、4 グラファイト添加量及び担体の圧壊強度を表1に示すも
のとした他は比較例1と同様にして行った。担体と触媒
の処理条件と物性及び反応結果を、表1、表2および表
3にまとめて示した。
Comparative Examples 3 and 4 The procedure of Comparative Example 1 was repeated except that the amount of graphite added and the crush strength of the carrier were as shown in Table 1. The treatment conditions, physical properties and reaction results of the carrier and catalyst are summarized in Table 1, Table 2 and Table 3.

【0032】比較例5 無水カリウム化合物として実施例3で用いたフッ化カリ
ウム粉末のみを使用し、粉砕なしでそのまま実施例1と
同様な方法により打錠、焼成した。担体の物性と焼成条
件を表1に示した。 2.5重量%のナトリウム担持操作は
実施例1と同様にして行ったが、ナトリウムの吸い込み
が悪いため、触媒がベタベタになり、反応用触媒として
使用出来なかった。
Comparative Example 5 Only the potassium fluoride powder used in Example 3 was used as an anhydrous potassium compound, and tableting and firing were carried out in the same manner as in Example 1 without pulverization. Table 1 shows the physical properties of the carrier and the firing conditions. The operation for supporting 2.5% by weight of sodium was carried out in the same manner as in Example 1, but the catalyst became sticky due to poor suction of sodium and could not be used as a reaction catalyst.

【0033】比較例6 フッ化カリウム粉末の粉砕程度を変えた他は実施例3と
同様の方法で混合粉末を調製した。嵩密度は1.011g/ml
であった。この混合原粉を用いて実施例3と同様にして
触媒を調製した。触媒は僅かにベタツキがあり、そのた
め49.89gしか充填できなかった。担体と触媒の処理条件
と物性及び反応結果を、表1、表2および表3にまとめ
て示した。
Comparative Example 6 A mixed powder was prepared in the same manner as in Example 3 except that the crushing degree of the potassium fluoride powder was changed. Bulk density is 1.011 g / ml
Met. Using this mixed raw powder, a catalyst was prepared in the same manner as in Example 3. The catalyst was slightly sticky, so only 49.89 g could be loaded. The treatment conditions, physical properties and reaction results of the carrier and catalyst are summarized in Table 1, Table 2 and Table 3.

【0034】比較例7 実施例3の担体を用い、その焼成条件を変えた他は、実
施例3と同様にして行った。担体と触媒の処理条件と物
性及び反応結果を、表1、表2および表3にまとめて示
した。
Comparative Example 7 The procedure of Example 3 was repeated, except that the carrier of Example 3 was used and the firing conditions were changed. The treatment conditions, physical properties and reaction results of the carrier and catalyst are summarized in Table 1, Table 2 and Table 3.

【0035】[0035]

【表1】 [Table 1]

【0036】[0036]

【表2】 [Table 2]

【0037】[0037]

【表3】 [Table 3]

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 無水カリウム化合物と炭素とからなる圧
縮成型粒状担体に、アルカリ金属を担持させてなる触媒
において、(a)該無水カリウム化合物がフッ化カリウム
と炭酸カリウムとの混合物であり、(b)該圧縮成型粒状
担体の比表面積が、0.25m2/g以上であることを特徴とす
る低級α−オレフィンの二量化触媒。
1. A catalyst comprising an alkali metal supported on a compression-molded granular carrier comprising an anhydrous potassium compound and carbon, wherein (a) the anhydrous potassium compound is a mixture of potassium fluoride and potassium carbonate, b) A lower α-olefin dimerization catalyst, wherein the compression-molded granular carrier has a specific surface area of 0.25 m 2 / g or more.
JP6006582A 1993-04-09 1994-01-25 Dimerization catalyst of lower alpha-olefin Pending JPH07222927A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP6006582A JPH07222927A (en) 1993-11-19 1994-01-25 Dimerization catalyst of lower alpha-olefin
US08/223,443 US5474963A (en) 1993-04-09 1994-04-05 Catalyst for dimerizing α-olefin monomer
GB9406823A GB2276833A (en) 1993-04-09 1994-04-07 Catalyst for dimerizing alpha-olefin monomer

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP5-290862 1993-11-19
JP29086293 1993-11-19
JP5-318381 1993-12-17
JP31838193 1993-12-17
JP6006582A JPH07222927A (en) 1993-11-19 1994-01-25 Dimerization catalyst of lower alpha-olefin

Publications (1)

Publication Number Publication Date
JPH07222927A true JPH07222927A (en) 1995-08-22

Family

ID=27277230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6006582A Pending JPH07222927A (en) 1993-04-09 1994-01-25 Dimerization catalyst of lower alpha-olefin

Country Status (1)

Country Link
JP (1) JPH07222927A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006326418A (en) * 2005-05-24 2006-12-07 Mitsui Chemicals Inc DIMERIZATION CATALYST OF alpha-OLEFIN AND MANUFACTURING METHOD OF alpha-OLEFIN DIMER
JP2008149275A (en) * 2006-12-19 2008-07-03 Mitsui Chemicals Inc Catalyst for dimerizing alpha-olefin and method for producing alpha-olefin dimer
WO2015093378A1 (en) 2013-12-17 2015-06-25 三井化学株式会社 MOLDED BODY, METHOD FOR PRODUCING SAME, CATALYST FOR α-OLEFIN DIMERIZATION, AND METHOD FOR PRODUCING α-OLEFIN DIMER
JP6095837B1 (en) * 2016-04-01 2017-03-15 佐々木化学薬品株式会社 Alkaline metal salt-containing molded body and method for regenerating acidic aqueous solution using the same
WO2018117247A1 (en) 2016-12-22 2018-06-28 三井化学株式会社 METHOD FOR PRODUCING POROUS MOLDED BODY, METHOD FOR PRODUCING CATALYST FOR α-OLEFIN DIMERIZATION, METHOD FOR PRODUCING α-OLEFIN DIMER, POROUS MOLDED BODY, AND CATALYST FOR α-OLEFIN DIMERIZATION
WO2019189636A1 (en) 2018-03-29 2019-10-03 三井化学株式会社 POROUS MOLDED ARTICLE AND METHOD FOR PRODUCING SAME, CATALYST FOR α-OLEFIN DIMERIZATION USE AND METHOD FOR PRODUCING SAME, AND METHOD FOR PRODUCING α-OLEFIN DIMER

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006326418A (en) * 2005-05-24 2006-12-07 Mitsui Chemicals Inc DIMERIZATION CATALYST OF alpha-OLEFIN AND MANUFACTURING METHOD OF alpha-OLEFIN DIMER
JP4498213B2 (en) * 2005-05-24 2010-07-07 三井化学株式会社 An α-olefin dimerization catalyst and a method for producing an α-olefin dimer.
JP2008149275A (en) * 2006-12-19 2008-07-03 Mitsui Chemicals Inc Catalyst for dimerizing alpha-olefin and method for producing alpha-olefin dimer
WO2015093378A1 (en) 2013-12-17 2015-06-25 三井化学株式会社 MOLDED BODY, METHOD FOR PRODUCING SAME, CATALYST FOR α-OLEFIN DIMERIZATION, AND METHOD FOR PRODUCING α-OLEFIN DIMER
JP6014277B2 (en) * 2013-12-17 2016-10-25 三井化学株式会社 Molded product and method for producing the same, catalyst for α-olefin dimerization, and method for producing α-olefin dimer
KR20170131688A (en) * 2016-04-01 2017-11-29 사사키카가쿠야쿠힌 가부시키가이샤 Alkali metal salt-containing molded article and method for regenerating acidic aqueous solution using the same
WO2017169428A1 (en) * 2016-04-01 2017-10-05 佐々木化学薬品株式会社 Alkali metal salt-containing molded article and method for reprocessing aqueous acid solution using same
JP2017186221A (en) * 2016-04-01 2017-10-12 佐々木化学薬品株式会社 Alkali metal salt-containing molded product and method for regenerating acidic aqueous solution using the same
JP6095837B1 (en) * 2016-04-01 2017-03-15 佐々木化学薬品株式会社 Alkaline metal salt-containing molded body and method for regenerating acidic aqueous solution using the same
WO2018117247A1 (en) 2016-12-22 2018-06-28 三井化学株式会社 METHOD FOR PRODUCING POROUS MOLDED BODY, METHOD FOR PRODUCING CATALYST FOR α-OLEFIN DIMERIZATION, METHOD FOR PRODUCING α-OLEFIN DIMER, POROUS MOLDED BODY, AND CATALYST FOR α-OLEFIN DIMERIZATION
US11247194B2 (en) 2016-12-22 2022-02-15 Mitsui Chemicals, Inc. Method for producing porous molded body, method for producing catalyst for α-olefin dimerization, method for producing α-olefin dimer, porous molded body, and catalyst for α-olefin dimerization
US11772072B2 (en) 2016-12-22 2023-10-03 Mitsui Chemicals, Inc. Method for producing porous molded body, method for producing catalyst for α-olefin dimerization, method for producing α-olefin dimer, porous molded body, and catalyst for α-olefin dimerization
WO2019189636A1 (en) 2018-03-29 2019-10-03 三井化学株式会社 POROUS MOLDED ARTICLE AND METHOD FOR PRODUCING SAME, CATALYST FOR α-OLEFIN DIMERIZATION USE AND METHOD FOR PRODUCING SAME, AND METHOD FOR PRODUCING α-OLEFIN DIMER
KR20200126401A (en) 2018-03-29 2020-11-06 미쓰이 가가쿠 가부시키가이샤 Porous molded article and its manufacturing method, α-olefin dimerization catalyst and its manufacturing method, and α-olefin dimer manufacturing method
KR20220144414A (en) 2018-03-29 2022-10-26 미쓰이 가가쿠 가부시키가이샤 POROUS MOLDED ARTICLE AND METHOD FOR PRODUCING SAME, CATALYST FOR α-OLEFIN DIMERIZATION USE AND METHOD FOR PRODUCING SAME, AND METHOD FOR PRODUCING α-OLEFIN DIMER
US11759768B2 (en) 2018-03-29 2023-09-19 Mitsui Chemicals, Inc. Porous formed body and production method thereof, α-olefin dimerization catalyst and production method thereof, and method of producing α-olefin dimer

Similar Documents

Publication Publication Date Title
CA1259298A (en) Dimerization process and catalysts therefor
US2952719A (en) Process for shifting a double bond in an olefinic hydrocarbon
US4810688A (en) Catalyst support and catalyst for olefin dimerization
KR870000972B1 (en) Catalyst composition suitable for the dimerization of alpha-olefins
JP4809205B2 (en) An α-olefin dimerization catalyst and a method for producing an α-olefin dimer.
JPH07222927A (en) Dimerization catalyst of lower alpha-olefin
JP4498213B2 (en) An α-olefin dimerization catalyst and a method for producing an α-olefin dimer.
US2313053A (en) Catalyst and preparation thereof
US3600331A (en) Catalyst containing copper phosphate and silver phosphate useful in the oxygenation of hydrogen halides
US10500570B2 (en) Formed body and method for producing the same, α-olefin dimerization catalyst, and method for producing α-olefin dimer
US2414206A (en) Conversion of hydrocarbons
US5474963A (en) Catalyst for dimerizing α-olefin monomer
JPH03165837A (en) Manufacture of catalytic support and olefin dimer process
JP3596049B2 (en) Method for producing 1-pentene
US5081094A (en) Alkali metal bicarbonate/alkali metal carbonate support, catalyst system, and olefin dimerization processes therewith
JPH0342043A (en) Alpha-olefin dimerization catalyst
JPS5940504B2 (en) Catalyst for α-olefin dimerization
JPH0994460A (en) Method for regenerating catalyst
JPH08295640A (en) Production of 3-ethyl-1-olefin
JPH08109144A (en) Production of 1-pentene
WO2023190652A1 (en) Method for producing olefin dimer, and olefin dimerization catalyst
JPH07289908A (en) Production of alpha-olefin dimerizing catalyst
CA2019043A1 (en) Dimerization process and catalysts therefor
JPS5940505B2 (en) α-olefin dimerization catalyst
JP2019136641A (en) MANUFACTURING METHOD OF MOLDED BODY, CATALYST FOR α-OLEFIN DIMERIZATION, AND MANUFACTURING METHOD OF α-OLEFIN DIMER