JP3596049B2 - Method for producing 1-pentene - Google Patents

Method for producing 1-pentene Download PDF

Info

Publication number
JP3596049B2
JP3596049B2 JP27784794A JP27784794A JP3596049B2 JP 3596049 B2 JP3596049 B2 JP 3596049B2 JP 27784794 A JP27784794 A JP 27784794A JP 27784794 A JP27784794 A JP 27784794A JP 3596049 B2 JP3596049 B2 JP 3596049B2
Authority
JP
Japan
Prior art keywords
propylene
catalyst
reaction
potassium
pentene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27784794A
Other languages
Japanese (ja)
Other versions
JPH08133992A (en
Inventor
貫次 中川
信 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP27784794A priority Critical patent/JP3596049B2/en
Publication of JPH08133992A publication Critical patent/JPH08133992A/en
Application granted granted Critical
Publication of JP3596049B2 publication Critical patent/JP3596049B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/02Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons
    • C07C2/04Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation
    • C07C2/06Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation of alkenes, i.e. acyclic hydrocarbons having only one carbon-to-carbon double bond
    • C07C2/08Catalytic processes
    • C07C2/24Catalytic processes with metals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the alkali- or alkaline earth metals or beryllium
    • C07C2523/04Alkali metals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2527/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • C07C2527/06Halogens; Compounds thereof
    • C07C2527/08Halides
    • C07C2527/12Fluorides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2527/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • C07C2527/20Carbon compounds
    • C07C2527/232Carbonates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、ポリオレフィン原料として有用な1−ペンテンの製法に関する。詳しくは、低温活性、反応選択性に優れた触媒を用いて1−ペンテンを製造する方法に関する。
【0002】
【従来の技術及びその問題点】
従来から、アルカリ金属を支持体に担持した触媒を用いて、エチレンとプロピレンを共二量化させて1−ペンテンを製造する方法が、例えば、Chem. Brit., vol.5, 354(1969) に開示されている。
しかし、これまでの触媒を用いる方法には、触媒活性や反応選択性に欠点があり、その改良が望まれていた。
【0003】
工業的規模での1−ペンテン製造に際し、支持体として粒状担体を用いることが有利であるが、そうした触媒として炭酸カリウム粒状担体に金属カリウムとステンレス鋼粉末とを担持した触媒が特開昭61−46248号公報に開示されている。しかし、この触媒を用いたエチレンとプロピレンの共二量化反応で得られる1−ペンテン選択率は77〜82% と低く、しかも 135℃以上の高温反応を必要とするものであった。
【0004】
特開平3−2127号公報には押出成型された炭酸カリウム担体に金属カリウムとステンレス鋼粉末を担持した触媒が開示されている。しかし、この触媒も反応選択率が悪く、37〜84% の1−ペンテン選択率しか得られていない。反応温度も 140℃以上の高温が必要である。
【0005】
炭酸カリウムと炭素とかなる圧縮成型粒状担体に金属ナトリウムを担持した触媒が特開平3−41036 号公報に開示されている。この触媒を用いたエチレンとプロピレンの共二量化反応は比較的低温の反応が可能であるものの、1−ペンテン選択率は、90.7〜93.2% とまだ十分に高いとは言えない。
【0006】
【本発明の目的】
本発明は、エチレンとプロピレンとの共二量化において、1−ペンテン選択性を改善できると共に、低温でも活性の高い触媒を用いて効率良く1−ペンテンを製造する方法を提供することにある。
【0007】
【課題を解決するための手段】
本発明は、無水カリウム化合物と炭素とからなる圧縮成型粒状担体にアルカリ金属を担持させてなる触媒の存在下に、エチレンとプロピレンとを共二量化させて1−ペンテンを製造する方法において、
該無水カリウム化合物が炭酸カリウムとフッ化カリウムの混合したものであり、
該アルカリ金属がナトリウムであり、かつ
該触媒を140〜155℃の温度及び30kg/cm G以上、上限が150kg/cm の圧力で、2〜50時間の範囲でプロピレンと接触させた後に共二量化を行うことを特徴とする1−ペンテンの製造法に関する。
【0008】
本発明においては、無水カリウム化合物としては、炭酸カリウム及びフッ化カリウムが好適である。炭酸カリウムとフッ化カリウムを混合使用すると共二量化反応選択性が高くなり、また、プロピレン接触による活性向上効果もより高くなり好適である。無水カリウム化合物として、炭酸カリウムとフッ化カリウム以外に、塩化カリウム、臭化カリウム、ヨウ化カリウム等のハロゲン化カリウム、硫酸カリウム、硝酸カリウム、ケイ酸カリウム、ケイフッ化カリウム等を含有してもよい。
【0009】
本発明で使用するアルカリ金属の具体例としては、ナトリウムが挙げられる。一般的には、ナトリウム金属の反応活性は、カリウム金属の反応活性に比べるとかなり低い。しかし、ナトリウム金属とフッ化カリウムや炭酸カリウムとを加熱下に接触させることで、容易にナトリウム金属が交換反応を起こし、フッ化ナトリウムや炭酸ナトリウムとカリウム金属とを生成するので、担持前のアルカリ金属成分としてナトリウム金属を単独で使用することもできる。特に、本発明では、ナトリウムを用いた触媒が選択性向上効果が著しい。
【0010】
アルカリ金属の使用量は、特に制限はないが、触媒全重量に対して 1〜10重量%が好ましく、特に 1.5〜 6重量%が好ましい。
一般的にはアルカリ金属の担持量を増やすと単位触媒重量当たりの生産速度が増すので工業的に有利であるが、過度に増やしても除熱が困難になったり、選択性が低下したりするので好ましくない。
【0011】
本発明で使用する炭素としては、活性炭、グラファイト、カーボンブラックなどが挙げられる。これらを単独で使用してもよいが、 2種以上の混合物で使用しても良い。特に、グラファイトが好適に使用できる。
【0012】
本発明においては、炭素の使用量は特に制限はないが、触媒全重量に対して 0.2〜 3.0重量%が好ましい。
【0013】
本発明においては、炭素と無水カリウム化合物原粉を十分に混合し、この混合原粉を打錠成型機、圧縮成型機、ペレタイザー等によって圧縮成型することによって、担体を製造することができる。
【0014】
無水カリウム化合物は圧縮成型前の混合原粉として、炭素を含まない状態の疎充填嵩密度が 0.6g/mlを下まわると、流れが悪くなり圧縮成型ができなくなってしまう。 1.2g/mlを超えると成型は容易であるが、得られる粒状担体は比表面積の小さな緻密なものとなってしまう。フッ化カリウム、炭酸カリウム原粉はそのまま混合して使用してもよいし、各々を粉砕、もしくは造粒後混合してもよい。あるいは、混合後に粉砕してもよい。
【0015】
圧縮成型粒状担体の形状は特に限定されるものではないが、通常、円筒状、ペレット状、球状等であり、粒径は、通常、 0.5mm以上、好ましくは、1 〜10mmの範囲である。担体の強度は特に限定されるものではないが、 1.5〜20kg(半径方向圧壊強度)の範囲であればよい。
【0016】
担体は、アルカリ金属担持前に乾燥する必要がある。50〜 200℃で減圧乾燥したり、 200〜 600℃で常圧焼成したりすることが好ましい。減圧乾燥のみ、常圧焼成のみ、あるいはその両方の操作を行ってもよい。
【0017】
アルカリ金属の担体への担持方法としては、例えば、乾燥もしくは焼成した担体をアルカリ金属の融点以上の温度、好ましくは 200〜450 ℃の温度で不活性ガス雰囲気下、攪拌混合することによって行うことができる。
本発明の触媒は、上記のアルカリ金属担持処理によっても、圧壊強度の大きな低下は見られず、実用触媒として有効に用いることができる。
【0018】
本発明においては、上記触媒を共二量化反応前にプロピレン処理を行う。この処理によって、触媒の共二量化活性は未処理のものに比べ大幅に向上する。空時収量(STY)が増すと共に、より低温での反応も可能となるため、反応選択性の向上や触媒寿命の長期化にも寄与してくる。
【0019】
プロピレンとの接触処理の温度は、共二量化反応より高温、具体的には140〜155℃の範囲である。上記の範囲を下回ると共二量化活性の向上が十分でない。上記の範囲を越えると、処理中にも触媒の失活が始まるために、同様に高い共二量化活性が得られない。
【0020】
接触時のプロピレン圧力は、30kg/cmG以上である。上記の圧力未満では共二量化活性の向上が十分でない。プロピレン圧力の上限は、150kg/cmGである。プロピレン処理の必要時間は、2〜50時間の範囲である。
【0021】
本発明の方法によれば、上記のようにして得られた触媒の存在下に、反応方式として好ましくは固定床方式を用い、エチレンとプロピレンとを共二量化させて1−ペンテンを製造する。
【0022】
反応圧力は、好ましくは 20kg/cmG以上、より好ましくは30〜150kg/cmG以上の範囲である。反応圧力が 20kg/cmG未満の場合は、空時収量が小さくなる。また、反応圧力の上限は、特に限定されるものではないが、実用上の観点から150kg/cmGである。
【0023】
反応温度は、好ましくは90〜 130℃の範囲、より好ましくは95〜 125℃の範囲である。反応温度が90℃未満の場合は、空時収量が小さくなる。また、 130℃を超えると1−ペンテン選択率が低下し、また、空時収量(STY)が大きくなり過ぎるため、反応管の除熱が困難になる。
【0024】
エチレンとプロピレンの液空間速度(LHSV)は、通常、 0.5〜10hr−1、好ましくは 1〜 7hr−1の範囲である。
【0025】
【発明の効果】
本発明によって、エチレンとプロピレンとの共二量化において、触媒をプロピレンと接触させた後に共二量化を行うことによって、低温活性の増大した高い反応選択性を得ることができる1−ペンテンの製造法を提供される。
【0026】
【実施例】
以下に本発明の実施例を説明する。
【0027】
実施例1
平均粒径 270μm 、疎充填嵩密度1.148g/ml 、BET法比表面積 0.09 m/gのフッ化カリウム粉末50重量部と、平均粒径 250μm 、嵩密度0.953g/ml 、比表面積 0.84 m/gの炭酸カリウム粉末50重量部とを混合後、ウィレー粉砕器(500 μm スクリーン)で粉砕処理を行った。この粉砕原粉に0.99重量%のグラファイト粉末を加えよく混合した後、直径3mm 、高さ3mm の円筒状の担体に打錠成型した。木屋式硬度計を用いて測定した圧壊強度(半径方向)は 4.6kgであった。 100℃で20hr減圧乾燥後、窒素雰囲気下で2.50重量%の金属ナトリウムを加え、 370℃で 4hr攪拌して触媒を調製した。この触媒64.88gを触媒部容積54ml、内径21mmの管状反応器に充填して、反応圧力 100kg/cmG 、温度 150℃でプロピレンを液空間速度(LHSV)5.18hr−1で供給して14hrの前処理を行った。その後、温度、圧力を 105℃、50kg/cmG に下げて、 0.56 のエチレン/プロピレンモル比でエチレンとプロピレンの混合ガスを4.40hr−1の LHSV にて供給して連続流通反応を行った。エチレンの転化率は12.8% 、1−ペンテンの選択率は94.7% であった。プロピレン前処理条件、反応条件及び反応結果を、それぞれ表1、表2及び表3に示した。
【0028】
実施例2
触媒充填量を 63.54g 、プロピレン前処理時間を 6hrとした他は、実施例1と同様にしてエチレンとプロピレンの共二量化を行った。プロピレン前処理条件、反応条件及び反応結果を、それぞれ表1、表2及び表3に示した。
【0029】
実施例3
反応温度を変えた他は、実施例2と同様にしてエチレンとプロピレンとの共二量化を行った。プロピレン前処理条件、反応条件及び反応結果を、それぞれ表1、表2及び表3に示した。
【0030】
比較例1
実施例1と同様にして調製した粉砕原粉に、0.99重量%のグラファイト粉末と0.20重量%の活性炭を加えて打錠成型した。圧壊強度は 3.4kgであった。 100℃で18hr減圧乾燥後、窒素雰囲気下で2.51重量%の金属ナトリウムを加え、 370℃で 4hr攪拌して触媒を調製した。この触媒59.71gを実施例1記載の管状反応器に充填して温度、圧力を 105℃、55kg/cmG の条件で、 0.60 のエチレン/プロピレンモル比でエチレンとプロピレンの混合ガスを 4.27hr −1の LHSV にて供給して連続流通反応を行った。プロピレン前処理条件、反応条件及び反応結果を、それぞれ表1、表2及び表3に示した。
【0031】
比較例2
反応温度を変えた他は、比較例1と同様にしてエチレンとプロピレンとの共二量化を行った。プロピレン前処理条件、反応条件及び反応結果を、それぞれ表1、表2及び表3に示した。
【0032】
【表1】

Figure 0003596049
【0033】
【表2】
Figure 0003596049
【0034】
【表3】
Figure 0003596049
[0001]
[Industrial applications]
The present invention relates to a method for producing 1-pentene useful as a polyolefin raw material. Specifically, the present invention relates to a method for producing 1-pentene using a catalyst having excellent low-temperature activity and reaction selectivity.
[0002]
[Prior art and its problems]
Conventionally, a method of producing 1-pentene by co-dimerizing ethylene and propylene using a catalyst in which an alkali metal is supported on a support is described in, for example, Chem. Brit. , Vol. 5, 354 (1969).
However, the conventional methods using a catalyst have drawbacks in catalytic activity and reaction selectivity, and improvements have been desired.
[0003]
In the production of 1-pentene on an industrial scale, it is advantageous to use a granular carrier as a support. As such a catalyst, a catalyst in which potassium metal and stainless steel powder are supported on a potassium carbonate granular carrier is disclosed in No. 46248. However, the 1-pentene selectivity obtained by the co-dimerization reaction of ethylene and propylene using this catalyst was as low as 77 to 82%, and required a high-temperature reaction of 135 ° C. or more.
[0004]
JP-A-3-2127 discloses a catalyst in which potassium potassium and stainless steel powder are supported on an extruded potassium carbonate carrier. However, this catalyst also has a poor reaction selectivity, and only a 37-84% 1-pentene selectivity is obtained. The reaction temperature also needs to be as high as 140 ° C. or higher.
[0005]
JP-A-3-41036 discloses a catalyst in which metallic sodium is supported on a compression-molded granular carrier composed of potassium carbonate and carbon. Although the co-dimerization reaction of ethylene and propylene using this catalyst can be performed at a relatively low temperature, the 1-pentene selectivity is still not sufficiently high at 90.7 to 93.2%.
[0006]
[Object of the present invention]
An object of the present invention is to provide a method for efficiently producing 1-pentene by using a catalyst having high activity even at a low temperature, while improving the selectivity of 1-pentene in the codimerization of ethylene and propylene.
[0007]
[Means for Solving the Problems]
The present invention relates to a method for producing 1-pentene by co-dimerizing ethylene and propylene in the presence of a catalyst obtained by supporting an alkali metal on a compression-molded granular carrier comprising an anhydrous potassium compound and carbon,
The anhydrous potassium compound is a mixture of potassium carbonate and potassium fluoride,
The alkali metal is sodium, and the catalyst is treated with propylene at a temperature of 140 to 155 ° C. and at a pressure of 30 kg / cm 2 G or more, with an upper limit of 150 kg / cm 2 G , for 2 to 50 hours. The present invention relates to a method for producing 1-pentene, wherein co-dimerization is performed after the contact.
[0008]
In the present invention, potassium carbonate and potassium fluoride are preferable as the anhydrous potassium compound. The use of a mixture of potassium carbonate and potassium fluoride is preferred because the selectivity of the co-dimerization reaction is increased and the effect of improving the activity by contacting with propylene is further increased. As the anhydrous potassium compound, in addition to potassium carbonate and potassium fluoride, potassium chloride, potassium bromide, potassium iodide and other potassium halides, potassium sulfate, potassium nitrate, potassium silicate, potassium silicofluoride, and the like may be contained.
[0009]
Specific examples of the alkali metal used in the present invention include sodium. Generally, the reaction activity of sodium metal is much lower than that of potassium metal. However, by bringing the sodium metal into contact with potassium fluoride or potassium carbonate under heating, the sodium metal easily undergoes an exchange reaction to generate sodium fluoride, sodium carbonate, and potassium metal. Sodium metal can be used alone as a metal component. In particular, in the present invention, a catalyst using sodium has a remarkable effect of improving selectivity.
[0010]
The amount of the alkali metal used is not particularly limited, but is preferably 1 to 10% by weight, and particularly preferably 1.5 to 6% by weight based on the total weight of the catalyst.
Generally, increasing the supported amount of alkali metal increases the production rate per unit catalyst weight, which is industrially advantageous. However, excessively increasing the amount of alkali metal makes it difficult to remove heat or lowers selectivity. It is not preferred.
[0011]
Examples of the carbon used in the present invention include activated carbon, graphite, and carbon black. These may be used alone, or may be used as a mixture of two or more. In particular, graphite can be suitably used.
[0012]
In the present invention, the amount of carbon used is not particularly limited, but is preferably 0.2 to 3.0% by weight based on the total weight of the catalyst.
[0013]
In the present invention, the carrier can be manufactured by sufficiently mixing the carbon and the anhydrous potassium compound raw powder and compression-molding the mixed raw powder using a tableting machine, a compression molding machine, a pelletizer, or the like.
[0014]
An anhydrous potassium compound, as a mixed raw powder before compression molding, has a poorly packed bulk density of less than 0.6 g / ml in a state where carbon is not contained. If it exceeds 1.2 g / ml, molding is easy, but the resulting granular carrier has a small specific surface area and is dense. The potassium fluoride and potassium carbonate raw powders may be used as they are, or they may be mixed after being ground or granulated. Or you may grind after mixing.
[0015]
The shape of the compression-molded granular carrier is not particularly limited, but is usually a cylindrical shape, a pellet shape, a spherical shape, and the like, and the particle size is usually 0.5 mm or more, preferably 1 to 10 mm. . The strength of the carrier is not particularly limited, but may be in the range of 1.5 to 20 kg (crush strength in radial direction).
[0016]
The support needs to be dried before loading the alkali metal. It is preferable to dry under reduced pressure at 50 to 200 ° C. or to perform normal pressure firing at 200 to 600 ° C. Only the drying under reduced pressure, the firing at normal pressure alone, or both operations may be performed.
[0017]
As a method of supporting the alkali metal on the carrier, for example, the method can be carried out by stirring and mixing the dried or calcined carrier at a temperature higher than the melting point of the alkali metal, preferably at a temperature of 200 to 450 ° C. in an inert gas atmosphere. it can.
The catalyst of the present invention does not show a significant decrease in crushing strength even by the above-described alkali metal supporting treatment, and can be effectively used as a practical catalyst.
[0018]
In the present invention, the catalyst is treated with propylene before the co-dimerization reaction. By this treatment, the co-dimerization activity of the catalyst is significantly improved as compared with the untreated one. Since the space-time yield (STY) increases and the reaction at a lower temperature becomes possible, the reaction selectivity is improved and the catalyst life is extended.
[0019]
The temperature of the contact treatment with propylene is higher than that of the co-dimerization reaction, specifically, in the range of 140 to 155 ° C. If it is less than the above range, the improvement of the co-dimerization activity is not sufficient. If the ratio exceeds the above range, deactivation of the catalyst starts even during the treatment, so that similarly high co-dimerization activity cannot be obtained.
[0020]
The propylene pressure at the time of contact is 30 kg / cm 2 G or more. If the pressure is less than the above pressure, the improvement of the co-dimerization activity is not sufficient. The upper limit of the propylene pressure is 150 kg / cm 2 G. The required time for propylene treatment is in the range of 2 to 50 hours.
[0021]
According to the method of the present invention, 1-pentene is produced by co-dimerizing ethylene and propylene in the presence of the catalyst obtained as described above, preferably using a fixed bed system as the reaction system.
[0022]
The reaction pressure is preferably 20 kg / cm 2 G or more, more preferably 30~150kg / cm 2 G or more ranges. When the reaction pressure is less than 20 kg / cm 2 G, the space-time yield decreases. The upper limit of the reaction pressure is not particularly limited, but is 150 kg / cm 2 G from a practical viewpoint.
[0023]
The reaction temperature is preferably in the range from 90 to 130C, more preferably in the range from 95 to 125C. When the reaction temperature is lower than 90 ° C., the space-time yield decreases. On the other hand, when the temperature exceeds 130 ° C., the 1-pentene selectivity decreases, and the space-time yield (STY) becomes too large, so that it becomes difficult to remove heat from the reaction tube.
[0024]
The liquid hourly space velocity (LHSV) of ethylene and propylene is generally in the range of 0.5 to 10 hr -1 , preferably 1 to 7 hr -1 .
[0025]
【The invention's effect】
According to the present invention, in the co-dimerization of ethylene and propylene, a method for producing 1-pentene which can obtain high reaction selectivity with increased low-temperature activity by performing co-dimerization after contacting the catalyst with propylene. Provided.
[0026]
【Example】
Hereinafter, embodiments of the present invention will be described.
[0027]
Example 1
50 parts by weight of potassium fluoride powder having an average particle size of 270 μm, a loosely packed bulk density of 1.148 g / ml, and a BET specific surface area of 0.09 m 2 / g, an average particle size of 250 μm, a bulk density of 0.953 g / ml, and a ratio of After mixing with 50 parts by weight of potassium carbonate powder having a surface area of 0.84 m 2 / g, the mixture was pulverized with a Willet pulverizer (500 μm screen). After adding 0.99% by weight of graphite powder to the ground powder and mixing well, the mixture was tableted into a cylindrical carrier having a diameter of 3 mm and a height of 3 mm. The crushing strength (radial direction) measured using a Kiya type hardness meter was 4.6 kg. After drying under reduced pressure at 100 ° C. for 20 hours, 2.50% by weight of metallic sodium was added under a nitrogen atmosphere, followed by stirring at 370 ° C. for 4 hours to prepare a catalyst. 64.88 g of this catalyst was charged into a tubular reactor having a catalyst volume of 54 ml and an inner diameter of 21 mm, and propylene was supplied at a reaction pressure of 100 kg / cm 2 G and a temperature of 150 ° C. at a liquid hourly space velocity (LHSV) of 5.18 hr −1. For 14 hours. Then, the temperature and pressure were reduced to 105 ° C. and 50 kg / cm 2 G, and a mixed gas of ethylene and propylene was supplied at an ethylene / propylene molar ratio of 0.56 at an LHSV of 4.40 hr −1 to perform a continuous flow reaction. Was done. The conversion of ethylene was 12.8%, and the selectivity of 1-pentene was 94.7%. Tables 1, 2 and 3 show the propylene pretreatment conditions, reaction conditions and reaction results, respectively.
[0028]
Example 2
Co-dimerization of ethylene and propylene was carried out in the same manner as in Example 1, except that the catalyst loading was 63.54 g and the propylene pretreatment time was 6 hr. Tables 1, 2 and 3 show the propylene pretreatment conditions, reaction conditions and reaction results, respectively.
[0029]
Example 3
Co-dimerization of ethylene and propylene was performed in the same manner as in Example 2 except that the reaction temperature was changed. Tables 1, 2 and 3 show the propylene pretreatment conditions, reaction conditions and reaction results, respectively.
[0030]
Comparative Example 1
0.99% by weight of graphite powder and 0.20% by weight of activated carbon were added to the pulverized raw powder prepared in the same manner as in Example 1 for tableting. The crushing strength was 3.4 kg. After drying under reduced pressure at 100 ° C. for 18 hours, 2.51% by weight of metallic sodium was added under a nitrogen atmosphere, followed by stirring at 370 ° C. for 4 hours to prepare a catalyst. 59.71 g of this catalyst was charged into the tubular reactor described in Example 1 and mixed gas of ethylene and propylene at an ethylene / propylene molar ratio of 0.60 at a temperature and pressure of 105 ° C. and 55 kg / cm 2 G. Was supplied at an LHSV of 4.27 hr -1 to perform a continuous flow reaction. Tables 1, 2 and 3 show the propylene pretreatment conditions, reaction conditions and reaction results, respectively.
[0031]
Comparative Example 2
Co-dimerization of ethylene and propylene was performed in the same manner as in Comparative Example 1 except that the reaction temperature was changed. Tables 1, 2 and 3 show the propylene pretreatment conditions, reaction conditions and reaction results, respectively.
[0032]
[Table 1]
Figure 0003596049
[0033]
[Table 2]
Figure 0003596049
[0034]
[Table 3]
Figure 0003596049

Claims (1)

無水カリウム化合物と炭素とからなる圧縮成型粒状担体にアルカリ金属を担持させてなる触媒の存在下に、エチレンとプロピレンとを共二量化させて1−ペンテンを製造する方法において、
該無水カリウム化合物が炭酸カリウムとフッ化カリウムの混合したものであり、
該アルカリ金属がナトリウムであり、かつ
該触媒を140〜155℃の温度及び30kg/cm G以上、上限が150kg/cm の圧力で、2〜50時間の範囲でプロピレンと接触させた後に共二量化を行うことを特徴とする1−ペンテンの製造法。
In the method of producing 1-pentene by co-dimerizing ethylene and propylene in the presence of a catalyst obtained by supporting an alkali metal on a compression-molded granular carrier comprising an anhydrous potassium compound and carbon,
The anhydrous potassium compound is a mixture of potassium carbonate and potassium fluoride,
The alkali metal is sodium, and the catalyst is treated with propylene at a temperature of 140 to 155 ° C. and at a pressure of 30 kg / cm 2 G or more, and an upper limit of 150 kg / cm 2 G , for 2 to 50 hours. A method for producing 1-pentene, wherein co-dimerization is performed after the contact.
JP27784794A 1994-11-11 1994-11-11 Method for producing 1-pentene Expired - Fee Related JP3596049B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27784794A JP3596049B2 (en) 1994-11-11 1994-11-11 Method for producing 1-pentene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27784794A JP3596049B2 (en) 1994-11-11 1994-11-11 Method for producing 1-pentene

Publications (2)

Publication Number Publication Date
JPH08133992A JPH08133992A (en) 1996-05-28
JP3596049B2 true JP3596049B2 (en) 2004-12-02

Family

ID=17589105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27784794A Expired - Fee Related JP3596049B2 (en) 1994-11-11 1994-11-11 Method for producing 1-pentene

Country Status (1)

Country Link
JP (1) JP3596049B2 (en)

Also Published As

Publication number Publication date
JPH08133992A (en) 1996-05-28

Similar Documents

Publication Publication Date Title
EP0949000B1 (en) Process for the preparation of fluid bed vinyl acetate catalyst support
US4520126A (en) Catalyst composition suitable for the dimerization or codimerization of alpha-olefins
JPH105586A (en) Granular activated carbon formed body, carrier and catalyst
US4308174A (en) Spherical cerium-activated catalyst for ammonia synthesis and process for its manufacture
CN107243351A (en) Catalyst, preparation method and the application in purifying pentafluoroethane of conversion perfluoroethane are fluorinated for five fluorine monochlorethanes
JP2008149275A (en) Catalyst for dimerizing alpha-olefin and method for producing alpha-olefin dimer
JP4498213B2 (en) An α-olefin dimerization catalyst and a method for producing an α-olefin dimer.
JPH0596B2 (en)
JP3596049B2 (en) Method for producing 1-pentene
US3600331A (en) Catalyst containing copper phosphate and silver phosphate useful in the oxygenation of hydrogen halides
US4753914A (en) Molded supported catalyst
US10500570B2 (en) Formed body and method for producing the same, α-olefin dimerization catalyst, and method for producing α-olefin dimer
US3760067A (en) Process for the production of elemental halogen
JPH07222927A (en) Dimerization catalyst of lower alpha-olefin
JPH064550B2 (en) Method for producing alkanols and methanol
Takita et al. Selective hydrogen cyanide synthesis from CFC12 (CCl2F2) and ammonia over metal catalysts supported on LaF3 and activated charcoal
JP2899635B2 (en) α-Olefin dimerization catalyst
US20210113991A1 (en) METHOD FOR PRODUCING POROUS MOLDED BODY, METHOD FOR PRODUCING CATALYST FOR alpha-OLEFIN DIMERIZATION, METHOD FOR PRODUCING alpha-OLEFIN DIMER, POROUS MOLDED BODY, AND CATALYST FOR alpha-OLEFIN DIMERIZATION
JPH0994460A (en) Method for regenerating catalyst
JPH08109144A (en) Production of 1-pentene
JPS58114737A (en) Catalyst for dimerization of alpha-olefin
CA3152991C (en) New catalyst system for producing maleic anhydride by means of the catalytic oxidation of n-butane
JP2749664B2 (en) Propylene production method
JPH08295640A (en) Production of 3-ethyl-1-olefin
JPH07289908A (en) Production of alpha-olefin dimerizing catalyst

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040830

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees