JPH07221354A - Josephson junction element and its manufacture - Google Patents
Josephson junction element and its manufactureInfo
- Publication number
- JPH07221354A JPH07221354A JP6011946A JP1194694A JPH07221354A JP H07221354 A JPH07221354 A JP H07221354A JP 6011946 A JP6011946 A JP 6011946A JP 1194694 A JP1194694 A JP 1194694A JP H07221354 A JPH07221354 A JP H07221354A
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- single crystal
- crystal thin
- josephson junction
- ybco
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 15
- 239000013078 crystal Substances 0.000 claims abstract description 72
- 239000010409 thin film Substances 0.000 claims abstract description 68
- 239000000919 ceramic Substances 0.000 claims abstract description 17
- 239000000758 substrate Substances 0.000 claims abstract description 17
- 239000010408 film Substances 0.000 claims description 23
- 238000000034 method Methods 0.000 claims description 21
- 229910021521 yttrium barium copper oxide Inorganic materials 0.000 abstract description 27
- 238000011156 evaluation Methods 0.000 description 12
- 239000002131 composite material Substances 0.000 description 6
- 229910052779 Neodymium Inorganic materials 0.000 description 3
- 238000001312 dry etching Methods 0.000 description 3
- 238000010884 ion-beam technique Methods 0.000 description 3
- 238000001755 magnetron sputter deposition Methods 0.000 description 3
- 238000000206 photolithography Methods 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- 229910052712 strontium Inorganic materials 0.000 description 3
- 229910052684 Cerium Inorganic materials 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 238000000265 homogenisation Methods 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 229910052761 rare earth metal Inorganic materials 0.000 description 2
- 150000002910 rare earth metals Chemical class 0.000 description 2
- 230000006641 stabilisation Effects 0.000 description 2
- 238000011105 stabilization Methods 0.000 description 2
- 239000002887 superconductor Substances 0.000 description 2
- 229910052772 Samarium Inorganic materials 0.000 description 1
- 229910002370 SrTiO3 Inorganic materials 0.000 description 1
- 229910052776 Thorium Inorganic materials 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000007733 ion plating Methods 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 229910052716 thallium Inorganic materials 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
Landscapes
- Superconductor Devices And Manufacturing Methods Thereof (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は、平面型構造を有する
ジョセフソン接合素子であって、セラミック超電導薄膜
(酸化物超電導薄膜)を用いて作製された、所謂、複合
型ジョセフソン接合素子とその製造方法に関するもので
ある。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a Josephson junction device having a planar structure, which is a so-called composite Josephson junction device manufactured by using a ceramic superconducting thin film (oxide superconducting thin film) and the same. The present invention relates to a manufacturing method.
【0002】[0002]
【従来の技術】近年の薄膜形成技術の進展に伴い、超電
導セラミックの薄膜を基板上に形成して種々のセンサ類
を作製する試みがなされており、特に高感度の磁気セン
サを実現するためには超電導薄膜にジョセフソン接合を
作り込む必要がある。2. Description of the Related Art With the progress of thin film forming technology in recent years, attempts have been made to form various sensors by forming a thin film of a superconducting ceramic on a substrate, and in particular, in order to realize a highly sensitive magnetic sensor. Needs to create a Josephson junction in the superconducting thin film.
【0003】従来、この種のジョセフソン接合として
は、自然発生した結晶粒界を利用した多結晶型ジョセフ
ソン接合があり、その製造方法としてはアモルファス薄
膜をアニールにより再結晶化する方法や超電導多結晶薄
膜をCVD等により形成する方法が試みられている。Conventionally, as this type of Josephson junction, there is a polycrystalline Josephson junction utilizing naturally occurring crystal grain boundaries, and as a manufacturing method thereof, there is a method of recrystallizing an amorphous thin film by annealing or superconductivity Attempts have been made to form a crystal thin film by CVD or the like.
【0004】[0004]
【発明が解決しようとする課題】ところが、上記の多結
晶型ジョセフソン接合を作る場合には、偶発的にできた
結晶粒界を利用しているために、その結晶粒界間に起因
する特性のばらつきが生じるという問題があった。その
結果、ジョセフソン接合素子の臨界電流の制御が困難に
なるばかりか、均質且つ安定的なジョセフソン接合素子
を作製することができないという問題を有していた。However, when the above-mentioned polycrystalline Josephson junction is formed, since the crystal grain boundaries that are accidentally formed are used, the characteristics caused by the crystal grain boundaries are caused. There was a problem that there was a variation in. As a result, not only is it difficult to control the critical current of the Josephson junction device, but there is also the problem that a homogeneous and stable Josephson junction device cannot be manufactured.
【0005】この発明は、上記問題に着目してなされた
ものであって、その目的とするところは、新規な構成に
てジョセフソン接合特性のばらつきを低減し、均質化並
びに安定化を図ることができるジョセフソン接合素子と
その製造方法を提供することにある。The present invention has been made in view of the above problems, and an object of the invention is to reduce variations in Josephson junction characteristics with a novel structure to achieve homogenization and stabilization. It is an object of the present invention to provide a Josephson junction element capable of manufacturing and a manufacturing method thereof.
【0006】[0006]
【課題を解決するための手段】上記目的を達成するため
に、請求項1に記載したジョセフソン接合素子の発明
は、平面型構造を有するセラミック超電導ジョセフソン
接合素子において、超電導単結晶薄膜にて形成された一
対の電極部と、同じく超電導単結晶薄膜にて形成され前
記両電極部をブリッジ型に接合するブリッジ部とからな
ることを要旨とするものである。In order to achieve the above object, the invention of a Josephson junction element described in claim 1 is a ceramic superconducting Josephson junction element having a planar structure, in which a superconducting single crystal thin film is used. The gist of the invention is that it is composed of a pair of formed electrode portions and a bridge portion which is also formed of a superconducting single crystal thin film and joins the both electrode portions in a bridge shape.
【0007】請求項2に記載したジョセフソン接合素子
の発明は、請求項1に記載のジョセフソン接合素子につ
いて、前記電極部の超電導単結晶薄膜と前記ブリッジ部
の超電導単結晶薄膜との界面部の断面積が0.5〜2.
5μm2 であるように構成している。The invention of the Josephson junction element described in claim 2 is the Josephson junction element according to claim 1, wherein an interface portion between the superconducting single crystal thin film of the electrode portion and the superconducting single crystal thin film of the bridge portion is provided. Has a cross-sectional area of 0.5-2.
It is configured to be 5 μm 2 .
【0008】請求項3に記載したジョセフソン接合素子
の発明は、請求項2に記載のジョセフソン接合素子につ
いて、前記電極部を形成する超電導単結晶薄膜の膜厚
が、前記ブリッジ部を形成する超電導単結晶薄膜の膜厚
の2倍以上であるように構成している。The invention of the Josephson junction device described in claim 3 is the Josephson junction device according to claim 2, wherein the film thickness of the superconducting single crystal thin film forming the electrode part forms the bridge part. It is configured to be twice or more the thickness of the superconducting single crystal thin film.
【0009】請求項4に記載したジョセフソン接合素子
の製造方法の発明は、基板上にセラミック超電導単結晶
薄膜を堆積するとともに、そのセラミック超電導単結晶
薄膜の所定領域を除去することにより一対の電極部を形
成し、その後、前記基板上にセラミック超電導単結晶薄
膜を成膜することにより前記両電極部をブリッジ型に接
合するブリッジ部を形成することを要旨としている。According to a fourth aspect of the present invention, there is provided a method for manufacturing a Josephson junction device, wherein a ceramic superconducting single crystal thin film is deposited on a substrate and a predetermined region of the ceramic superconducting single crystal thin film is removed to remove a pair of electrodes. And forming a bridge portion that joins the two electrode portions in a bridge shape by forming a ceramic superconducting single crystal thin film on the substrate.
【0010】[0010]
【作用】請求項1〜3に記載の発明によれば、電極部の
超電導単結晶薄膜とブリッジ部の超電導単結晶薄膜との
界面部における結晶粒界を弱結合部として利用すること
によりこの接合を介してジョセフソン電流が流れる。こ
の場合、電極部と同様にブリッジ部を超電導単結晶薄膜
にて構成することで結晶粒界によるジョセフソン接合特
性のばらつきが低減される。According to the invention described in claims 1 to 3, the bonding is achieved by utilizing the crystal grain boundary at the interface between the superconducting single crystal thin film of the electrode portion and the superconducting single crystal thin film of the bridge portion as the weakly coupled portion. Josephson current flows through. In this case, the bridge portion is made of a superconducting single crystal thin film similarly to the electrode portion, so that variations in Josephson junction characteristics due to grain boundaries are reduced.
【0011】又、請求項4に記載の発明によれば、基板
上にセラミック超電導単結晶薄膜を堆積するとともに、
そのセラミック超電導単結晶薄膜の所定領域を除去する
ことにより一対の電極部が形成される。そして、基板上
にセラミック超電導単結晶薄膜を成膜することにより両
電極部がブリッジ型に接合される。その結果、請求項1
のジョセフソン接合素子が製造される。According to the invention described in claim 4, the ceramic superconducting single crystal thin film is deposited on the substrate, and
A pair of electrode portions is formed by removing a predetermined region of the ceramic superconducting single crystal thin film. Then, by forming a ceramic superconducting single crystal thin film on the substrate, both electrode parts are joined in a bridge type. As a result, claim 1
Josephson junction device is manufactured.
【0012】[0012]
【実施例】以下、この発明を具体化した一実施例を図面
に従って説明する。図1(a),(b)は、本実施例に
おける複合型ジョセフソン接合素子を示す平面図及びA
−A断面図である。図1(a),(b)において、Mg
O単結晶からなる基板1上には、セラミック超電導単結
晶薄膜YBa2 Cu3 Oy (以下、YBCO単結晶薄膜
と略す)からなる左右一対の電極部2a,2bが相対向
して形成されている。又、基板1上における電極部2
a,2bの間には、同電極部2a,2bと同じくYBC
O単結晶薄膜にて形成されたブリッジ部3が設けられて
おり、電極部2a,2bのYBCO単結晶薄膜とブリッ
ジ部3のYBCO単結晶薄膜との界面部は弱結合されて
いる。図1において、d1 は電極部2a,2bの膜厚、
d2 はブリッジ部3の膜厚(電極部上のYBCO単結晶
薄膜の膜厚も同じ)、Wはブリッジ幅を示している。そ
して、同素子においては、前記界面部に形成される結晶
粒界を弱結合部としてジョセフソン電流が流れる。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIGS. 1A and 1B are a plan view and A showing a composite Josephson junction element according to this embodiment.
FIG. In FIGS. 1A and 1B, Mg
A pair of left and right electrode portions 2a and 2b made of a ceramic superconducting single crystal thin film YBa 2 Cu 3 O y (hereinafter abbreviated as YBCO single crystal thin film) are formed on a substrate 1 made of O single crystal so as to face each other. There is. Also, the electrode portion 2 on the substrate 1
Between the electrodes a and 2b, the same YBC as the electrodes 2a and 2b is provided.
The bridge portion 3 formed of the O single crystal thin film is provided, and the interface portion between the YBCO single crystal thin film of the electrode portions 2a and 2b and the YBCO single crystal thin film of the bridge portion 3 is weakly coupled. In FIG. 1, d 1 is the film thickness of the electrode portions 2a and 2b,
d 2 is the film thickness of the bridge portion 3 (the same is the film thickness of the YBCO single crystal thin film on the electrode portion), and W is the bridge width. Then, in the same element, the Josephson current flows through the crystal grain boundary formed at the interface portion as a weak coupling portion.
【0013】以下、ジョセフソン接合素子の製造方法を
図2〜図5に基づいて説明する。なお、各図において、
(a)は素子の平面図を、(b)は素子のA−A断面図
を示す。A method of manufacturing the Josephson junction element will be described below with reference to FIGS. In each figure,
(A) is a plan view of the device, and (b) is a cross-sectional view taken along the line AA of the device.
【0014】最初に図2(a),(b)に示す如く、基
板(MgO単結晶)1全面にYBCO単結晶薄膜20を
均一なる膜厚d1 (例えば、d1 =500nm)で堆積
させる。薄膜の形成方法としては、YBCO焼結体をA
rイオンでスパッタし基板1上に堆積させるRFマグネ
トロンスパッタ法を用いており、以下にその条件を示
す。First, as shown in FIGS. 2A and 2B, a YBCO single crystal thin film 20 is deposited on the entire surface of the substrate (MgO single crystal) 1 with a uniform film thickness d 1 (for example, d 1 = 500 nm). . As a method of forming a thin film, a YBCO sintered body is
An RF magnetron sputtering method in which r ions are sputtered and deposited on the substrate 1 is used, and the conditions are shown below.
【0015】〔単結晶薄膜作製条件〕 ターゲット:YBa2 Cu3.5 Oy 焼結体 基板温度:720℃ Ar流量:20sccm O2 流量:20sccm スパッタ圧力:0.15Torr スパッタ電力:150W ターゲット基板間距離:80mm 堆積レート:0.6nm/min なお、上記条件では、スパッタ圧力が通常の圧力(7.
5mTorr)よりも高い値に設定されており、その結
果、高品質で且つ膜厚の薄い単結晶薄膜の作製が可能に
なっている。[Conditions for producing single crystal thin film] Target: YBa 2 Cu 3.5 O y sintered body Substrate temperature: 720 ° C. Ar flow rate: 20 sccm O 2 flow rate: 20 sccm Sputtering pressure: 0.15 Torr Sputtering power: 150 W Distance between target substrates: 80 mm Deposition rate: 0.6 nm / min Under the above conditions, the sputtering pressure is the normal pressure (7.
The value is set to a value higher than 5 mTorr), and as a result, it is possible to manufacture a single crystal thin film having a high quality and a thin film thickness.
【0016】その後、図3(a),(b)に示す如く、
YBCO単結晶薄膜20を2つの部分に分割し、左右一
対の電極部2a,2bを形成する。つまり、電極部2
a,2bは略三角形状に形成されその頂部が相対向して
いる。なお、両電極部2a,2bを一定間隔の溝によっ
て分割形成することもできる。この電極部2a,2bの
形成はフォトリソグラフィー法及びArイオンビームに
よるドライエッチング法を用いて実施する。以下にその
加工条件を示す。After that, as shown in FIGS. 3 (a) and 3 (b),
The YBCO single crystal thin film 20 is divided into two parts to form a pair of left and right electrode parts 2a and 2b. That is, the electrode part 2
a and 2b are formed in a substantially triangular shape and their tops face each other. Alternatively, both electrode portions 2a and 2b may be formed separately by grooves having a constant interval. The electrode portions 2a and 2b are formed by using a photolithography method and a dry etching method using an Ar ion beam. The processing conditions are shown below.
【0017】 〔フォトリソグラフィー法による微細加工条件〕 フォトレジスト:シプレー社製S1400−25レジス
ト レジスト塗布:スピンコーター 4000rpm プリベーク:90℃−15min 露光:UV−10sec 現像液:シプレー社製 MF−312 アフターベイク:140℃−15min 〔Arイオンビームエッチング〕 ビーム角度:45° Ar圧力:4×10-5Torr 加速電圧:550V エッチング速度:15nm/min しかる後、図4(a),(b)に示す如く、基板1全面
に再度、YBCO単結晶薄膜30を均一なる膜厚d
2 (例えば、d2 =100nm)で堆積させる。この薄
膜形成は、上記YBCO単結晶薄膜20の作製時と同一
条件のRFマグネトロンスパッタ法を用いる。[Fine processing conditions by photolithography method] Photoresist: S1400-25 resist manufactured by Shipley Co., Ltd. Resist application: Spin coater 4000 rpm Prebaking: 90 ° C.-15 min Exposure: UV-10 sec Developer: MF-312 Afterbaking manufactured by Shipley : 140 ° C.-15 min [Ar ion beam etching] Beam angle: 45 ° Ar pressure: 4 × 10 −5 Torr Accelerating voltage: 550 V Etching rate: 15 nm / min Then, as shown in FIGS. 4 (a) and 4 (b). , The YBCO single crystal thin film 30 is again formed on the entire surface of the substrate 1 to have a uniform film thickness d.
2 (eg, d 2 = 100 nm) is deposited. This thin film is formed by using the RF magnetron sputtering method under the same conditions as in the production of the YBCO single crystal thin film 20.
【0018】続いて、図5(a),(b)に示す如く、
フォトリソグラフィー法及びドライエッチング法を用い
て必要部分以外のYBCO単結晶薄膜30を除去し、三
角形状の左右両電極部2a,2bの頂部間にYBCO単
結晶薄膜30からなるブリッジ部3を形成する。このブ
リッジ部3の形成は、電極部2a,2bの形成時と同一
条件にて実施する。このとき、電極部2a,2bのYB
CO単結晶薄膜20とブリッジ部3のYBCO単結晶薄
膜30との界面部にて互いの単結晶薄膜が弱く結合す
る。そして、ブリッジ幅W(例えば、W=10μm)と
ブリッジ部3の膜厚d2 とにて決定される界面部の断面
積(=d2 ×W)に応じて素子の臨界電流が制御され
る。Then, as shown in FIGS. 5 (a) and 5 (b),
The YBCO single crystal thin film 30 other than the necessary portion is removed by using the photolithography method and the dry etching method, and the bridge portion 3 made of the YBCO single crystal thin film 30 is formed between the top portions of the left and right triangular electrode portions 2a and 2b. . The bridge portion 3 is formed under the same conditions as when forming the electrode portions 2a and 2b. At this time, YB of the electrode portions 2a and 2b
At the interface between the CO single crystal thin film 20 and the YBCO single crystal thin film 30 of the bridge portion 3, the single crystal thin films are weakly bonded to each other. Then, the critical current of the element is controlled according to the cross-sectional area (= d 2 × W) of the interface portion which is determined by the bridge width W (for example, W = 10 μm) and the film thickness d 2 of the bridge portion 3. .
【0019】次に、上記のように作製されたジョセフソ
ン接合素子に関する特性の評価結果を下表を用いて説明
する。Next, the evaluation results of the characteristics of the Josephson junction device manufactured as described above will be described with reference to the following table.
【0020】[0020]
【表1】 [Table 1]
【0021】表1は、電極部2a,2bの膜厚d1 を5
00nm、ブリッジ部3の膜厚d2を20〜300nm
(ブリッジ幅W=10μmの場合、界面部の断面積=
0.2〜3.0μm2 )としたときのジョセフソン接合
の評価結果を示している。なお、表1においてシャピロ
ステップとはジョセフソン接合に所定周波数のマイクロ
波を照射したときに得られる定電圧ステップであって、
本評価においてはシャピロステップの有無の確認により
ジョセフソン接合の良否判定を実施した。Table 1 shows the film thickness d 1 of the electrode portions 2a and 2b as 5
00 nm, the film thickness d 2 of the bridge portion 3 is 20 to 300 nm
(When the bridge width W = 10 μm, the cross-sectional area of the interface =
It shows the evaluation result of the Josephson junction when 0.2 to 3.0 μm 2 ). In Table 1, the Shapiro step is a constant voltage step obtained when a Josephson junction is irradiated with microwaves of a predetermined frequency,
In this evaluation, the quality of the Josephson junction was judged by confirming the presence or absence of the Shapiro step.
【0022】表1によれば、界面部の断面積が0.5〜
2.5μm2 (d2 =50〜250nm)の素子に関し
ては、いずれもシャピロステップが確認され、ジョセフ
ソン接合素子としての良好なる判定が得られた。これに
対し、断面積が0.2μm2(d2 =20nm)及び
3.0μm2 (d2 =300nm)の素子に関しては、
シャピロステップを確認することができなかった。又、
表1の結果によれば、ブリッジ部3の膜厚d2 に応じて
臨界電流が変化するのが確認された。そして、断面積が
0.2μm2 の素子では臨界電流≒0になり、断面積が
3.0μm2 の素子では臨界電流がジョセフソン接合素
子としての限界値を大きく上回ることになった。According to Table 1, the cross-sectional area of the interface is 0.5 to
The Shapiro step was confirmed for all the devices of 2.5 μm 2 (d 2 = 50 to 250 nm), and good judgment as a Josephson junction device was obtained. On the other hand, regarding the elements having the cross-sectional areas of 0.2 μm 2 (d 2 = 20 nm) and 3.0 μm 2 (d 2 = 300 nm),
I could not confirm the Shapiro step. or,
According to the results in Table 1, it was confirmed that the critical current changes depending on the film thickness d 2 of the bridge portion 3. Then, in the device having a cross-sectional area of 0.2 μm 2 , the critical current becomes approximately 0, and in the device having a cross-sectional area of 3.0 μm 2 , the critical current greatly exceeds the limit value as the Josephson junction device.
【0023】なお、表1にはブリッジ幅W=10μmの
場合の評価結果を示したがこのブリッジ幅Wを変えて実
施することも勿論可能であり、接合部の断面積が上記の
0.5〜2.5μm2 の範囲内であればブリッジ幅Wが
特定されずとも常にジョセフソン接合素子として良好な
る評価が得られることが確認された。又、膜厚d1 を5
00nm以上に設定した場合にも、断面積=0.5〜
2.5μm2 であれば同様の評価が得られることが確認
された。Table 1 shows the evaluation results when the bridge width W = 10 μm. However, it is of course possible to change the bridge width W, and the cross-sectional area of the junction is 0.5. It was confirmed that a good evaluation as a Josephson junction element can always be obtained even if the bridge width W is not specified within a range of up to 2.5 μm 2 . Also, the film thickness d 1 is 5
Even when set to 00 nm or more, the cross-sectional area = 0.5 to
It was confirmed that the same evaluation could be obtained with 2.5 μm 2 .
【0024】一方、次の表2には、電極部2a,2bの
膜厚d1 を250nmとしたときのジョセフソン接合の
評価結果を示す。On the other hand, the following Table 2 shows the evaluation results of the Josephson junction when the film thickness d 1 of the electrode portions 2a and 2b is 250 nm.
【0025】[0025]
【表2】 [Table 2]
【0026】表2によれば、界面部の断面積が0.5〜
1.0μm2 (d2 =50〜100nm)の素子に関し
ては、シャピロステップが確認され、ジョセフソン接合
素子として良好なる評価結果が得られた。これに対し、
断面積が0.2μm2 (d2=20nm)及び2.0〜
3.0μm2 (d2 =200〜300nm)の素子に関
しては、シャピロステップが無いか又は有無不定であり
良好なる評価が得られなかった。According to Table 2, the cross-sectional area of the interface is 0.5 to
Shapiro step was confirmed for the device of 1.0 μm 2 (d 2 = 50 to 100 nm), and a good evaluation result as a Josephson junction device was obtained. In contrast,
The cross-sectional area is 0.2 μm 2 (d 2 = 20 nm) and 2.0 to
With respect to the device having a thickness of 3.0 μm 2 (d 2 = 200 to 300 nm), there was no Shapiro step or the presence / absence of the Shapiro step was uncertain, and a good evaluation could not be obtained.
【0027】なお、断面積が2.0〜2.5μm2 の素
子については、d1 =500nmの場合(表1の場合)
には良好なる評価を得たにもかかわらずd1 =250n
mとなることで良好なる評価が得られなかった。即ち、
表2の場合には、d1 :d2=250:100ではシャ
ピロステップが有り、d1 :d2 =250:100では
シャピロステップが無い。このように、電極部2a,2
bの膜厚d1 がブリッジ部3の膜厚d2 の2倍よりも小
さいと(d1 <2d2 )、ジョセフソン接合素子として
良好なる評価が得られないことが分かった。つまり、図
6に示すように、電極部2a,2bの膜厚d1 を薄くす
ると電極部2a,2b上に堆積したYBCO単結晶薄膜
30’とブリッジ部3のYBCO単結晶薄膜30”とが
連続的に繋がり、この連続部分が臨界電流の過大な増加
を招く。For a device having a cross-sectional area of 2.0 to 2.5 μm 2 , when d 1 = 500 nm (Table 1)
Although a good evaluation was obtained for d 1 = 250n
When it was m, a good evaluation could not be obtained. That is,
In the case of Table 2, d 1: d 2 = 250 : 100 Shapiro step in the presence, d 1: d 2 = 250 : no 100 Shapiro step in. In this way, the electrode parts 2a, 2
It was found that when the film thickness d 1 of b is smaller than twice the film thickness d 2 of the bridge portion 3 (d 1 <2d 2 ), a good evaluation as a Josephson junction device cannot be obtained. That is, as shown in FIG. 6, when the film thickness d 1 of the electrode portions 2a and 2b is reduced, the YBCO single crystal thin film 30 ′ and the YBCO single crystal thin film 30 ″ of the bridge portion 3 deposited on the electrode portions 2a and 2b are separated from each other. They are continuously connected, and this continuous portion causes an excessive increase in the critical current.
【0028】以上詳述したように本実施例のジョセフソ
ン接合素子においては、電極部2a,2bとブリッジ部
3との界面部に形成される結晶粒界を弱結合部として利
用することで、ジョセフソン接合を介して所望のジョセ
フソン電流を流すことができる。この場合、ブリッジ部
3の膜厚d2 を調整することにより、素子の臨界電流を
ジョセフソン接合素子としての適正値に制御することが
できる。又、従来のように自然発生的な結晶粒界を用い
ることがないため、ブリッジ部3における結晶粒界のば
らつきを低減することができ、均質且つ安定的なジョセ
フソン接合素子を製造し提供することができる。加え
て、結晶粒界の安定化に伴い、磁気的雑音や電気的雑音
を低減することができる。As described in detail above, in the Josephson junction device of this embodiment, the crystal grain boundary formed at the interface between the electrode portions 2a and 2b and the bridge portion 3 is used as the weakly coupled portion, The desired Josephson current can flow through the Josephson junction. In this case, the critical current of the device can be controlled to an appropriate value for the Josephson junction device by adjusting the film thickness d 2 of the bridge portion 3. Further, unlike the conventional case, since the naturally occurring crystal grain boundaries are not used, the variation of the crystal grain boundaries in the bridge portion 3 can be reduced, and a uniform and stable Josephson junction element is manufactured and provided. be able to. In addition, magnetic noise and electrical noise can be reduced as the crystal grain boundaries are stabilized.
【0029】さらに、界面部の断面積を0.5〜2.5
μm2 にするという条件と、電極部2a,2bの膜厚d
1 をブリッジ部3の膜厚d2 の2倍以上にするという条
件とを共に満たすことにより、電極部2a,2bの膜厚
d1 やブリッジ幅Wに関係なく常に良好なるジョセフソ
ン特性を得ることができる。Furthermore, the cross-sectional area of the interface is 0.5 to 2.5.
μm 2 and the film thickness d of the electrode portions 2a and 2b
By satisfying both the condition that 1 is at least twice the film thickness d 2 of the bridge portion 3 and regardless of the film thickness d 1 of the electrode portions 2a and 2b and the bridge width W, a good Josephson characteristic is obtained. be able to.
【0030】なお、本発明は上記実施例に限定されるも
のではなく、次の様態にて具体化することができる。上
記実施例のジョセフソン接合素子では、図1に示す如く
電極部2a,2b上面にブリッジ部3と同一のYBCO
単結晶薄膜が堆積されていたが、図7に示す如く電極部
2a,2b上面のYBCO単結晶薄膜を除去して構成し
てもよい。この場合、電極部2a,2bの膜厚d1 が薄
くても電極部2a,2b上面のYBCO単結晶薄膜とブ
リッジ部3のYBCO単結晶薄膜とが連続的に繋がるこ
とはない。従って、電極部2a,2bの膜厚d1 を規制
する条件(d1 ≧2d2 )に関係なく、界面部の断面積
が0.5〜2.5μm2 の範囲内であれば常に良好なる
ジョセフソン接合特性を得ることができる。The present invention is not limited to the above embodiment, but can be embodied in the following modes. In the Josephson junction device of the above embodiment, the same YBCO as the bridge portion 3 is provided on the upper surfaces of the electrode portions 2a and 2b as shown in FIG.
Although the single crystal thin film is deposited, the YBCO single crystal thin film on the upper surfaces of the electrode portions 2a and 2b may be removed as shown in FIG. In this case, even if the film thickness d 1 of the electrode portions 2a and 2b is thin, the YBCO single crystal thin film on the upper surfaces of the electrode portions 2a and 2b and the YBCO single crystal thin film on the bridge portion 3 are not continuously connected. Therefore, regardless of the condition (d 1 ≧ 2d 2 ) that regulates the film thickness d 1 of the electrode portions 2a and 2b, it is always good if the cross-sectional area of the interface portion is within the range of 0.5 to 2.5 μm 2. Josephson junction characteristics can be obtained.
【0031】上記実施例では、YBCO単結晶薄膜2
0,30の作製方法として、RFマグネトロンスパッタ
法を用いたが、これを真空蒸着法,イオンクラスター
(ICB)法,イオンプレーティング法,化学蒸着(C
VD)法に変更することもできる。又、上記実施例で
は、電極部2a,2b及びブリッジ部3の形成方法とし
て、Arイオンビームによるドライエッチング法を用い
たが、それをウエットエッチング法に変更することもで
きる。In the above embodiment, the YBCO single crystal thin film 2
The RF magnetron sputtering method was used as a manufacturing method for 0 and 30, and this was used in vacuum deposition method, ion cluster (ICB) method, ion plating method, chemical vapor deposition (C
It is also possible to change to the VD) method. Further, in the above embodiment, the dry etching method using Ar ion beam was used as the method for forming the electrodes 2a and 2b and the bridge portion 3, but it may be changed to the wet etching method.
【0032】上記実施例では、基板1としてMgO単結
晶を用いたが、SrTiO3 単結晶等を用いてもよい。
又、セラミック超電導体としてYBCO単結晶薄膜を用
いてジョセフソン接合素子を製造したが、CuOX 単純
層状構造,CuOX −CuO y 複合層状構造,AOX −
CuOy 複合層状構造を有する下記のセラミック超電導
体を用いてジョセフソン接合素子を製造することもでき
る。 〔CuOX 単純層状構造〕 (La,M)2 CuO4 M=Ba,Sr,Ca,K LaCuO4 (Ln,M)2 CuO4 Ln=Nd,Pr,Sm M
=Ce,Th (Nd,Sr,Ce)2 CuO4 〔CuOX −CuOy 複合層状構造〕 Ba2 LnCu3 O7 Ln=Y及び希土類 Ba2 LnCu4 O8 Ba2 Ln2 Cu7 O15 (Ln,M)2 (Ln,M1 )2 Cu3 Oy Ln=Nd,Sm,Eu M=Ce M1 =Ba 〔AOX −CuOy 複合層状構造〕 Bi2 Sr2 Can-1 Cun O2n+4 n=1〜5 Tl1 Ba2 Can-1 Cun O2n+3 n=1〜5 Tl1 Sr2 Can-1 Cun O2n+3 n=2,3 Pb2 Sr2 (Ln,Ca,Sr)Cu3 O8 Ln=
Y及び希土類 (Tl,Pb)Sr2 (Ln,Ca)Cu2 Oy In the above embodiment, the MgO single bond is used as the substrate 1.
Crystal was used, but SrTiO3A single crystal or the like may be used.
Also, a YBCO single crystal thin film is used as a ceramic superconductor.
Then, a Josephson junction device was manufactured.XSimple
Layered structure, CuOX-CuO yComposite layered structure, AOX−
CuOyThe following ceramic superconductor with composite layered structure
You can also use the body to make Josephson junction devices
It [CuOXSimple layered structure] (La, M)2CuOFour M = Ba, Sr, Ca, K LaCuOFour (Ln, M)2CuOFour Ln = Nd, Pr, Sm M
= Ce, Th (Nd, Sr, Ce)2CuOFour [CuOX-CuOyComposite Layered Structure] Ba2LnCu3O7 Ln = Y and rare earth Ba2LnCuFourO8 Ba2Ln2Cu7O15 (Ln, M)2(Ln, M1)2Cu3Oy Ln = Nd, Sm, Eu M = Ce M1= Ba [AOX-CuOyComposite Layered Structure] Bi2Sr2Can-1CunO2n + 4 n = 1 to 5 Tl1Ba2Can-1CunO2n + 3 n = 1 to 5 Tl1Sr2Can-1CunO2n + 3 n = 2,3 Pb2Sr2(Ln, Ca, Sr) Cu3O8 Ln =
Y and rare earth (Tl, Pb) Sr2(Ln, Ca) Cu2Oy
【0033】[0033]
【発明の効果】この発明によれば、新規な構成にてジョ
セフソン接合特性のばらつきを低減し、均質化並びに安
定化を図ることができるという優れた効果を発揮する。According to the present invention, it is possible to reduce variations in the Josephson junction characteristics with a novel structure, and to achieve the homogenization and stabilization.
【図1】実施例におけるジョセフソン接合素子を示し、
(a)は平面図、(b)はA−A断面図である。FIG. 1 shows a Josephson junction device according to an embodiment,
(A) is a top view and (b) is an AA sectional view.
【図2】実施例におけるジョセフソン接合素子の製造方
法を説明するための図であり、(a)は平面図、(b)
はA−A断面図である。2A and 2B are views for explaining the method of manufacturing the Josephson junction element in the example, where FIG. 2A is a plan view and FIG.
FIG. 6 is a sectional view taken along line AA.
【図3】実施例におけるジョセフソン接合素子の製造方
法を説明するための図であり、(a)は平面図、(b)
はA−A断面図である。3A and 3B are views for explaining the method for manufacturing the Josephson junction element in the example, where FIG. 3A is a plan view and FIG.
FIG. 6 is a sectional view taken along line AA.
【図4】実施例におけるジョセフソン接合素子の製造方
法を説明するための図であり、(a)は平面図、(b)
はA−A断面図である。4A and 4B are views for explaining the method for manufacturing the Josephson junction element in the example, where FIG. 4A is a plan view and FIG.
FIG. 6 is a sectional view taken along line AA.
【図5】実施例におけるジョセフソン接合素子の製造方
法を説明するための図であり、(a)は平面図、(b)
はA−A断面図である。5A and 5B are views for explaining the method for manufacturing the Josephson junction element in the example, where FIG. 5A is a plan view and FIG.
FIG. 6 is a sectional view taken along line AA.
【図6】電極部上面のYBCO単結晶薄膜とブリッジ部
のYBCO単結晶薄膜との連続的な繋がりの様子を示し
た断面図である。FIG. 6 is a cross-sectional view showing a state in which the YBCO single crystal thin film on the upper surface of the electrode portion and the YBCO single crystal thin film on the bridge portion are continuously connected.
【図7】他の実施例におけるジョセフソン接合素子の断
面図である。FIG. 7 is a cross-sectional view of a Josephson junction element according to another embodiment.
1…基板、2a,2b…電極部、3…ブリッジ部、20
…YBCO単結晶薄膜、30…YBCO単結晶薄膜。1 ... Substrate, 2a, 2b ... Electrode part, 3 ... Bridge part, 20
... YBCO single crystal thin film, 30 ... YBCO single crystal thin film.
Claims (4)
ョセフソン接合素子において、 超電導単結晶薄膜にて形成された一対の電極部と、同じ
く超電導単結晶薄膜にて形成され前記両電極部をブリッ
ジ型に接合するブリッジ部とからなることを特徴とする
ジョセフソン接合素子。1. A ceramic superconducting Josephson junction device having a planar structure, wherein a pair of electrode portions formed of a superconducting single crystal thin film and both electrode portions formed of the same superconducting single crystal thin film are formed into a bridge type. A Josephson junction device comprising a bridge portion to be joined.
リッジ部の超電導単結晶薄膜との界面部の断面積が0.
5〜2.5μm2 である請求項1に記載のジョセフソン
接合素子。2. The cross-sectional area of the interface between the superconducting single crystal thin film of the electrode portion and the superconducting single crystal thin film of the bridge portion is 0.
The Josephson junction element according to claim 1, which has a thickness of 5 to 2.5 μm 2 .
の膜厚が、前記ブリッジ部を形成する超電導単結晶薄膜
の膜厚の2倍以上である請求項2に記載のジョセフソン
接合素子。3. The Josephson junction device according to claim 2, wherein the film thickness of the superconducting single crystal thin film forming the electrode portion is at least twice the film thickness of the superconducting single crystal thin film forming the bridge portion.
堆積するとともに、そのセラミック超電導単結晶薄膜の
所定領域を除去することにより一対の電極部を形成し、 その後、前記基板上にセラミック超電導単結晶薄膜を成
膜することにより前記両電極部をブリッジ型に接合する
ブリッジ部を形成することを特徴とするジョセフソン接
合素子の製造方法。4. A ceramic superconducting single crystal thin film is deposited on a substrate, and a predetermined region of the ceramic superconducting single crystal thin film is removed to form a pair of electrode portions, and then a ceramic superconducting single crystal is formed on the substrate. A method for manufacturing a Josephson junction element, characterized in that a bridge portion for joining the two electrode portions in a bridge shape is formed by forming a thin film.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6011946A JPH07221354A (en) | 1994-02-03 | 1994-02-03 | Josephson junction element and its manufacture |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6011946A JPH07221354A (en) | 1994-02-03 | 1994-02-03 | Josephson junction element and its manufacture |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH07221354A true JPH07221354A (en) | 1995-08-18 |
Family
ID=11791816
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6011946A Pending JPH07221354A (en) | 1994-02-03 | 1994-02-03 | Josephson junction element and its manufacture |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07221354A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20170089578A (en) * | 2016-01-27 | 2017-08-04 | 삼성전기주식회사 | Ceramic Composition, Electrostatic Chuck, and Manufacturing Method of Electrostatic Chuck |
-
1994
- 1994-02-03 JP JP6011946A patent/JPH07221354A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20170089578A (en) * | 2016-01-27 | 2017-08-04 | 삼성전기주식회사 | Ceramic Composition, Electrostatic Chuck, and Manufacturing Method of Electrostatic Chuck |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4316785A (en) | Oxide superconductor Josephson junction and fabrication method therefor | |
US5236896A (en) | Superconducting device having an extremely thin superconducting channel formed of oxide superconductor material | |
US5750474A (en) | Method for manufacturing a superconductor-insulator-superconductor Josephson tunnel junction | |
JPH104222A (en) | Oxide superconducting element and manufacture thereof | |
JPH05251771A (en) | Artificial grain boundary type josephson junction element and manufacture thereof | |
US5817531A (en) | Superconducting device having a superconducting channel formed of oxide superconductor material and method for manufacturing the same | |
US5354734A (en) | Method for manufacturing an artificial grain boundary type Josephson junction device | |
JP3568547B2 (en) | Josephson junction structure | |
JPH05251776A (en) | Superconducting element and manufacture thereof | |
JPH07221354A (en) | Josephson junction element and its manufacture | |
EP0484232B2 (en) | Superconducting device having an extremely short superconducting channel formed of oxide superconductor material and method for manufacturing the same | |
JPH0697520A (en) | Compound type josephson junction device and its manufacture | |
JP3425422B2 (en) | Superconducting element manufacturing method | |
US5856204A (en) | Tunnel-type Josephson element and method for manufacturing the same | |
JP2774576B2 (en) | Superconductor device and method of manufacturing the same | |
JPS5979585A (en) | Manufacture of josephson junction element | |
JP2907831B2 (en) | Josephson element | |
US5770470A (en) | High temperature superconducting electric field effect device and a method for fabricating the same | |
JPH02184087A (en) | Superconducting weakly-coupled element | |
JPH06132577A (en) | Formation of oxide suprconducting josephson element | |
JP2000299509A (en) | Manufacture of josephson element and structure thereof | |
JP2000101154A (en) | Electronic device and manufacture thereof | |
JPH01211985A (en) | Manufacture of josephson element | |
JPH05160448A (en) | Abrupt josephson device | |
JPH05251773A (en) | Josephson element and manufacture thereof |