JPH07220753A - Set battery structure - Google Patents

Set battery structure

Info

Publication number
JPH07220753A
JPH07220753A JP6010033A JP1003394A JPH07220753A JP H07220753 A JPH07220753 A JP H07220753A JP 6010033 A JP6010033 A JP 6010033A JP 1003394 A JP1003394 A JP 1003394A JP H07220753 A JPH07220753 A JP H07220753A
Authority
JP
Japan
Prior art keywords
assembled battery
battery
laminated
fluid
battery structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6010033A
Other languages
Japanese (ja)
Inventor
Yasuo Yukita
康夫 雪田
Koji Suzuki
広次 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP6010033A priority Critical patent/JPH07220753A/en
Publication of JPH07220753A publication Critical patent/JPH07220753A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To provide a set battery increasing volumetric energy density and weight energy density. CONSTITUTION:In a single battery used in a set battery structure, a layer-built electrode body 1 of laminating flat plate-shaped or sheet-shaped electrodes is sealed in a battery vessel 5 with at least one side surface flexible. A plurality of these single batteries are laminated in parallel to a laminating direction of the layer-built electrode body and received to a set battery vessel 20. This set battery vessel 20 is sealed and pressure charged with a non-combustible fluid.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば電力貯蔵用電池
及び電気自動車用電池などに適用して好適な組電池構造
体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an assembled battery structure suitable for application to, for example, batteries for electric power storage and batteries for electric vehicles.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】近年、
省エネルギー、環境汚染等の問題から電力貯蔵用、及び
電気自動車等で使用する電池の開発が強く望まれてい
る。これらの電池では、高電圧(数十〜数百ボルト)、
高エネルギー容量、高エネルギー密度が要求されてい
る。
2. Description of the Related Art In recent years,
Due to problems such as energy saving and environmental pollution, there is a strong demand for development of batteries for power storage and for use in electric vehicles and the like. With these batteries, high voltage (tens to hundreds of volts),
High energy capacity and energy density are required.

【0003】一方、使用される単電池の構造は、長尺電
極を巻回してなる渦巻き型、平板電極を積層してなる偏
平角型の2タイプが一般的である。
On the other hand, the structure of the unit cell used is generally of two types: a spiral type formed by winding a long electrode, and a flat rectangular type formed by laminating flat plate electrodes.

【0004】渦巻き型構造の電池は、電極面積を大きく
とれることから、比較的重負荷特性に優れているもの
の、円筒形状であることからスペースファクターが悪
く、特に複数個の単電池を同時に使用する際には体積エ
ネルギー密度が低下する。更に、充放電時の発熱による
畜熱が大きく、電池特性の劣化が大きい。
The spiral structure type battery has a relatively large load area because of its large electrode area, but has a bad space factor due to its cylindrical shape. In particular, a plurality of unit cells are used at the same time. At that time, the volume energy density is lowered. Further, the storage heat due to the heat generated during charging / discharging is large, and the battery characteristics are greatly deteriorated.

【0005】これに対し、偏平角型構造の電池は、スペ
ースファクターが良く、充放電時の畜熱も小さく、特
に、電気自動車用等で使用する複数個の単電池を接続し
た組電池としては適している。
On the other hand, the flat rectangular battery has a good space factor and a small heat storage during charging / discharging, and is particularly useful as an assembled battery in which a plurality of cells used for electric vehicles are connected. Are suitable.

【0006】しかし、偏平角型電池では、電極間の密着
性が悪いと、充分な容量が得られないと同時に、サイク
ル特性が著しく低下することが知られているが、積層電
極を剛体ケースに挿入しただけの、従来のタイプの電池
では未だ充分なものではない。
However, in a flat prismatic battery, it is known that if the adhesion between the electrodes is poor, a sufficient capacity cannot be obtained and at the same time, the cycle characteristics are significantly deteriorated. A conventional type of battery that has just been inserted is not yet sufficient.

【0007】そこで、電極間の密着性を上げる為に、単
電池内に電極加圧用のバネを内蔵させることが考えられ
るが、単電池内に加圧用のバネを内蔵させると、以下の
問題が発生してしまう。
Therefore, in order to improve the adhesion between the electrodes, it is conceivable to incorporate a spring for pressing the electrodes in the unit cell. However, if a spring for applying pressure is incorporated in the unit cell, the following problems occur. Will occur.

【0008】すなわち、電池の重量が大きく、エネルギ
ー重量密度が低下してしまう。また、単電池内の加圧バ
ネの反力に耐えられる剛性を有する金属製のケースが必
要となり、バネと合わせて単電池の体積、重量が大きく
なり、単電池のエネルギー密度が低下してしまう。
That is, the weight of the battery is large and the energy weight density is reduced. Further, a metal case having rigidity that can withstand the reaction force of the pressure spring in the unit cell is required, and the volume and weight of the unit cell increase together with the spring, and the energy density of the unit cell decreases. .

【0009】さらに、複数個の単電池を使用した組電池
では、組電池全体に占める無駄な体積、重量は累積さ
れ、組電池としては著しくエネルギー密度が低下するこ
とになる。
Further, in an assembled battery using a plurality of unit cells, useless volume and weight of the entire assembled battery are accumulated, and the energy density of the assembled battery is remarkably lowered.

【0010】既に、本発明者らは、上述した問題を解決
する新しい単電池と組電池の構造として、複数枚の電極
を積層した偏平型の単電池で、単電池内に電極加圧用の
バネを設けず、剛性を持たない薄肉のフレキシブル部材
の電池ケースを有する構造の単電池を複数個用いた組電
池構造を提案した(特願平5−151339)。
The present inventors have already proposed, as a structure of a new unit cell and an assembled battery for solving the above-mentioned problems, a flat type unit cell in which a plurality of electrodes are laminated, and a spring for pressing an electrode is provided in the unit cell. A battery assembly structure using a plurality of unit cells having a battery case made of a thin flexible member having no rigidity is proposed (Japanese Patent Application No. 5-151339).

【0011】しかし、既提案の組電池構造では、単電池
の加圧方法として板バネ、スプリングバネ等により、組
電池の両サイドより締め付ける機構を用いており、組電
池全体の重量、体積が増えてしまい、エネルギー密度の
更なる向上が求められる。
However, in the already-proposed battery pack structure, a mechanism for tightening the battery pack from both sides by using leaf springs, spring springs, etc. is used as a pressing method for the battery cells, which increases the weight and volume of the battery pack as a whole. Therefore, further improvement of energy density is required.

【0012】一方、使用する電池としては、高エネルギ
ー密度が達成出来るものとして、リチウムあるいはリチ
ウム合金を負極に用いた非水電解液二次電池が有望であ
るが、使用する電解液が有機溶媒である為に、電気自動
車等で使用し、衝突等により電池が破壊された場合に、
引火、爆発の危険性が考えられる。上記組電池では、こ
の危険性を防止する様な自己消化機能は有していない。
On the other hand, as a battery to be used, a non-aqueous electrolyte secondary battery using lithium or a lithium alloy as a negative electrode is promising as a battery capable of achieving high energy density, but the electrolyte to be used is an organic solvent. Therefore, if you use it in an electric vehicle etc. and the battery is destroyed due to a collision etc.,
There is a risk of ignition and explosion. The assembled battery does not have a self-extinguishing function to prevent this danger.

【0013】本発明はこのような課題に鑑みてなされた
ものであり、体積エネルギー密度及び重量エネルギー密
度の高い組電池を提供することを目的とする。また、電
池が破壊された時でも、自己消化機能を有する組電池を
提供することを目的とする。
The present invention has been made in view of the above problems, and an object thereof is to provide an assembled battery having a high volume energy density and a high weight energy density. Another object is to provide an assembled battery having a self-extinguishing function even when the battery is destroyed.

【0014】[0014]

【課題を解決するための手段】本発明の組電池構造体
は、平板状またはシート状の電極を積層した積層電極体
1を少なくとも一方の側面がフレキシブルである電池容
器5に密閉されて収容してなる単電池を、複数個積層電
極体の積層方向と平行して積層して組電池容器20に収
容してなる組電池構造体において、この組電池容器20
は密閉されて、不燃性流体が加圧充填されているもので
ある。
The assembled battery structure of the present invention houses a laminated electrode body 1 in which flat plate-shaped or sheet-shaped electrodes are laminated in a battery container 5 at least one side of which is flexible. In a battery pack structure in which a plurality of unit cells are stacked in parallel with the stacking direction of the stacked electrode bodies and housed in a battery pack container 20, the battery pack container 20
Is hermetically sealed and pressurized with a nonflammable fluid.

【0015】また、本発明の組電池構造体は、不燃性流
体が脱酸素した気体である上述構成の組電池構造体であ
る。
Further, the assembled battery structure of the present invention is the assembled battery structure having the above-mentioned structure, in which the nonflammable fluid is a deoxygenated gas.

【0016】また、本発明の組電池構造体は、不燃性流
体が消火剤である消火性流体である上述構成の組電池構
造体である。
Further, the assembled battery structure of the present invention is the assembled battery structure having the above-mentioned structure, in which the nonflammable fluid is an extinguishing fluid which is an extinguishing agent.

【0017】また、本発明の組電池構造体は、消火性流
体が、液体、または液体に固形粒子を分散した上述構成
の組電池構造体である。
Further, the assembled battery structure of the present invention is the assembled battery structure having the above-mentioned structure in which the fire-extinguishing fluid is a liquid, or solid particles are dispersed in the liquid.

【0018】[0018]

【作用】本発明の組電池構造体によれば、平板状または
シート状の電極を積層した積層電極体1を少なくとも一
方の側面がフレキシブルである電池容器5に密閉されて
収容してなる単電池を、複数個積層電極体の積層方向と
平行して積層して組電池容器20に収容してなる組電池
構造体において、この組電池容器20は密閉されて、不
燃性流体が加圧充填されているので、体積エネルギー密
度及び重量エネルギー密度を高くすることができるとと
もに、電池が破壊された時でも、自己消化機能を有す
る。
According to the assembled battery structure of the present invention, a unit cell in which the laminated electrode body 1 in which flat plate-shaped or sheet-shaped electrodes are laminated is hermetically housed in the battery container 5 at least one side of which is flexible. In a battery pack structure in which a plurality of stacked electrode bodies are stacked in parallel with each other in the stacking direction and housed in a battery pack container 20, the battery pack container 20 is sealed and filled with a nonflammable fluid under pressure. Therefore, the volume energy density and the weight energy density can be increased, and even when the battery is destroyed, it has a self-extinguishing function.

【0019】[0019]

【実施例】以下、本発明組電池構造体の実施例について
図1〜図3を参照しながら説明する。
EXAMPLES Examples of the assembled battery structure of the present invention will be described below with reference to FIGS.

【0020】実施例1 まず、積層電極体を作製した。ここで、積層電極体とし
ては、負極電極と正極電極の2種類を作製した。
Example 1 First, a laminated electrode body was prepared. Here, as the laminated electrode body, two types of negative electrode and positive electrode were prepared.

【0021】負極電極の作製の手順について説明する。
不活性ガス気流中で焼成した後、粉砕して得られた平均
粒径20μmの炭素90重量部と、結着材としてフッ化
ビニリデン樹脂10重量部とをN‐メチルピロリドンに
分散した。次に、このスラリーを、厚さ10μmの銅箔
の集電体の両面に塗布して、厚さ180μmの電極原板
を作製した。この電極原板には、一部をリード部として
未塗布部を残し、塗布部を82mm×284mmにカッ
トして負極電極を得た。
The procedure for producing the negative electrode will be described.
90 parts by weight of carbon having an average particle size of 20 μm obtained by calcination in an inert gas stream and pulverization, and 10 parts by weight of vinylidene fluoride resin as a binder were dispersed in N-methylpyrrolidone. Next, this slurry was applied on both sides of a copper foil current collector having a thickness of 10 μm to prepare an electrode original plate having a thickness of 180 μm. A negative electrode was obtained by cutting the coated portion into 82 mm × 284 mm, leaving a non-coated portion as a part of this electrode original plate as a lead portion.

【0022】正極電極の作製の手順について説明する。
平均粒径15μmのLiC0 2 紛末を91重量部、導
電剤としてグラファイト6重量部、及び結着材としてフ
ッ化ビニリデン樹脂3重量部を、N−メチルピロリドン
に分散した。このスラリーを厚さ20μmのアルミ箔の
集電体の両面に塗布して、厚さ150μmの電極原板を
作製した。次に、負極電極と同様に、塗布部を77mm
×279mmにカットして正極電極とした。
The procedure for producing the positive electrode will be described.
91 parts by weight of LiC 0 O 2 powder having an average particle diameter of 15 μm, 6 parts by weight of graphite as a conductive agent, and 3 parts by weight of vinylidene fluoride resin as a binder were dispersed in N-methylpyrrolidone. This slurry was applied to both sides of a 20 μm thick aluminum foil current collector to prepare an electrode original plate having a thickness of 150 μm. Next, as with the negative electrode,
It was cut to a size of 279 mm to obtain a positive electrode.

【0023】このように得られた2種類の電極から積層
電極体を作製した。すなわち、負極電極43枚と正極電
極42枚を用いて、電極間に厚さ38μmで、大きさ8
7mm×289mmの微多孔性ポリエチレンフィルムを
介して積層し、外周に粘着テープを巻いて固定し積層電
極体とした。
A laminated electrode body was prepared from the two kinds of electrodes thus obtained. That is, using 43 negative electrodes and 42 positive electrodes, the thickness between the electrodes is 38 μm and the size is 8 μm.
It was laminated via a 7 mm × 289 mm microporous polyethylene film, and an adhesive tape was wrapped around the periphery and fixed to obtain a laminated electrode body.

【0024】次に、単電池の作製の手順について、図1
を参照しながら説明する。上記の積層電極体1のリード
部2を、厚さ1.5mmの上葢3に固定されている電極
端子4と接続する。次に、厚さ300μmのステンレス
板の側面を、厚さ1mmのステンレス製のフレームにレ
ーザー熔接した電池容器5に積層電極体1を挿入する。
上葢3と電池容器5をレーザー熔接して単電池を作製す
る。上記、電極の内蔵された電池ケースの電解液注入口
6からプロピレンカーボネート、ジエチルカーボネート
の混合溶媒の中に、LiPF6を1モル/lの割合で溶解
した電解液を注入し、栓をして最終の単電池を得た。こ
こで、単電池の設計容量は、34Ahである。
Next, referring to FIG.
Will be described with reference to. The lead portion 2 of the laminated electrode body 1 is connected to the electrode terminal 4 fixed to the upper armor 3 having a thickness of 1.5 mm. Next, the laminated electrode body 1 is inserted into the battery container 5 in which the side surface of the stainless steel plate having a thickness of 300 μm is laser-welded to the stainless steel frame having a thickness of 1 mm.
The upper armor 3 and the battery container 5 are laser-welded to produce a single battery. From the electrolyte injection port 6 of the battery case with a built-in electrode, an electrolyte solution in which LiPF6 was dissolved at a ratio of 1 mol / l was injected into a mixed solvent of propylene carbonate and diethyl carbonate, and the plug was closed. A single battery of Here, the design capacity of the unit cell is 34 Ah.

【0025】次に、組電池の作製の手順について、図2
を参照しながら説明する。ポリエチレン製の組電池容器
20に、上記の単電池21を7個、2mmの間隔を空けて
収納する。次に、各単電池の正極端子、負極端子をリー
ド線で結線し、同じくポリエチレン製の上蓋22に取付
けられている正負夫々の組電池端子23に接続する。組
電池容器20と上蓋22をOリングを介して結合して組
電池ケースとし、上蓋の流体注入口25(自動車のタイ
ヤなどに使用されているようなバルブを使用する。)か
ら、圧力が0.1〜1Kg/cm2になるように、二酸化炭素
ガスを加圧注入し、蓋をして最終形態の組電池とした。
Next, referring to FIG.
Will be described with reference to. Seven unit cells 21 are stored in a polyethylene battery pack container 20 with a space of 2 mm. Next, the positive electrode terminal and the negative electrode terminal of each unit cell are connected by a lead wire and connected to the positive and negative assembled battery terminals 23 also attached to the polyethylene upper lid 22. The assembled battery container 20 and the upper lid 22 are joined together via an O-ring to form an assembled battery case, and the pressure is 0 from the fluid injection port 25 of the upper lid (using a valve such as used for automobile tires). Carbon dioxide gas was injected under pressure so that the pressure was 1 to 1 kg / cm 2 , and the lid was closed to obtain the assembled battery of the final form.

【0026】実施例2 次に、実施例2について図3を参照しながら説明する。
なお、積層電極体は実施例1のものと同じものを用い
た。
Second Embodiment Next, a second embodiment will be described with reference to FIG.
The same laminated electrode body as that used in Example 1 was used.

【0027】まず、単電池の作製の手順を説明する。1
00μm厚のポリエチレンラミネートのアルミ箔に電極
端子4をヒートシールしたものに、積層電極体1と電極
端子4を熔接し、ラミネートフィルムを袋状にヒートシ
ールして成型し、フレキシブルな袋状電池ケース10を
作製する。この後、袋の一部に設けた電解液注入口6か
ら電解液(実施例1で用いたものと同じものである。)
を注入した後、同様のラミネートフィルムでヒートシー
ルして封孔し、求めるフレキシブル単電池を得た。
First, the procedure for producing a unit cell will be described. 1
A flexible bag-shaped battery case in which a laminated electrode body 1 and the electrode terminal 4 are welded to a heat-sealed aluminum foil of polyethylene laminate having a thickness of 00 μm, and the laminated film is heat-sealed into a bag shape. Make 10. After this, an electrolytic solution (the same as the one used in Example 1) is supplied from the electrolytic solution inlet 6 provided in a part of the bag.
After the injection, was sealed with a similar laminate film by heat sealing to obtain a desired flexible single battery.

【0028】なお、本例で使用する単電池は、フレキシ
ブルな側面を有するものであれば、上記の単電池に限ら
れるものではなく、その他の構造の単電池も使用出来る
ものである。
The unit cell used in this example is not limited to the above unit cell as long as it has a flexible side surface, and unit cells of other structures can also be used.

【0029】次に組電池の作製の手順について図4を参
照しながら説明する。上記で作製した単電池を7個、電
極端子を天板にネジ止めして取付け、容器外周に冷却用
フィンを持ったアルミダイキャストの容器の、単電池が
収納される部屋に各単電池を収納し、天板を容器にネジ
止めし、実施例1と同様にして組電池ケースを作製す
る。最後に加圧流体として、窒素ガスを加圧注入(0.
1〜1kg/cm2)して最終の組電池とした。
Next, the procedure for producing the assembled battery will be described with reference to FIG. Each of the seven cells prepared above was attached by screwing the electrode terminals to the top plate, and each cell was placed in a room of the aluminum die-cast container with cooling fins on the outer circumference of the cell. It is housed, the top plate is screwed to the container, and an assembled battery case is manufactured in the same manner as in Example 1. Finally, as a pressurized fluid, nitrogen gas is injected under pressure (0.
1 to 1 kg / cm2) to obtain the final assembled battery.

【0030】実施例3 次に、実施例3について説明する。なお、組電池は、加
圧流体を除いて、実施例2で用いたものと同じものであ
る。ここで、加圧流体として一塩化一臭化メタン(ハロ
ゲン化物消火薬剤)を加圧注入して最終の組電池とし
た。
Third Embodiment Next, a third embodiment will be described. The assembled battery was the same as that used in Example 2 except for the pressurized fluid. Here, methane monochloromonobromide (halide fire extinguishing agent) was injected under pressure as a pressurized fluid to obtain a final assembled battery.

【0031】なお、上記加圧流体で自己消火機能を持つ
ものとしては、実施例3以外の消火剤も使用出来る。例
えば、空気や炭酸ガスの気体を液体の泡で包んだ泡消火
薬剤、水に炭酸カリウム等を溶かした強化液、また、炭
酸水素ナトリウム、りん酸塩類等を主成分とする粉末状
固体の消火薬剤を炭酸ガス等に混入させて使用すること
も出来る。
As the pressurized fluid having a self-extinguishing function, extinguishing agents other than those in Example 3 can be used. For example, foam extinguishing agents in which air or carbon dioxide gas is wrapped in liquid foam, strengthening liquid in which potassium carbonate, etc. are dissolved in water, and extinguishing powdery solids containing sodium hydrogen carbonate, phosphates, etc. as main components. It is also possible to use the drug by mixing it with carbon dioxide gas or the like.

【0032】比較例 次に、比較例について図4を参照しながら説明する。Comparative Example Next, a comparative example will be described with reference to FIG.

【0033】図5のように、単電池が隣接して7個挿入
出来るサイズの組電池ケースを、アングルと外枠で形成
し、実施例1で作製した単電池を7個隣接してケース内
に挿入した。この後、両側面に加圧用バネ(板厚0.5
mm、展開寸法が87mm×289mmのSUS304−C
SPをR75の曲率で撓た板バネ)を備えた側板を取付
け、単電池内の電極板にバネの歪みによる加圧力が加わ
るようにして組電池を作製した。
As shown in FIG. 5, an assembled battery case having a size in which seven single cells can be inserted adjacent to each other is formed by an angle and an outer frame, and seven single cells produced in Example 1 are adjacently arranged in the case. Inserted in. After this, pressurizing springs (plate thickness 0.5
mm, deployment dimension 87 mm x 289 mm SUS304-C
A side plate having a leaf spring bent at a curvature of R75) was attached to the SP, and an assembled battery was produced by applying a pressing force due to the strain of the spring to the electrode plate in the single cell.

【0034】この時、バネの歪みによる加圧力を実測し
た結果、約50Kgの荷重であることが確認された。
At this time, as a result of actually measuring the pressing force due to the strain of the spring, it was confirmed that the load was about 50 kg.

【0035】次に、実施例1〜実施例3、及び比較例の
諸特性について、その評価結果を説明する。すなわち、
実施例1〜実施例3、及び比較例の電池の重量、体積を
測定し、組電池に組み込まれた個々の単電池、及び7個
にを直列に接続して、充放電特性、サイクル特性を評価
した。
Next, evaluation results of various characteristics of Examples 1 to 3 and Comparative Example will be described. That is,
The weights and volumes of the batteries of Examples 1 to 3 and the comparative example were measured, and the individual cells assembled in the assembled battery, and 7 cells were connected in series to obtain charge / discharge characteristics and cycle characteristics. evaluated.

【0036】なお、充放電特性試験及びサイクル特性試
験は、以下に示す方法により行った。
The charge / discharge characteristic test and the cycle characteristic test were carried out by the following methods.

【0037】充放電特性試験 充電条件…23℃、定電流34A×3H、4.2V定電圧
充電 放電条件…23℃、34A定電流放電
Charging / discharging characteristic test Charging condition: 23 ° C., constant current 34A × 3H, 4.2V constant voltage charging Discharging condition: 23 ° C., 34A constant current discharging

【0038】サイクル特性試験 上記充放電条件で100回充放電を繰り返し、放電容量
の維持率を測定した。
Cycle characteristic test Charging / discharging was repeated 100 times under the above charging / discharging conditions to measure the discharge capacity retention rate.

【0039】充放電特性試験及びサイクル特性試験の結
果は、表1に示すとおりである。
The results of the charge / discharge characteristic test and the cycle characteristic test are shown in Table 1.

【0040】[0040]

【表1】 [Table 1]

【0041】表1からわかるように、組電池サイズは、
比較例が218x305x131mmであるのに対し
て、実施例1〜実施例3では168x305x131m
mと小さくなっている。また、組電池重量も、比較例が
13kgであるのに対して、実施例1では9kg、実施
例2及び実施例3では8kgと小さくなっている。
As can be seen from Table 1, the battery size is
The comparative example has a size of 218 × 305 × 131 mm, while the examples 1 to 3 have a size of 168 × 305 × 131 m.
It is as small as m. Further, the weight of the battery pack is 13 kg in the comparative example, whereas it is as small as 9 kg in the first embodiment and 8 kg in the second and third embodiments.

【0042】この結果、組電池エネルギー重量密度は、
比較例が64.1Wh/Kgであるのに対して、実施例
1では92.6Wh/Kg、実施例2及び実施例3では
104.1Wh/Kgと大きくなっている。また、組電
池エネルギー体積密度も、比較例が95.6Wh/lで
あるのに対して、実施例1〜実施例3では124.1W
h/lと大きくなっている。
As a result, the energy weight density of the assembled battery is
In contrast to the comparative example of 64.1 Wh / Kg, in Example 1 it was as large as 92.6 Wh / Kg, and in Example 2 and Example 3 it was as large as 104.1 Wh / Kg. In addition, the energy volume density of the assembled battery is also 95.6 Wh / l in the comparative example, whereas it is 124.1 W in the examples 1 to 3.
It is as large as h / l.

【0043】一方、サイクル特性は、比較例が80%で
あるのに対して、実施例1〜実施例3では80%と劣化
は認められなかった。
On the other hand, the cycle characteristics were 80% in the comparative example, whereas they were 80% in Examples 1 to 3, indicating no deterioration.

【0044】以上のことから、本例によれば、体積エネ
ルギー密度及び重量エネルギー密度の高い組電池を提供
することができる。また、単電池を均一に加圧できると
ともに、各単電池が離れていても加圧することができ
る。また、組電池のサイクル特性は、従来のものと同等
のものが得られる。また、万一、電池が破壊された時で
も、自己消化機能を有する組電池を提供することができ
る。
From the above, according to this example, it is possible to provide an assembled battery having a high volume energy density and a high weight energy density. Further, the cells can be uniformly pressed, and the cells can be pressed even if they are separated from each other. Further, the cycle characteristics of the assembled battery are the same as those of the conventional one. Further, it is possible to provide an assembled battery having a self-extinguishing function even if the battery is destroyed.

【0045】なお、本発明は上述の実施例に限らず本発
明の要旨を逸脱することなくその他種々の構成を採り得
ることはもちろんである。
The present invention is not limited to the above-mentioned embodiments, and it goes without saying that various other configurations can be adopted without departing from the gist of the present invention.

【0046】[0046]

【発明の効果】以上説明したように、本発明によれば、
体積エネルギー密度及び重量エネルギー密度の高い組電
池を提供することができる。また、単電池を均一に加圧
できるとともに、各単電池が離れていても加圧すること
ができる。また、組電池のサイクル特性は、従来のもの
と同等のものを得ることができる。また、万一、電池が
破壊された時でも、自己消化機能を有する組電池を提供
することができる。
As described above, according to the present invention,
An assembled battery having high volume energy density and high weight energy density can be provided. Further, the cells can be uniformly pressed, and the cells can be pressed even if they are separated from each other. Further, the cycle characteristics of the assembled battery can be the same as those of the conventional one. Further, it is possible to provide an assembled battery having a self-extinguishing function even if the battery is destroyed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明組電池構造体に用いる単電池の例を示す
組立構成図である。
FIG. 1 is an assembly configuration diagram showing an example of a unit cell used in an assembled battery structure of the present invention.

【図2】本発明組電池構造体の一実施例を示す構成図で
ある。
FIG. 2 is a configuration diagram showing an embodiment of the assembled battery structure of the present invention.

【図3】本発明組電池構造体に用いる単電池の他の例を
示す構成図である。
FIG. 3 is a configuration diagram showing another example of the unit cell used in the assembled battery structure of the present invention.

【図4】本発明組電池構造体の一実施例を示す構成図で
ある。
FIG. 4 is a configuration diagram showing an example of an assembled battery structure of the present invention.

【図5】組電池構造体の比較例を示す構成図である。FIG. 5 is a configuration diagram showing a comparative example of an assembled battery structure.

【符号の説明】[Explanation of symbols]

1 積層電極体 2 リード部 3 上蓋 4 電極端子 5 電池容器 6 電解液注入口 7 粘着テープ 8 安全弁 9 絶縁フィルム DESCRIPTION OF SYMBOLS 1 Multilayer electrode body 2 Lead part 3 Upper lid 4 Electrode terminal 5 Battery container 6 Electrolyte injection port 7 Adhesive tape 8 Safety valve 9 Insulating film

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 平板状またはシート状の電極を積層した
積層電極体を少なくとも一方の側面がフレキシブルであ
る電池容器に密閉されて収容してなる単電池を、複数個
積層電極体の積層方向と平行して積層して組電池容器に
収容してなる組電池構造体において、 上記組電池容器は密閉されて、不燃性流体が加圧充填さ
れていることを特徴とする組電池構造体。
1. A unit cell in which a laminated electrode body in which flat plate-shaped or sheet-shaped electrodes are laminated is hermetically accommodated in a battery container having at least one side surface flexible, and a plurality of laminated electrode bodies are laminated in a stacking direction. An assembled battery structure in which the assembled battery containers are stacked in parallel and housed in an assembled battery container, wherein the assembled battery container is hermetically sealed and pressurized with a nonflammable fluid.
【請求項2】 不燃性流体は脱酸素した気体であること
を特徴とする請求1項記載の組電池構造体。
2. The assembled battery structure according to claim 1, wherein the nonflammable fluid is a deoxidized gas.
【請求項3】 不燃性流体は消火剤である消火性流体で
あることを特徴とする請求項1記載の組電池構造体。
3. The assembled battery structure according to claim 1, wherein the nonflammable fluid is a fire-extinguishing fluid that is a fire extinguishing agent.
【請求項4】 消火性流体は、液体、または液体に固形
粒子を分散したものであることを特徴とする請求項3記
載の組電池構造体。
4. The assembled battery structure according to claim 3, wherein the fire-extinguishing fluid is a liquid or a liquid in which solid particles are dispersed.
JP6010033A 1994-01-31 1994-01-31 Set battery structure Pending JPH07220753A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6010033A JPH07220753A (en) 1994-01-31 1994-01-31 Set battery structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6010033A JPH07220753A (en) 1994-01-31 1994-01-31 Set battery structure

Publications (1)

Publication Number Publication Date
JPH07220753A true JPH07220753A (en) 1995-08-18

Family

ID=11739084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6010033A Pending JPH07220753A (en) 1994-01-31 1994-01-31 Set battery structure

Country Status (1)

Country Link
JP (1) JPH07220753A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006245442A (en) * 2005-03-04 2006-09-14 Japan Radio Co Ltd Electric double layer capacitor
JP2008117756A (en) * 2006-10-13 2008-05-22 Matsushita Electric Ind Co Ltd Battery pack, and battery-mounting device
JP2011198663A (en) * 2010-03-23 2011-10-06 Hitachi Vehicle Energy Ltd Secondary cell, and producing method thereof
WO2012160661A1 (en) * 2011-05-25 2012-11-29 トヨタ自動車株式会社 Battery and method for manufacturing same
JP2014078447A (en) * 2012-10-11 2014-05-01 Toyota Industries Corp Power storage device
JP2015041523A (en) * 2013-08-22 2015-03-02 株式会社豊田自動織機 Power storage device and method of manufacturing power storage device
JPWO2014002647A1 (en) * 2012-06-26 2016-05-30 株式会社豊田自動織機 Power storage device
US9853319B2 (en) 2014-03-26 2017-12-26 Kabushiki Kaisha Toyota Jidoshokki Electricity-storage device

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4598566B2 (en) * 2005-03-04 2010-12-15 日本無線株式会社 Electric double layer capacitor device
JP2006245442A (en) * 2005-03-04 2006-09-14 Japan Radio Co Ltd Electric double layer capacitor
JP2008117756A (en) * 2006-10-13 2008-05-22 Matsushita Electric Ind Co Ltd Battery pack, and battery-mounting device
JP2011198663A (en) * 2010-03-23 2011-10-06 Hitachi Vehicle Energy Ltd Secondary cell, and producing method thereof
CN102906898B (en) * 2011-05-25 2015-09-09 丰田自动车株式会社 Battery And Its Manufacturing Methods
WO2012160661A1 (en) * 2011-05-25 2012-11-29 トヨタ自動車株式会社 Battery and method for manufacturing same
CN102906898A (en) * 2011-05-25 2013-01-30 丰田自动车株式会社 Battery and method for manufacturing same
JPWO2014002647A1 (en) * 2012-06-26 2016-05-30 株式会社豊田自動織機 Power storage device
CN107968163A (en) * 2012-06-26 2018-04-27 株式会社丰田自动织机 Electrical storage device
US10158101B2 (en) 2012-06-26 2018-12-18 Kabushiki Kaisha Toyota Jidoshokki Power storage device
US10998592B2 (en) 2012-06-26 2021-05-04 Kabushiki Kaisha Toyota Jidoshokki Power storage device
JP2014078447A (en) * 2012-10-11 2014-05-01 Toyota Industries Corp Power storage device
JP2015041523A (en) * 2013-08-22 2015-03-02 株式会社豊田自動織機 Power storage device and method of manufacturing power storage device
US9853319B2 (en) 2014-03-26 2017-12-26 Kabushiki Kaisha Toyota Jidoshokki Electricity-storage device
DE112015001460B4 (en) 2014-03-26 2020-06-18 Kabushiki Kaisha Toyota Jidoshokki Power storage device

Similar Documents

Publication Publication Date Title
US6503658B1 (en) Bipolar electrochemical battery of stacked wafer cells
JP3555124B2 (en) Lithium ion battery
CN102456856B (en) Secondary battery and assembled battery
JP3513878B2 (en) Cell and battery assembly
JPH07320775A (en) Cell and unit cell of sealed nickel-hydrogen storage battery
JP3596866B2 (en) Lithium secondary battery and method of manufacturing the same
JPH07220753A (en) Set battery structure
US6811919B2 (en) Lithium secondary battery and transportation method thereof
JP4088732B2 (en) Secondary battery
KR102046004B1 (en) Label for Battery Cell Having Rupture-typed Dotted Line and Pouch-Type Secondary Battery Having the Same
JPH08329972A (en) Battery
JPH08148184A (en) Nonaqueous electrolyte secondary battery
JP4092543B2 (en) Non-aqueous secondary battery
JP4789295B2 (en) Sealed battery
JPH11354125A (en) Lithium secondary battery
JP3555298B2 (en) Sealed secondary battery
JPH09199173A (en) Nonaqueous electrolyte cell
JPH08222196A (en) Secondary battery
JPH08287886A (en) Nonaqueous electrolyte battery
JP2000149979A5 (en)
JPH09147914A (en) Lithium ion secondary cell
JP2000277092A (en) Non-aqueous electrolyte secondary battery
JP6770681B2 (en) Sealed secondary battery
JPH09199099A (en) Lithium ion battery
JPH06196138A (en) Nonaqueous electrolyte battery