JPH0722041A - Manufacture of solid electrolyte fuel cell - Google Patents

Manufacture of solid electrolyte fuel cell

Info

Publication number
JPH0722041A
JPH0722041A JP5161278A JP16127893A JPH0722041A JP H0722041 A JPH0722041 A JP H0722041A JP 5161278 A JP5161278 A JP 5161278A JP 16127893 A JP16127893 A JP 16127893A JP H0722041 A JPH0722041 A JP H0722041A
Authority
JP
Japan
Prior art keywords
conductive layer
solid electrolyte
electrode layer
layer
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5161278A
Other languages
Japanese (ja)
Other versions
JP3152803B2 (en
Inventor
Makoto Watanabe
誠 渡邉
Yasuhiro Sasaki
康博 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP16127893A priority Critical patent/JP3152803B2/en
Publication of JPH0722041A publication Critical patent/JPH0722041A/en
Application granted granted Critical
Publication of JP3152803B2 publication Critical patent/JP3152803B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Abstract

PURPOSE:To enhance the reliability of electrical connection between cells and to keep a conductive layer from being peeled so as to provide stable power- generating performance over a long period by enhancing the electrical conductivity of the conductive layer itself, and approximating the coefficient of thermal expansion of the conductive layer to that of a solid electrolyte. CONSTITUTION:A solid electrolyte fuel cell, which comprises e.g. an air electrode layer 2, a solid electrolyte layer 3, and a fuel electrode layer 4, all provided on the surface of a cylindrical support tube 1 with a conductive layer 5 formed in electrical connection with either the air electrode layer 2 or the fuel electrode layer 3 by vapor-phase synthesis method to cover the layers, is manufactured. In that case, the conductive layer is made from perovskite composite oxides composed chiefly of metal elements of La, Cr, Mg and Ca with the Ca substituting for the La by 1-30% and the Mg substituting for the Cr by 1-20%.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は固体電解質型燃料電池セ
ルの製造方法に関し、特にセル間を電気的に接続するた
めの導電層の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a solid oxide fuel cell unit, and more particularly to an improvement of a conductive layer for electrically connecting cells.

【0002】[0002]

【従来技術】固体電解質型燃料電池は、これまでの水力
発電や火力発電に代わる発電システムとして開発が進め
られている。図1は、代表的な円筒状の固体電解質型燃
料電池セルの構造を示す斜視図である。通常、このよう
な円筒状燃料電池セルは、多孔質の円筒状支持管1の表
面にLaMnO3 系材料などからなる空気極層2と、Y
2 3 安定化ZrO2 (YSZ)などからなる固体電解
質層3およびNi−ZrO2 (Y2 3 含有)等の燃料
極層4が形成される。そして、発電に際しては、上記セ
ルを複数個配列し、空気極層2と燃料極層4のいずれか
片方と電気的に接続するように配置された導電層5によ
りセル同士が電気的に接続されて、空気極層2側に空気
などの酸素含有ガスを、燃料極層4側に水素ガスなどの
燃料ガスを流すと1000〜1050℃の温度で発電が
行われる。
2. Description of the Related Art Solid oxide fuel cells are under development as a power generation system that replaces the conventional hydroelectric power generation and thermal power generation. FIG. 1 is a perspective view showing the structure of a typical cylindrical solid oxide fuel cell unit. Usually, such a cylindrical fuel cell has a cathode electrode 2 made of LaMnO 3 -based material or the like on the surface of a porous cylindrical support tube 1 and a Y electrode.
The solid electrolyte layer 3 made of 2 O 3 stabilized ZrO 2 (YSZ) and the fuel electrode layer 4 made of Ni—ZrO 2 (containing Y 2 O 3 ) are formed. During power generation, the cells are electrically connected to each other by the conductive layer 5 arranged so as to arrange the plurality of cells and electrically connect to either one of the air electrode layer 2 and the fuel electrode layer 4. Then, when an oxygen-containing gas such as air is supplied to the air electrode layer 2 side and a fuel gas such as hydrogen gas is supplied to the fuel electrode layer 4 side, power generation is performed at a temperature of 1000 to 1050 ° C.

【0003】なお、上記セルにおける導電層5としては
一般にはLaCrO3 系材料が使用される。LaCrO
3 自体は、その導電率が0.5s/cm程度であるた
め、さらに導電率を高める必要がある。そこで、従来よ
り、LaCrO3 のCrの一部をMgやSrにより置換
したもの、またはLaCrO3 のLaの一部をCaによ
り置換したものが使用されている。
A LaCrO 3 type material is generally used as the conductive layer 5 in the above cell. LaCrO
Since 3 itself has a conductivity of about 0.5 s / cm, it is necessary to further increase the conductivity. Therefore, conventionally, one in which a part of Cr of LaCrO 3 is replaced by Mg or Sr, or one in which a part of La of LaCrO 3 is replaced by Ca is used.

【0004】[0004]

【発明が解決しようとする問題点】LaCrO3 系材料
の導電率を高めるためには、Mg、SrやCaの置換量
を高めることが効果的であるものの、Mg、SrやCa
の置換量を高めると、導電層と直接接触している固体電
解質層の安定化ZrO2 との熱膨張係数差が大きくなる
ために、セルの製造時、あるいは発電システムの繰り返
し使用により固体電解質層と導電層が剥離し、発電能力
の低下を来すなどの問題が生じる。
In order to increase the electric conductivity of the LaCrO 3 type material, it is effective to increase the substitution amount of Mg, Sr or Ca, but Mg, Sr or Ca is increased.
When the substitution amount of the solid electrolyte layer is increased, the difference in thermal expansion coefficient between the solid electrolyte layer and the stabilized ZrO 2 which is in direct contact with the conductive layer becomes large. Then, the conductive layer is peeled off, which causes a problem such as a decrease in power generation capability.

【0005】[0005]

【問題点を解決するための手段】本発明者らは、上記導
電層の構成について検討を重ねた結果、導電層としてL
aCrO3 系組成からなり、系中にMgとCaを適量添
加することにより、導電率を高めることができるととも
に、固体電解質との熱膨張差を小さくできることを見出
し本発明に至った。
The inventors of the present invention have repeatedly studied the structure of the above-mentioned conductive layer, and as a result, L has been used as the conductive layer.
The present invention has been accomplished by finding that it is composed of an aCrO 3 system composition, and that by adding an appropriate amount of Mg and Ca to the system, the conductivity can be increased and the difference in thermal expansion from the solid electrolyte can be reduced.

【0006】即ち、本発明の固体電解質型燃料電池セル
の製造方法は、円筒状空気極の表面に固体電解質層およ
び燃料極層を順次被覆するか、または円筒状支持管の表
面に空気極層、固体電解質層および燃料極層を順次被覆
した後、前記空気極層と前記燃料極層のいずれか片方と
電気的に接続するように導電層を被覆形成する固体電解
質型燃料電池セルの製造方法において、前記導電層が、
金属元素としてLa、Cr、MgおよびCaを主成分と
して含むペロブスカイト型複合酸化物からなり、Laに
対するCa置換量が1〜30%、Crに対するMgの置
換量が1〜20%であることを特徴とするものである。
That is, according to the method for producing a solid oxide fuel cell of the present invention, the surface of a cylindrical air electrode is sequentially coated with a solid electrolyte layer and a fuel electrode layer, or the surface of a cylindrical support tube is covered with an air electrode layer. A method for producing a solid oxide fuel cell, in which a solid electrolyte layer and a fuel electrode layer are sequentially coated, and then a conductive layer is coated to electrically connect to either one of the air electrode layer and the fuel electrode layer. In, the conductive layer,
It is composed of a perovskite type complex oxide containing La, Cr, Mg and Ca as main components as metal elements, and has a Ca substitution amount for La of 1 to 30% and a substitution amount of Mg for Cr of 1 to 20%. It is what

【0007】[0007]

【作用】本発明の構成によれば、導電層としてLaCr
3 系に対して、Laの一部を適量のCaにより、また
Crの一部を適量Mgにより置換することにより、導電
率を高めることができるとともに、熱膨張率を固体電解
質である安定化ZrO2(Y2 3 8〜10モル%含
有)に近似することができる。そこで、図2に各種材料
の酸素分圧と電気伝導度との関係を、図3に各種材料の
熱膨張曲線を示した。図2によれば、LaCrMgO3
材料やLaCaCrO3 材料に対して、LaCaCrM
gO3 材料は、電気伝導度が高いことがわかる。さら
に、図3によれば、LaCrMgO3 材料に比較して、
LaCaCrMgO3 材料の熱膨張曲線が安定化ZrO
2 に近似していることがわかる。
According to the structure of the present invention, LaCr is used as the conductive layer.
By replacing a part of La with an appropriate amount of Ca and replacing a part of Cr with an appropriate amount of Mg with respect to the O 3 system, the conductivity can be increased and the coefficient of thermal expansion can be stabilized as a solid electrolyte. It can be approximated to ZrO 2 (containing 8 to 10 mol% of Y 2 O 3 ). Therefore, FIG. 2 shows the relationship between oxygen partial pressure and electrical conductivity of various materials, and FIG. 3 shows the thermal expansion curves of various materials. According to FIG. 2, LaCrMgO 3
LaCaCrM for materials and LaCaCrO 3 materials
It can be seen that the gO 3 material has high electrical conductivity. Furthermore, according to FIG. 3, compared to the LaCrMgO 3 material,
The thermal expansion curve of LaCaCrMgO 3 material is stabilized ZrO
It can be seen that it is close to 2 .

【0008】なお、本発明において、導電層におけるC
aやMgの置換量を上記範囲に限定したのは、Ca置換
量が1モル%より小さいと高い電気伝導度が得られず、
Mg置換量が1%より小さいと固体電解質との熱膨張差
が大きくなり、導電層の剥離などを招くためである。な
お、MgおよびCaの置換量の上限は、それぞれLaC
rO3 への固溶限界であり、置換量が上記範囲を越える
とペロブスカイト型結晶以外の異相が析出し電気伝導度
が大きく低下するためである。
In the present invention, C in the conductive layer is
The reason why the substitution amount of a or Mg is limited to the above-mentioned range is that high electric conductivity cannot be obtained when the substitution amount of Ca is less than 1 mol%,
This is because if the Mg substitution amount is less than 1%, the difference in thermal expansion with the solid electrolyte becomes large, and the conductive layer is peeled off. The upper limits of the substitution amounts of Mg and Ca are LaC, respectively.
This is because it is a solid solution limit to rO 3 , and if the substitution amount exceeds the above range, a different phase other than the perovskite type crystal is precipitated and the electric conductivity is significantly reduced.

【0009】このように、本発明における燃料電池セル
によれば、セル間を接続する導電層が高電気伝導度で、
熱膨張係数が固体電解質と近似することから、発電シス
テムとして発生した電力を効率よく取り出すことができ
るとともに、熱膨張差に起因した導電層の剥離などが生
じないために、長期にわたり安定した発電性能を発揮す
ることができる。
As described above, according to the fuel cell of the present invention, the conductive layer connecting the cells has high electric conductivity,
Since the coefficient of thermal expansion is similar to that of a solid electrolyte, the power generated by the power generation system can be efficiently extracted, and the separation of the conductive layer due to the difference in thermal expansion does not occur, resulting in stable power generation performance over a long period of time. Can be demonstrated.

【0010】[0010]

【実施例】以下、本発明を図面を基に説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings.

【0011】図4は、本発明の燃料電池セルを製造する
ための装置の概略図である。図4よれば、反応室6内に
燃料電池セルの支持管となる円筒状基体1を設置する。
円筒状基体1は、一端が有底構造を有し、反応室6内に
て有底部を上にして設置される。この円筒状基体1は、
気孔率が15〜35%程度の多孔質からなり、例えば、
Ni−ZrO2 あるいは空気極を兼ねたものとしてLa
MnO3 やLaCaMnO3 などにより構成されてい
る。
FIG. 4 is a schematic view of an apparatus for manufacturing the fuel cell of the present invention. According to FIG. 4, the cylindrical substrate 1 serving as a support tube for the fuel cell is installed in the reaction chamber 6.
The cylindrical substrate 1 has a bottomed structure at one end, and is installed in the reaction chamber 6 with the bottomed part facing up. This cylindrical substrate 1 is
It is made of a porous material having a porosity of about 15 to 35%.
La as Ni-ZrO 2 or as an air electrode
It is composed of MnO 3 or LaCaMnO 3 .

【0012】また、反応室6には、ハロゲン含有ガスや
キャリアガスなどを反応室に導入するためのガス制御装
置7、ガス導入路8が設置されている。反応室6の周り
には加熱ヒータ9が装備され、反応室内を所定の温度に
加熱するように制御されている。さらに、反応室6内に
は、所望の組成の膜を析出するための金属酸化物を含む
蒸発源10が設けられている。なお、反応室6内は蒸発
源10により上下に2分割されており、蒸発源10は、
多孔質の蒸発物質支持部材11が螺合され、その上部に
蒸発源物質が収容されている。
Further, the reaction chamber 6 is provided with a gas control device 7 for introducing a halogen-containing gas, a carrier gas and the like into the reaction chamber, and a gas introduction passage 8. A heater 9 is provided around the reaction chamber 6 and is controlled to heat the reaction chamber to a predetermined temperature. Further, in the reaction chamber 6, an evaporation source 10 containing a metal oxide for depositing a film having a desired composition is provided. The inside of the reaction chamber 6 is vertically divided into two parts by an evaporation source 10, and the evaporation source 10 is
A porous evaporation material supporting member 11 is screwed, and the evaporation source material is contained in the upper part thereof.

【0013】一方、円筒状基体1内には、酸素供給路1
2を介して下側から酸素含有ガスが供給されるように構
成されている。酸素含有ガスは、具体的には水(H
2 O)内にH2 ガスと酸素濃度希釈用のAr、Heガス
を導入し、H2 O水蒸気とH2 ガスとArガスの混合ガ
スからなる。
On the other hand, in the cylindrical substrate 1, the oxygen supply passage 1
The oxygen-containing gas is configured to be supplied from below via 2 Specifically, the oxygen-containing gas is water (H
H 2 gas and Ar and He gas for diluting oxygen concentration are introduced into 2 O) to form a mixed gas of H 2 O water vapor, H 2 gas and Ar gas.

【0014】上記成膜装置を用いて、本発明における一
実施例として空気極を兼ねた多孔質の円筒状支持管に固
体電解質膜、燃料極膜、導電膜を形成した燃料電池セル
を製造する方法について説明する。まず、LaMnO3
などからなる多孔質の円筒状支持管を準備する。また、
この支持管の導電層形成領域には予めマスキング処理を
行う。この表面に、例えば、8モル%のY2 3 が固溶
された安定化ZrO2からなる固体電解質膜を形成す
る。この場合、蒸発源10には、8モル%のY23
有ZrO2 からなる多孔質体を設置する。一方、ガス制
御装置7よりガス導入路8を通じHClガスなどのハロ
ゲン化ガスを、例えば反応初期に0.5ccm、反応後
期に400ccmの流量で、またHClガスのキャリア
ーガスとしてArガスを1000ccmの流量で反応室
6内に導入する。導入されたハロゲン化ガスは蒸発源1
0と接触してZrやYのハロゲン化ガスが生成される。
そして、生成されたハロゲン化ガスは、例えば内部へH
eガス700ccmとともに酸素を含むArガスが50
sccmの流量で導入された円筒状基体1表面で、酸素
含有ガスを反応し、円筒状基体8モル%Y2 3 −Zr
2 の緻密な金属酸化物固溶体膜が得られる。尚、この
時の円筒状基体1表面近傍の酸素分圧は10-5atmに
設定される。
As an embodiment of the present invention, a fuel cell in which a solid electrolyte membrane, a fuel electrode membrane, and a conductive film are formed on a porous cylindrical support tube that also serves as an air electrode is manufactured by using the above film forming apparatus. The method will be described. First, LaMnO 3
A porous cylindrical support tube made of, for example, is prepared. Also,
Masking treatment is performed in advance on the conductive layer formation region of the support tube. On this surface, for example, a solid electrolyte membrane made of stabilized ZrO 2 in which 8 mol% Y 2 O 3 is dissolved is formed. In this case, the evaporation source 10 is provided with a porous body made of ZrO 2 containing 8 mol% Y 2 O 3 . On the other hand, a halogen gas such as HCl gas is supplied from the gas control device 7 through the gas introduction passage 8 at a flow rate of, for example, 0.5 ccm in the early stage of the reaction and 400 ccm in the latter stage of the reaction, and Ar gas as a carrier gas of the HCl gas at a flow rate of 1000 ccm. Is introduced into the reaction chamber 6. The halogenated gas introduced is the evaporation source 1
In contact with 0, a halogenated gas of Zr or Y is generated.
Then, the generated halogenated gas is, for example, H
Ar gas containing oxygen with e gas of 700 ccm is 50
On the surface of the cylindrical substrate 1 introduced at a flow rate of sccm, an oxygen-containing gas is reacted, and the cylindrical substrate 8 mol% Y 2 O 3 —Zr
A dense metal oxide solid solution film of O 2 is obtained. At this time, the oxygen partial pressure near the surface of the cylindrical substrate 1 is set to 10 −5 atm.

【0015】次に、前記固体電解質膜の表面にNiO−
安定化ZrO2 (8モル%Y2 3含有)からなる燃料
極を形成する。具体的には、NiOと安定化ZrO
2 (8モル%Y2 3 含有)が重量比で8:2となるよ
うに調合した原料と、バインダーを含んだ純水を4:6
の重量比になるように混合攪拌する。このスラリー中に
固体電解質膜が形成された円筒状基体1を浸漬乾燥後、
1400℃の酸化雰囲気中で熱処理することによりNi
O−安定化ZrO2 (8モル%Y2 3 含有)からなる
燃料極を形成することができる。
Next, NiO- is formed on the surface of the solid electrolyte membrane.
A fuel electrode made of stabilized ZrO 2 (containing 8 mol% Y 2 O 3 ) is formed. Specifically, NiO and stabilized ZrO
2 (containing 8 mol% Y 2 O 3 ) in a weight ratio of 8: 2 and a pure water containing a binder were mixed in a ratio of 4: 6.
Mix and stir so that the weight ratio becomes. After dipping and drying the cylindrical substrate 1 having the solid electrolyte membrane formed in this slurry,
Ni by heat treatment in an oxidizing atmosphere at 1400 ° C
A fuel electrode made of O-stabilized ZrO 2 (containing 8 mol% Y 2 O 3 ) can be formed.

【0016】上記のようにして得られた燃料電池セルに
対して、マスキング部を除去し、逆に燃料極などが形成
された領域をマスキング処理する。
The masking portion is removed from the fuel cell obtained as described above, and conversely, the area where the fuel electrode and the like are formed is masked.

【0017】その後、マスキング処理していない領域に
導電層を形成する。本発明によれば、ここで生成する導
電層としてLaCrO3 にCaとMgが適量固溶した材
料を成膜する。炉内圧力を20torrに保持し、ヒー
タ9により反応室6内を所定温度(例えば、蒸発源15
を1250℃、円筒状基体11近傍を1300℃)に加
熱しながら、ガス導入路7からHClガスを0.1〜1
00ccmの流量で、またキャリアーガスとしてArガ
スを5000ccmの流量で、反応室6内に導入する。
導入路7から導入されたHClガスが(LaCa)Cr
3 とLa(MgCr)O3 からなる蒸発源10と反応
し、LaCl3 ,MgCl2 、CrCl2 ,CaCl2
の金属ハロゲン化ガスを生成する。この生成ガスを円筒
状基体1表面に供給するとともに円筒状基体1の内側か
ら1000ccmの流量でH2 O,H2 および酸素濃度
希釈用Arガスからなる酸素含有ガスを供給することに
より、円筒状基体1表面近傍の酸素分圧を10-7atm
とする。そして、金属ハロゲン化ガスと、円筒状基体1
を透過したH2 ,O2 とを反応させることにより、円筒
状基体1の表面に緻密なCaとMgが固溶したLaCr
3 の導電層が生成される。
After that, a conductive layer is formed in the region which is not masked. According to the present invention, a material in which Ca and Mg are solid-dissolved in LaCrO 3 is formed as the conductive layer formed here. The pressure inside the reaction chamber 6 is maintained at a predetermined temperature (for example, evaporation source 15
At 1250 ° C., and the vicinity of the cylindrical substrate 11 at 1300 ° C.), while adding HCl gas from the gas introduction path 7 to 0.1 to 1
Ar gas is introduced into the reaction chamber 6 at a flow rate of 00 ccm and at a flow rate of 5000 ccm as a carrier gas.
The HCl gas introduced from the introduction path 7 is (LaCa) Cr.
It reacts with the evaporation source 10 composed of O 3 and La (MgCr) O 3 to form LaCl 3 , MgCl 2 , CrCl 2 , CaCl 2
To produce a metal halide gas. By supplying this generated gas to the surface of the cylindrical substrate 1 and supplying an oxygen-containing gas consisting of H 2 O, H 2 and Ar gas for diluting the oxygen concentration from the inside of the cylindrical substrate 1 at a flow rate of 1000 ccm, Oxygen partial pressure near the surface of the substrate 1 is 10 -7 atm
And Then, the metal halide gas and the cylindrical substrate 1
By reacting with H 2 and O 2 which have permeated through the surface of the cylindrical substrate 1 to form a solid solution of La and Cr with dense Ca and Mg.
A conductive layer of O 3 is produced.

【0018】また、ハロゲン含有ガスの流量は0.1〜
200sccm、蒸発源10の温度は1200〜140
0℃、円筒状基体1の温度は1200〜1400℃であ
ることが望ましく、また、反応室6の圧力は減圧下であ
れば良く、好ましくは200torr以下であることが
望ましい。
The flow rate of the halogen-containing gas is 0.1-0.1%.
200 sccm, the temperature of the evaporation source 10 is 1200 to 140
It is desirable that the temperature of the cylindrical substrate 1 is 0 ° C. and 1200 to 1400 ° C., and that the pressure of the reaction chamber 6 is under reduced pressure, preferably 200 torr or less.

【0019】なお、上記実施例では、導電層5を固体電
解質層3や燃料極層4を形成した後に成膜したが、他の
例として円筒状基体1の表面に、導電層5形成領域以外
をマスキングした後に導電層5を前記方法により成膜
し、その後、成膜した導電層表面をマスキングして前記
方法により固体電解質層3および燃料極層4を順次形成
することもできる。
In the above embodiment, the conductive layer 5 was formed after the solid electrolyte layer 3 and the fuel electrode layer 4 were formed. However, as another example, the surface of the cylindrical substrate 1 other than the conductive layer 5 forming region is formed. Alternatively, the conductive layer 5 may be formed by the method described above after masking, and then the solid electrolyte layer 3 and the fuel electrode layer 4 may be sequentially formed by the method by masking the surface of the formed conductive layer.

【0020】本発明によれば、上記導電層5の形成にあ
たり、蒸発源の組成を変えることにより、LaCrO3
に対してMgおよびCaの置換量が表1に示すような異
なる数種の複合酸化物を作製した。得られた各複合酸化
物に対して、酸素分圧10-5atm下での電気伝導度
と、1000℃における熱膨張率を測定した。この内、
試料No,1,3,4について、酸素分圧と電気伝導度と
の関係を図2に、また試料No,1、4および8モル%Y
2 3 含有ZrO2 の温度と熱膨張率との関係を図3に
示した。
According to the present invention, when the conductive layer 5 is formed, by changing the composition of the evaporation source, LaCrO 3
On the other hand, several kinds of complex oxides having different substitution amounts of Mg and Ca as shown in Table 1 were prepared. With respect to each of the obtained composite oxides, the electrical conductivity under an oxygen partial pressure of 10 −5 atm and the coefficient of thermal expansion at 1000 ° C. were measured. Of this,
FIG. 2 shows the relationship between the oxygen partial pressure and the electrical conductivity of Samples No. 1, 1, 3 and 4, and Samples No. 1, 4, and 8 mol% Y
The relationship between the temperature and the coefficient of thermal expansion of 2 O 3 -containing ZrO 2 is shown in FIG.

【0021】[0021]

【表1】 [Table 1]

【0022】表1、図2、図3に示すように、導電層と
してLaCrO3 に対してCaおよびMgを本発明の範
囲内で置換した本発明の組成からなる導電層は、従来品
に比較して高い電気伝導率を示し、しかも熱膨張率が固
体電解質である安定化ZrO2 と近似していることがわ
かる。なお、Ca置換量が30%を越えたもの、Mg置
換量が20%を越えたものは異相が生成し電気伝導度が
大幅に低下した。
As shown in Table 1, FIG. 2 and FIG. 3, the conductive layer having the composition of the present invention in which Ca and Mg were substituted for LaCrO 3 within the scope of the present invention as the conductive layer was compared with the conventional product. As a result, it shows a high electric conductivity, and its thermal expansion coefficient is close to that of stabilized ZrO 2 which is a solid electrolyte. In addition, when the Ca substitution amount exceeds 30% and the Mg substitution amount exceeds 20%, a different phase is generated and the electric conductivity is significantly lowered.

【0023】[0023]

【発明の効果】以上詳述した通り、本発明によれば、円
筒状固体電解質型燃料電池のセル間の接続を行うための
導電層を気相成長法に基づき成膜するに当たり、LaC
rO3に対してMgおよびCaにより置換した複合酸化
物を導電層として形成することにより、導電層自体の電
気伝導度を高めるとともに、固体電解質との熱膨張率を
近似させることができるために、セル間の電気的接続の
信頼性を高めるとともに導電層の剥離などの発生を抑制
し、長期にわたり安定した発電性能を付与することがで
きる。
As described above in detail, according to the present invention, when a conductive layer for connecting cells of a cylindrical solid oxide fuel cell is formed by vapor deposition, LaC is formed.
By forming a composite oxide in which Mg and Ca are substituted for rO 3 as a conductive layer, the electrical conductivity of the conductive layer itself can be increased and the coefficient of thermal expansion with the solid electrolyte can be approximated. It is possible to improve the reliability of the electrical connection between the cells, suppress the occurrence of peeling of the conductive layer, and provide stable power generation performance for a long period of time.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の燃料電池セルの構造を示す図であるFIG. 1 is a diagram showing the structure of a fuel cell of the present invention.

【図2】各種複合酸化物の酸素分圧と電気伝導度との関
係を示した図である。
FIG. 2 is a diagram showing a relationship between oxygen partial pressure and electric conductivity of various composite oxides.

【図3】各種複合酸化物の温度と熱膨張率との関係を示
した図である。
FIG. 3 is a diagram showing the relationship between the temperature and the coefficient of thermal expansion of various composite oxides.

【図4】本発明の実施例において用いられる成膜装置の
概略図である。
FIG. 4 is a schematic diagram of a film forming apparatus used in an example of the present invention.

【符号の説明】[Explanation of symbols]

1 円筒状支持管(基体) 2 空気極層 3 固体電解質層 4 燃料極層 5 導電層 6 反応室 7 ガス制御装置 8 ガス導入路 9 加熱ヒータ 10蒸発源 11蒸発物質支持部材 12酸素供給路 1 Cylindrical Support Tube (Substrate) 2 Air Electrode Layer 3 Solid Electrolyte Layer 4 Fuel Electrode Layer 5 Conductive Layer 6 Reaction Chamber 7 Gas Control Device 8 Gas Introducing Path 9 Heating Heater 10 Evaporation Source 11 Evaporative Substance Supporting Member 12 Oxygen Supply Path

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】円筒状空気極の表面に固体電解質層および
燃料極層を具備するか、または円筒状支持管の表面に空
気極層、固体電解質層および燃料極層を具備してなる燃
料電池セルの前記空気極層と前記燃料極層のいずれか片
方と電気的に接続するように導電層を気相合成法により
被覆形成する固体電解質型燃料電池セルの製造方法にお
いて、前記導電層が金属元素としてLa、Cr、Mgお
よびCaを主成分として含むペロブスカイト型複合酸化
物からなり、Laに対するCa置換量が1〜30%、C
rに対するMgの置換量が1〜20%であることを特徴
とする固体電解質型燃料電池セルの製造方法。
1. A fuel cell comprising a solid electrolyte layer and a fuel electrode layer on the surface of a cylindrical air electrode, or an air electrode layer, a solid electrolyte layer and a fuel electrode layer on the surface of a cylindrical support tube. In the method for producing a solid oxide fuel cell in which a conductive layer is coated by a vapor phase synthesis method so as to be electrically connected to either one of the air electrode layer and the fuel electrode layer of the cell, the conductive layer is a metal. It is composed of a perovskite-type composite oxide containing La, Cr, Mg and Ca as main components as elements, and the amount of Ca substitution with respect to La is 1 to 30%, C
The method for producing a solid oxide fuel cell, wherein the substitution amount of Mg with respect to r is 1 to 20%.
JP16127893A 1993-06-30 1993-06-30 Method for manufacturing solid oxide fuel cell Expired - Fee Related JP3152803B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16127893A JP3152803B2 (en) 1993-06-30 1993-06-30 Method for manufacturing solid oxide fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16127893A JP3152803B2 (en) 1993-06-30 1993-06-30 Method for manufacturing solid oxide fuel cell

Publications (2)

Publication Number Publication Date
JPH0722041A true JPH0722041A (en) 1995-01-24
JP3152803B2 JP3152803B2 (en) 2001-04-03

Family

ID=15732073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16127893A Expired - Fee Related JP3152803B2 (en) 1993-06-30 1993-06-30 Method for manufacturing solid oxide fuel cell

Country Status (1)

Country Link
JP (1) JP3152803B2 (en)

Also Published As

Publication number Publication date
JP3152803B2 (en) 2001-04-03

Similar Documents

Publication Publication Date Title
JP2824457B2 (en) Cermet electrode and its manufacturing method
Inoue et al. Study of a solid oxide fuel cell with a ceria-based solid electrolyte
US5085742A (en) Solid oxide electrochemical cell fabrication process
US8304128B2 (en) Solid oxide cell and solid oxide cell stack
JPH0558235B2 (en)
JPH04332474A (en) Method of forming electronic conductive composite layer onto base material of device containing solid electrolyte
JPH05135787A (en) Manufacture of solid electrolyte film and manufacture of solid electrolyte fuel cell
CA2204632A1 (en) Protective interlayer for high temperature solid electrolyte electrochemical cells
JPH04306561A (en) Electrochemical battery
JPH0815087B2 (en) High temperature solid electrolyte electrochemical cell
US5080689A (en) Method of bonding an interconnection layer on an electrode of an electrochemical cell
KR20110074528A (en) Electrolyte for an sofc battery, and method of making same
Ogumi et al. Novel Method for Preparing Nickel/YSZ Cermet by a Vapor‐Phase Process
Gelfond et al. Chemical vapor deposition of electrolyte thin films based on yttria-stabilized zirconia
JPH1074528A (en) Solid electrolyte fuel cell and its manufacture
JP3152803B2 (en) Method for manufacturing solid oxide fuel cell
JPH0696791A (en) Solid electrolytic fuel cell and its manufacture
JP3616243B2 (en) Electrochemical vapor deposition apparatus and solid electrolyte film forming method using the same
JPS62268063A (en) Manufacture of solid electrolyte
EP0372069A1 (en) Solid compositions for fuel cell electrolytes
JP3131077B2 (en) Manufacturing method of metal oxide film
JPH07316819A (en) Production of metal oxide film
JPH04133265A (en) Air electrode structure of solid electrolyte fuel cell
JP2000182634A (en) Film forming method for solid electrolyte
JPH0718451A (en) Method and device for forming oxide film on porous substrate

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees