JPH0718451A - Method and device for forming oxide film on porous substrate - Google Patents

Method and device for forming oxide film on porous substrate

Info

Publication number
JPH0718451A
JPH0718451A JP5186917A JP18691793A JPH0718451A JP H0718451 A JPH0718451 A JP H0718451A JP 5186917 A JP5186917 A JP 5186917A JP 18691793 A JP18691793 A JP 18691793A JP H0718451 A JPH0718451 A JP H0718451A
Authority
JP
Japan
Prior art keywords
porous substrate
substrate
oxygen
oxide
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5186917A
Other languages
Japanese (ja)
Inventor
Toshihiko Koyama
俊彦 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP5186917A priority Critical patent/JPH0718451A/en
Publication of JPH0718451A publication Critical patent/JPH0718451A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To efficiently form an oxide film on a porous substrate by permeating the oxygen generated from the thermally decomposed oxidizing agent oxide through the substrate from its one side to the other and allowing the oxygen to react with a raw gas on the other side. CONSTITUTION:An NiO powder is filled in a closed vessel 3 made of alumina, the vessel is set in the reaction tube 2 of a CVD film forming device, the vessel 3 is evacuated and heated, and a hydrogen-contg. gaseous Ar is supplied. Consequently, the NiO powder is decomposed to generate oxygen, and the generated oxygen diffuses through the pore of a porous anode substrate 4 and then diffuses into the reaction tube 2 from the vessel 4 surface. Heated zirconium tetrachloride and yttrium trichloride are entrained onto the substrate 4 surface by gaseous Ar and allowed to react with the diffused oxygen to form an yttria- stabilized zirconium film 5 on the substrate 4. Consequently, the oxide film forming equipment is simplified, production efficiency is improved, and the production cost is reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は多孔質基板上に酸化物膜
を作成する方法および装置に関する。
FIELD OF THE INVENTION The present invention relates to a method and apparatus for forming an oxide film on a porous substrate.

【0002】[0002]

【従来の技術】最近、酸素と水素をそれぞれ、酸化剤お
よび燃料として、燃料が本来持っている化学エネルギー
を直接電気エネルギーに変換する燃料電池が、省資源、
環境保護などの観点から注目されている。特に、イット
リアなどをドープしたジルコニア(YSZと称する)を
電解質層として用い、ランタンクロマイト酸化物等をセ
パレータとして用いた平板型固体電解質燃料電池は、低
コストでコンパクトであり、作動温度が高く、発電効率
が良く、かつ高温廃熱の利用により総合効率が高く、コ
・ジェネレーション用として有利なため研究開発が進ん
でいる。
2. Description of the Related Art Recently, a fuel cell that directly converts chemical energy originally possessed by fuel into electric energy by using oxygen and hydrogen as an oxidant and a fuel, respectively, is a resource saving,
It is drawing attention from the perspective of environmental protection. In particular, a flat plate solid electrolyte fuel cell using zirconia doped with yttria or the like (referred to as YSZ) as an electrolyte layer and using lanthanum chromite oxide or the like as a separator is low cost, compact, has a high operating temperature, and generates electricity. R & D is progressing because of its high efficiency and high overall efficiency due to the use of high-temperature waste heat, which is advantageous for cogeneration.

【0003】この燃料電池の電池性能は電池の内部抵
抗、特にその中の構成材料のオーム抵抗により支配され
る。このオーム抵抗損失は抵抗率の最も高いYSZ固体
電解質を薄くすることで低減が可能となる。また、YS
Z固体電解質は電解質支持膜方式の電池を構成すること
により、電解質自立方式に比べ大幅に薄膜化が可能とな
る。したがって、性能の良い支持膜型固体電解質燃料電
池を構成するためにはNi−YSZサーメットである燃
料極板を多孔質基板とするか、もしくはLaMnO か
らなる空気極板を多孔質基板とし、この上に薄い(一般
的には1〜200ミクロン)酸化物被膜であるYSZ電
解質膜を成膜する必要がある。
The cell performance of this fuel cell is governed by the internal resistance of the cell, especially the ohmic resistance of the constituent materials therein. This ohmic resistance loss can be reduced by thinning the YSZ solid electrolyte having the highest resistivity. Also, YS
By forming a battery of the electrolyte supporting membrane system, the Z solid electrolyte can be made significantly thinner than the electrolyte self-supporting system. Therefore, in order to construct a supporting membrane type solid electrolyte fuel cell with good performance, a fuel electrode plate which is a Ni-YSZ cermet is used as a porous substrate, or an air electrode plate made of LaMnO 2 is used as a porous substrate and It is necessary to deposit a YSZ electrolyte membrane which is a very thin (typically 1 to 200 microns) oxide coating.

【0004】多孔質基板上に酸化物被膜を形成する方法
としては、スラリーコート法、ディプコート法、スリッ
プキャスト法等のいわゆるセラミックス法とCVD(Ch
emical Vaper Deposition )−EVD(Electrochemica
l Vaper Deposition)法が用いられてきた。CVD−E
VD法は例えば特開昭61ー153280号に開示され
ている。
As a method for forming an oxide film on a porous substrate, a so-called ceramics method such as a slurry coating method, a dip coating method or a slip casting method, and a CVD (Ch
emical Vaper Deposition) -EVD (Electrochemica
l Vaper Deposition) method has been used. CVD-E
The VD method is disclosed in, for example, JP-A-61-153280.

【0005】従来の多孔質基板上に酸化物膜を作成する
方法及び装置において、多孔質基板の片側にハロゲン化
金属からなる原料ガスを供給し、反対側からボンベ、配
管を経て酸化ガスを原料ガスより高い圧力で供給し、原
料ガス側に噴き出るように差圧を調整する。多孔質体を
透過して原料ガス側に到達した酸化ガス(酸素もしくは
水蒸気)は原料である金属ハロゲン化物と直接反応しC
VD反応により多孔質基板の孔を閉塞しながら酸化物を
形成する。多孔質基板の孔がCVD反応により形成され
た酸化物により閉塞されると、その酸化物により水蒸気
または酸素の高い酸素分圧の雰囲気と金属ハロゲン化物
の低い酸素分圧の雰囲気に仕切られることになる。この
とき酸化ガス側では酸素が還元され酸化物イオンとなり
酸素分圧の低いハロゲン化物側に拡散する。ハロゲン化
物側で拡散してきた酸化物イオンとハロゲン化物が反応
して酸化物となるEVD反応により膜が成長する。
In a conventional method and apparatus for forming an oxide film on a porous substrate, a source gas made of a metal halide is supplied to one side of the porous substrate, and an oxidizing gas is fed from the other side through a cylinder and a pipe. It is supplied at a pressure higher than that of the gas, and the differential pressure is adjusted so that it spouts to the raw material gas side. The oxidant gas (oxygen or water vapor) that has passed through the porous body and reached the raw material gas side reacts directly with the metal halide that is the raw material, and C
The oxide is formed while blocking the pores of the porous substrate by the VD reaction. When the pores of the porous substrate are closed by the oxide formed by the CVD reaction, the oxide divides the atmosphere into a high oxygen partial pressure atmosphere of water vapor or oxygen and a low oxygen partial pressure atmosphere of metal halide. Become. At this time, oxygen is reduced on the side of the oxidizing gas to form oxide ions, which diffuse to the side of the halide having a low oxygen partial pressure. The film grows by an EVD reaction in which the oxide ions diffused on the halide side react with the halide to form an oxide.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上述し
たように従来のCVD法による多孔質基板上への酸化物
被膜の形成作業には、酸化ガスをボンベから配管を通し
て多孔質基板の背面に供給していた。そのため、1配管
あたり酸化ガスを供給できる多孔質基板の枚数に限度が
あった。また、酸化ガスを供給するためのボンベや配管
を設置し、多孔質基板の両側の反応ガスの差圧を制御す
る手段を設けなければならなかった。
However, as described above, in forming the oxide film on the porous substrate by the conventional CVD method, oxidizing gas is supplied from the cylinder to the back surface of the porous substrate through a pipe. Was there. Therefore, there is a limit to the number of porous substrates that can supply the oxidizing gas per pipe. Further, a cylinder or a pipe for supplying an oxidizing gas has to be installed and a means for controlling the differential pressure of the reaction gas on both sides of the porous substrate has to be provided.

【0007】本発明は上述の点に鑑みてなされたもの
で、製造設備を簡略化し、製造効率を向上させ、もって
製造コストを低下させることができることを特徴とする
多孔質基板上に酸化物膜を作成する方法及び装置を提供
することを目的とする。
The present invention has been made in view of the above points, and is characterized in that the manufacturing equipment can be simplified, the manufacturing efficiency can be improved, and the manufacturing cost can be reduced, thereby forming an oxide film on a porous substrate. It is an object of the present invention to provide a method and apparatus for producing

【0008】[0008]

【課題を解決するための手段】上記課題を解決するた
め、本発明は化学的な蒸着により多孔質基板上に酸化物
膜を作成する方法において、昇温または成膜温度時にお
いて前記多孔質基板を酸化または分解しその性質を損ね
ることのない分解酸素圧を有する酸化物の分解により発
生する酸素を酸化ガスとして前記多孔質基板をその片面
側から透過して吹き出させ、反対面側に在る原料ガスと
反応させることを特徴とする。以後、ここではハロゲン
化金属原料を酸化する酸素を発生する酸化物を酸化剤酸
化物と称する。
In order to solve the above problems, the present invention provides a method for forming an oxide film on a porous substrate by chemical vapor deposition, wherein the porous substrate is heated at a temperature rise or film formation temperature. Oxygen generated by the decomposition of an oxide having a decomposition oxygen pressure that oxidizes or decomposes and does not impair its properties is permeated and blown out from one side of the porous substrate as an oxidizing gas, and is present on the opposite side. It is characterized by reacting with a raw material gas. Hereinafter, the oxide that generates oxygen that oxidizes the metal halide raw material will be referred to as an oxidant oxide.

【0009】また、本発明は化学的な蒸着により多孔質
基板上に酸化物膜を作成する装置において、壁の一部が
多孔質基板で形成され且つ昇温または成膜温度時におい
て多孔質基板を酸化または分解させてその性質を損ねる
ことのない分解酸素圧を持つ酸化剤酸化物の粉体を入れ
た密閉容器と、前記多孔質基板の外表面側に原料ガスを
供給する手段と、前記密閉容器を前記多孔質基板の成膜
温度に加熱する手段とを有することを特徴とする。
Further, according to the present invention, in an apparatus for forming an oxide film on a porous substrate by chemical vapor deposition, a part of the wall is formed of the porous substrate, and the porous substrate is heated at a temperature rise or film formation temperature. A closed container containing a powder of an oxidizer oxide having a decomposition oxygen pressure that does not impair its properties by oxidizing or decomposing, a means for supplying a raw material gas to the outer surface side of the porous substrate, Means for heating the closed container to the film formation temperature of the porous substrate.

【0010】[0010]

【作用】密閉容器に入れたNiO等の酸化物の分解によ
り発生する酸素が反応酸化ガスとなり多孔質基板の小孔
部を透過し、多孔質基板の他面側のハロゲン化金属ガス
と反応して多孔質基板上に金属酸化物の膜を形成し、そ
の成長につれCVD法により金属酸化物の膜が小孔部を
密閉し、さらに膜はEVD法により成長を続け、多孔質
基板上に薄い酸化物層のYSZ膜が蒸着される。
[Function] Oxygen generated by the decomposition of oxides such as NiO placed in a closed container becomes a reactive oxidizing gas, permeates through the small holes of the porous substrate, and reacts with the metal halide gas on the other side of the porous substrate. To form a metal oxide film on the porous substrate, the metal oxide film seals the small pores by the CVD method as it grows, and the film continues to grow by the EVD method to form a thin film on the porous substrate. A YSZ film of oxide layer is deposited.

【0011】[0011]

【実施例】以下、本発明を図面に基づいて説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings.

【0012】簡単にいえば、本発明は成膜温度において
多孔質基板を酸化または分解させてその性質を損ねるこ
とのない分解酸素圧を有する酸化物の粉末を、多孔質基
板を壁の一部とした密閉容器の中に入れ、前記多孔質基
板を成膜温度に加熱することにより前記酸化物の分解に
より発生する酸素を酸化ガスとして該密閉容器の内側か
ら前記多孔質基板の多数の小孔を通して吹き出させ、こ
の酸化ガスを前記多孔質基板の外側表面に供給される原
料ガスと反応させCVD−EVD法により多孔質基板上
に酸化物膜を作成するものである。
[0012] Briefly, the present invention uses an oxide powder having a decomposing oxygen pressure that does not impair the properties of a porous substrate by oxidizing or decomposing the porous substrate at a film-forming temperature. The porous substrate is placed in a closed container and the oxygen generated by decomposition of the oxide by heating the porous substrate to a film-forming temperature is used as an oxidizing gas from the inside of the closed container to form a large number of small holes in the porous substrate. And the oxidizing gas is reacted with the source gas supplied to the outer surface of the porous substrate to form an oxide film on the porous substrate by the CVD-EVD method.

【0013】図1は本発明の多孔質基板上に酸化物膜を
作成する装置の概略構成を示し、図2は酸化物の平衡酸
素分圧の温度特性を示し、図3は本発明の方法および装
置により多孔質基板上に作成したYSZ膜の断面電子顕
微鏡写真である。
FIG. 1 shows a schematic structure of an apparatus for forming an oxide film on a porous substrate of the present invention, FIG. 2 shows temperature characteristics of equilibrium oxygen partial pressure of an oxide, and FIG. 3 is a method of the present invention. 2 is a cross-sectional electron micrograph of a YSZ film formed on a porous substrate by using the apparatus.

【0014】図1に示す本発明の固体電解質膜作成装置
は反応管2、電気炉1、ガス供給管9、真空ポンプ10
等から構成されている。反応管2は石英ガラス製で横置
きに設置されている。電気炉1は3台からなり、独立に
温度制御される。これらの電気炉1は原料四塩化ジルコ
ニウムを昇華するための電気炉、三塩化イットリウムを
昇華するための電気炉、基板を加熱し膜成長を行う電気
炉からできている。反応管内には各金属塩化物を充填す
るアルミナ製ボート8、ボート8を置く台9、昇華した
金属塩化物を均一に混合させるための混合用板7、基板
4と酸化剤酸化物6の入ったアルミナ製密閉容器3を多
数置く棚11が適当に配置されている。膜成長の際原料
の気相拡散速度を速めるため反応管2を、そこに接続さ
れた真空ポンプ10により減圧状態にする。そのほか原
料を輸送するためのアルゴンガスをいれるボンベ13と
流量調整用のマスフローコントローラ12がガス供給管
9に接続されている。
The solid electrolyte membrane producing apparatus of the present invention shown in FIG. 1 has a reaction tube 2, an electric furnace 1, a gas supply tube 9, and a vacuum pump 10.
Etc. The reaction tube 2 is made of quartz glass and is installed horizontally. The electric furnace 1 consists of three units, and their temperatures are controlled independently. These electric furnaces 1 are composed of an electric furnace for sublimating zirconium tetrachloride as a raw material, an electric furnace for sublimating yttrium trichloride, and an electric furnace for heating a substrate to grow a film. In the reaction tube, an alumina boat 8 for filling each metal chloride, a stand 9 on which the boat 8 is placed, a mixing plate 7 for uniformly mixing the sublimed metal chloride, a substrate 4 and an oxidant oxide 6 are placed. A shelf 11 on which a large number of alumina closed containers 3 are placed is appropriately arranged. During the film growth, the reaction tube 2 is depressurized by the vacuum pump 10 connected thereto in order to accelerate the vapor phase diffusion rate of the raw material. In addition, a cylinder 13 for introducing an argon gas for transporting the raw material and a mass flow controller 12 for adjusting the flow rate are connected to the gas supply pipe 9.

【0015】実施例1 図1の装置を使用し、アノード(Ni−YSZサーメッ
ト)を基板4とし、ジルコニア膜5の化学蒸着を行っ
た。図2の平衡酸素分圧の温度特性図からわかるよう
に、アルミナ製密閉容器3に入れる酸化剤酸化物6は昇
温または成膜温度(1000℃)時にアノード中の金属
ニッケルが酸化しない平衡酸素分圧となるNiO、Fe
34 から選択する必要がある。ここではNiOを酸化
剤酸化物として選択した。平均粒径7ミクロンのNiO
粉末を30グラムを容器3に充填した。一方、成膜する
基板4は直径20ミリ、厚さ2ミリで気孔率30%、平
均気孔径0.6ミクロンの多孔質アノードを用い、図1
に示す位置に固定した。
Example 1 Using the apparatus shown in FIG. 1, the anode (Ni-YSZ cermet) was used as the substrate 4, and chemical vapor deposition of the zirconia film 5 was performed. As can be seen from the temperature characteristic diagram of the equilibrium oxygen partial pressure in FIG. 2, the oxidizer oxide 6 placed in the alumina closed container 3 is an equilibrium oxygen in which metallic nickel in the anode is not oxidized at the time of temperature rise or film formation temperature (1000 ° C.). NiO, Fe which becomes partial pressure
It is necessary to select from 3 O 4 . Here, NiO was selected as the oxidant oxide. NiO with an average particle size of 7 microns
Container 3 was filled with 30 grams of powder. On the other hand, the substrate 4 on which the film is formed uses a porous anode having a diameter of 20 mm, a thickness of 2 mm, a porosity of 30%, and an average pore diameter of 0.6 μm.
It was fixed to the position shown in.

【0016】複数個のアルミナ製容器3をCVD成膜装
置反応管2の内部に設置し、真空ポンプ10により減圧
し昇温を行った。アルミナ製容器3は密閉構造を有し、
その内部と外部の通気は多孔質アノードの気孔からのみ
なされる。昇温時の気相雰囲気は金属ニッケルが酸化さ
れないよう4%H2 +Arガスを供給し、反応管2の内
部の圧力が約2トールとなるようにした。4%H2 +N
2 ガス雰囲気における酸素分圧は金属ニッケルと酸化ニ
ッケルの平衡酸素分圧より低酸素分圧となるため酸化ニ
ッケルは一方的に分解して酸素を発生する。発生した酸
素は多孔質アノード基板4の気孔中を拡散して基板4の
表面から反応管2内に拡散する。
A plurality of alumina containers 3 were installed inside the CVD film forming apparatus reaction tube 2, and the pressure was reduced by the vacuum pump 10 to raise the temperature. The alumina container 3 has a closed structure,
Ventilation of its interior and exterior is taken from the pores of the porous anode. In the vapor phase atmosphere at the time of temperature rise, 4% H 2 + Ar gas was supplied so that the metallic nickel was not oxidized, and the pressure inside the reaction tube 2 was set to about 2 Torr. 4% H 2 + N
Since the oxygen partial pressure in the two- gas atmosphere is lower than the equilibrium oxygen partial pressure of metallic nickel and nickel oxide, nickel oxide is unilaterally decomposed to generate oxygen. The generated oxygen diffuses in the pores of the porous anode substrate 4 and diffuses from the surface of the substrate 4 into the reaction tube 2.

【0017】1030℃まで毎分4℃で昇温し、所定の
温度に到達したとき、230℃に加熱した四塩化ジルコ
ニウム、510℃に加熱した三塩化イットリウムを所定
流量のアルゴンキャリアーガスにて基板4の表面に輸送
した。このとき、基板4の内側から拡散してきた酸素ガ
スと原料であるジルコニウムおよびイットリウムの塩化
物蒸気とが反応し、ただちにイットリア安定化ジルコニ
ア(YSZ)膜5が多孔質アノード基板4の表面に生成
し、徐々に基板4の孔が閉塞されていった。これがCV
D反応である。
When the temperature is raised to 1030 ° C. at 4 ° C./min and reaches a predetermined temperature, zirconium tetrachloride heated to 230 ° C. and yttrium trichloride heated to 510 ° C. are applied to the substrate with a predetermined flow rate of an argon carrier gas. 4 surface. At this time, the oxygen gas diffused from the inside of the substrate 4 reacts with the zirconium and yttrium chloride vapors which are the raw materials, and immediately the yttria-stabilized zirconia (YSZ) film 5 is formed on the surface of the porous anode substrate 4. The holes of the substrate 4 were gradually closed. This is CV
It is a D reaction.

【0018】CVD反応が終了すると原料金属塩化物と
酸素は直接反応することがなくなる。その結果、気孔を
閉塞したYSZを介して酸素分圧に差がつき、酸化剤酸
化物側は1030℃で1010 気圧、原料の金属塩化物
側では約1018 気圧になる。酸化剤酸化物が発生する
酸素は孔を閉塞したYSZ面上で還元され、YSZ膜中
を酸化物イオンとして拡散し原料金属塩化物と反応する
EVD反応過程へと進み膜5が成長する。こうして、5
時間反応させたYSZ膜の粒子構造の断面電子顕微鏡写
真を図3に示す。多孔質アノード上に厚さ約10ミクロ
ンの緻密で均一なYSZ膜がアノードの表面気孔を埋め
るように密着している。1時間の平均成膜速度は約1.
5ミクロンであった。
When the CVD reaction ends, the raw material metal chloride and oxygen do not directly react with each other. As a result, there is a difference in oxygen partial pressure through the YSZ that closes the pores, and the oxidant oxide side is 10 10 atm at 1030 ° C. and the metal chloride side of the raw material is about 10 18 atm. Oxygen generated by the oxidant oxide is reduced on the YSZ plane that closes the pores, diffuses in the YSZ film as oxide ions, and advances to the EVD reaction process in which it reacts with the source metal chloride to grow the film 5. Thus 5
FIG. 3 shows a cross-sectional electron micrograph of the grain structure of the YSZ film that has been reacted for a time. A dense and uniform YSZ film having a thickness of about 10 μm is adhered on the porous anode so as to fill the surface pores of the anode. The average film formation rate per hour is about 1.
It was 5 microns.

【0019】実施例2 カソード材料(LaMnO3 )を基板4とする時にはカ
ソード材料が分解しない平衡酸素分圧をもつ酸化物を選
択する必要がある。図2の平衡酸素分圧の温度特性図か
らNiO、Mn23 が酸化剤用酸化物として適当であ
ることがわかる。NiOを酸化剤とし20グラムをアル
ミナ製容器に充填した。直径20ミリ厚さ2ミリの多孔
質カソードを基板4として所定の位置に固定し、反応管
2に設置した。
Example 2 When the cathode material (LaMnO 3 ) is used as the substrate 4, it is necessary to select an oxide having an equilibrium oxygen partial pressure that does not decompose the cathode material. From the temperature characteristic diagram of equilibrium oxygen partial pressure in FIG. 2, it can be seen that NiO and Mn 2 O 3 are suitable as oxides for oxidants. Using NiO as an oxidant, 20 g was filled in an alumina container. A porous cathode having a diameter of 20 mm and a thickness of 2 mm was fixed as a substrate 4 at a predetermined position and placed in the reaction tube 2.

【0020】毎分4℃の昇温速度で1030℃まで空気
雰囲気にて昇温した。成膜温度に到達したのち反応管2
内の雰囲気を4%H2+Arにて置換し、あらかじめ所
定の温度に加熱しておいた四塩化ジルコニウム、三塩化
イットリウムをアルゴンガスにて輸送し、多孔質カソー
ドを基板4中を拡散してきたNiOが分解して発生した
酸素とCVD反応を起こし、徐々に基板4の孔が閉塞さ
れ、以後のEVD反応によりYSZ膜5が成長した。
The temperature was raised to 1030 ° C. in an air atmosphere at a rate of 4 ° C./min. After reaching the film formation temperature, the reaction tube 2
The atmosphere inside was replaced with 4% H 2 + Ar, zirconium tetrachloride and yttrium trichloride that had been heated to a predetermined temperature were transported by argon gas, and the porous cathode was diffused in the substrate 4. NiO was decomposed to generate a CVD reaction with oxygen generated, the holes of the substrate 4 were gradually closed, and the YSZ film 5 was grown by the subsequent EVD reaction.

【0021】[0021]

【発明の効果】以上説明したように本発明によれば、昇
温または成膜温度時において前記多孔質基板を酸化また
は分解しその性質を損ねることのない分解酸素圧を有す
る酸化剤酸化物の分解により発生する酸素を酸化ガスと
して前記多孔質基板をその片面側から透過して吹き出さ
せ、反対面側に在る原料ガスと反応させるようにしたの
で、多孔質基板上に酸化物膜を作成するための製造設備
を簡略化し、製造効率を向上させ、もって製造コストを
低下させることができる。
As described above, according to the present invention, an oxidant oxide having a decomposed oxygen pressure which does not impair the properties of the porous substrate by oxidizing or decomposing at the time of temperature rise or film formation temperature. Oxygen generated by decomposition is used as an oxidizing gas to permeate and blow out from the one side of the porous substrate, and to react with the raw material gas on the opposite side, so an oxide film is formed on the porous substrate. It is possible to simplify the manufacturing equipment for improving the manufacturing efficiency and to reduce the manufacturing cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の多孔質基板上に酸化物膜を作成する装
置の概略構成を示す図である。
FIG. 1 is a diagram showing a schematic configuration of an apparatus for forming an oxide film on a porous substrate of the present invention.

【図2】酸化物の平衡酸素分圧の温度特性を示す図であ
る。
FIG. 2 is a diagram showing temperature characteristics of equilibrium oxygen partial pressure of oxide.

【図3】本発明の方法および装置により多孔質基板上に
作成したYSZ膜の粒子構造の断面電子顕微鏡写真であ
る。
FIG. 3 is a sectional electron micrograph of the particle structure of a YSZ film formed on a porous substrate by the method and apparatus of the present invention.

【符号の説明】[Explanation of symbols]

1 電気炉 2 反応管 3 アルミナ製密閉容器 4 多孔質基板 5 ジルコニア膜 6 酸化剤酸化物 7 混合用板 8 アルミナ製ボート 9 ガス供給管 10 真空ポンプ 11 棚 12 マスフローコントローラ 13 アルゴンボンベ 1 Electric Furnace 2 Reaction Tube 3 Alumina Sealed Container 4 Porous Substrate 5 Zirconia Film 6 Oxidant Oxide 7 Mixing Plate 8 Alumina Boat 9 Gas Supply Pipe 10 Vacuum Pump 11 Shelf 12 Mass Flow Controller 13 Argon Cylinder

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年8月9日[Submission date] August 9, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0005[Name of item to be corrected] 0005

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0005】従来の多孔質基板上に酸化物膜を作成する
方法及び装置において、多孔質基板の片側にハロゲン化
金属からなる原料ガスを供給し、反対側からボンベ、配
管を経て酸化ガスを原料ガスより高い圧力で供給し、原
料ガス側に噴き出るように差圧を調整する。多孔質体を
透過して原料ガス側に到達した酸化ガス(酸素もしくは
水蒸気)は原料である金属ハロゲン化物と直接反応しC
VD反応により多孔質基板の孔を閉塞しながら酸化物を
形成する。多孔質基板の孔がCVD反応により形成され
た酸化物により閉塞されると、その酸化物により水蒸気
または酸素による高い酸素分圧の雰囲気と金属ハロゲン
化物による低い酸素分圧の雰囲気に仕切られることにな
る。このとき酸化ガス側では酸素が還元され酸化物イオ
ンとなり酸素分圧の低いハロゲン化物側に拡散する。ハ
ロゲン化物側で拡散してきた酸化物イオンとハロゲン化
物が反応して酸化物となるEVD反応により膜が成長す
る。
In a conventional method and apparatus for forming an oxide film on a porous substrate, a source gas made of a metal halide is supplied to one side of the porous substrate, and an oxidizing gas is fed from the other side through a cylinder and a pipe. It is supplied at a pressure higher than that of the gas, and the differential pressure is adjusted so that it spouts to the raw material gas side. The oxidant gas (oxygen or water vapor) that has passed through the porous body and reached the raw material gas side reacts directly with the metal halide that is the raw material, and C
The oxide is formed while blocking the pores of the porous substrate by the VD reaction. When the pores of the porous substrate are closed by the oxide formed by the CVD reaction, the oxide divides the atmosphere into a high oxygen partial pressure atmosphere due to water vapor or oxygen and a low oxygen partial pressure atmosphere due to the metal halide. Become. At this time, oxygen is reduced on the side of the oxidizing gas to form oxide ions, which diffuse to the side of the halide having a low oxygen partial pressure. The film grows by an EVD reaction in which the oxide ions diffused on the halide side react with the halide to form an oxide.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0014[Correction target item name] 0014

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0014】図1に示す本発明の固体電解質膜作成装置
は反応管2、電気炉1、ガス供給管9、真空ポンプ10
等から構成されている。反応管2は石英ガラス製で横置
きに設置されている。電気炉1は3台からなり、独立に
温度制御される。これらの電気炉1は原料四塩化ジルコ
ニウムを昇華するための電気炉、三塩化イットリウムを
昇華するための電気炉、基板を加熱し膜成長を行う電気
炉からできている。反応管内には各金属塩化物を充填す
るアルミナ製ボート8、ボート8を置く台9、昇華した
金属塩化物を均一に混合させるための混合用板7、基板
4と酸化剤酸化物6の入ったアルミナ製密閉容器3を多
数置く棚11が適当に配置されている。膜成長の際原料
の蒸発速度を速めるため反応管2を、そこに接続された
真空ポンプ10により減圧状態にする。そのほか原料を
輸送するためのアルゴンガスをいれるボンベ13と流量
調整用のマスフローコントローラ12がガス供給管9に
接続されている。
The solid electrolyte membrane producing apparatus of the present invention shown in FIG. 1 has a reaction tube 2, an electric furnace 1, a gas supply tube 9, and a vacuum pump 10.
Etc. The reaction tube 2 is made of quartz glass and is installed horizontally. The electric furnace 1 consists of three units, and their temperatures are controlled independently. These electric furnaces 1 are composed of an electric furnace for sublimating zirconium tetrachloride as a raw material, an electric furnace for sublimating yttrium trichloride, and an electric furnace for heating a substrate to grow a film. In the reaction tube, an alumina boat 8 for filling each metal chloride, a stand 9 on which the boat 8 is placed, a mixing plate 7 for uniformly mixing the sublimed metal chloride, a substrate 4 and an oxidant oxide 6 are placed. A shelf 11 on which a large number of alumina closed containers 3 are placed is appropriately arranged. During the film growth, the reaction tube 2 is depressurized by the vacuum pump 10 connected thereto in order to accelerate the evaporation rate of the raw material. In addition, a cylinder 13 for introducing an argon gas for transporting the raw material and a mass flow controller 12 for adjusting the flow rate are connected to the gas supply pipe 9.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0018[Correction target item name] 0018

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0018】CVD反応が終了すると原料金属塩化物と
酸素は直接反応することがなくなる。その結果、気孔を
閉塞したYSZを介して酸素分圧に差がつき、酸化剤酸
化物側は1030℃で10−10気圧、原料の金属塩化
物側では約10−18気圧になる。酸化剤酸化物が発生
する酸素は孔を閉塞したYSZ面上で還元され、YSZ
膜中を酸化物イオンとして拡散し原料金属塩化物と反応
するEVD反応過程へと進み膜5が成長する。こうし
て、5時間反応させたYSZ膜の粒子構造の断面電子顕
微鏡写真を図3に示す。多孔質アノード上に厚さ約10
ミクロンの緻密で均一なYSZ膜がアノードの表面気孔
を埋めるように密着している。1時間の平均成膜速度は
約1.5ミクロンであった。
When the CVD reaction ends, the raw material metal chloride and oxygen do not directly react with each other. As a result, there is a difference in oxygen partial pressure through the YSZ that has closed the pores, and the oxidant oxide side is 10 −10 atm at 1030 ° C., and the metal chloride side of the raw material is about 10 −18 atm. Oxygen generated by the oxidant oxide is reduced on the YSZ surface that closes the pores,
The film 5 progresses to the EVD reaction process in which it diffuses as oxide ions in the film and reacts with the material metal chloride, and the film 5 grows. A cross-sectional electron micrograph of the grain structure of the YSZ film thus reacted for 5 hours is shown in FIG. Thickness of about 10 on porous anode
A dense and uniform YSZ film of micron is adhered so as to fill the surface pores of the anode. The average film formation rate for one hour was about 1.5 microns.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 化学的な蒸着により多孔質基板上に酸化
物膜を作成する方法において、昇温または成膜温度時に
おいて前記多孔質基板を酸化または分解しその性質を損
ねることのない分解酸素圧を有する酸化剤酸化物の分解
により発生する酸素を酸化ガスとして前記多孔質基板を
その片面側から透過して吹き出させ、反対面側に在る原
料ガスと反応させることを特徴とする多孔質基板上に酸
化物膜を作成する方法。
1. A method of forming an oxide film on a porous substrate by chemical vapor deposition, wherein decomposed oxygen which does not impair the properties of the porous substrate by oxidizing or decomposing at the time of temperature rise or film formation temperature. Oxygen generated by decomposition of an oxidant oxide having a pressure is used as an oxidizing gas to permeate and blow out the porous substrate from one side thereof, and the porous substrate is characterized by reacting with a raw material gas on the opposite side. A method of forming an oxide film on a substrate.
【請求項2】 化学的な蒸着により多孔質基板上に酸化
物膜を作成する装置において、壁の一部が多孔質基板で
形成され且つ昇温または成膜温度時において多孔質基板
を酸化または分解させてその性質を損ねることのない分
解酸素圧を持つ酸化剤酸化物の粉体を入れた密閉容器
と、前記多孔質基板の外表面側に原料ガスを供給する手
段と、前記密閉容器を前記多孔質基板の成膜温度に加熱
する手段とを有することを特徴とする多孔質基板上に酸
化物膜を作成する装置。
2. An apparatus for forming an oxide film on a porous substrate by chemical vapor deposition, wherein a part of the wall is formed of the porous substrate and the porous substrate is oxidized or heated at a temperature rise or film formation temperature. A closed container containing a powder of an oxidant oxide having a decomposition oxygen pressure that does not degrade the properties of the porous substrate, a means for supplying a source gas to the outer surface side of the porous substrate, and the closed container. An apparatus for forming an oxide film on a porous substrate, comprising: a means for heating the porous substrate to a film forming temperature.
JP5186917A 1993-06-30 1993-06-30 Method and device for forming oxide film on porous substrate Withdrawn JPH0718451A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5186917A JPH0718451A (en) 1993-06-30 1993-06-30 Method and device for forming oxide film on porous substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5186917A JPH0718451A (en) 1993-06-30 1993-06-30 Method and device for forming oxide film on porous substrate

Publications (1)

Publication Number Publication Date
JPH0718451A true JPH0718451A (en) 1995-01-20

Family

ID=16196959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5186917A Withdrawn JPH0718451A (en) 1993-06-30 1993-06-30 Method and device for forming oxide film on porous substrate

Country Status (1)

Country Link
JP (1) JPH0718451A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5017348A (en) * 1989-01-26 1991-05-21 Beco Engineering Company Treatment of nitrogen oxides
JP2016152093A (en) * 2015-02-16 2016-08-22 三菱日立パワーシステムズ株式会社 Fuel cell power generation device and operational method of fuel cell power generation device
WO2019013465A1 (en) * 2017-07-12 2019-01-17 주식회사 엘지화학 Device and method for coating surface of porous substrate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5017348A (en) * 1989-01-26 1991-05-21 Beco Engineering Company Treatment of nitrogen oxides
JP2016152093A (en) * 2015-02-16 2016-08-22 三菱日立パワーシステムズ株式会社 Fuel cell power generation device and operational method of fuel cell power generation device
WO2019013465A1 (en) * 2017-07-12 2019-01-17 주식회사 엘지화학 Device and method for coating surface of porous substrate

Similar Documents

Publication Publication Date Title
Will et al. Fabrication of thin electrolytes for second-generation solid oxide fuel cells
US5332597A (en) Method for manufacturing inorganic membranes by organometallic chemical vapor infiltration
US6139985A (en) Electrode electrolyte interlayers containing cerium oxide for electrochemical fuel cells
NO180151B (en) Process for the preparation of ultra-thin inorganic membranes and membranes prepared by the process
JPH04332474A (en) Method of forming electronic conductive composite layer onto base material of device containing solid electrolyte
Lin et al. A kinetic study of the electrochemical vapor deposition of solid oxide electrolyte films on porous substrates
US5391440A (en) Method of forming a leak proof plasma sprayed interconnection layer on an electrode of an electrochemical cell
US5395704A (en) Solid-oxide fuel cells
JP4983091B2 (en) Method for forming electrolyte membrane, film forming apparatus, and solid fuel cell
EP0550070B1 (en) Method for manufacturing inorganic membranes by organometallic chemical vapor infiltration
Ogumi et al. Novel Method for Preparing Nickel/YSZ Cermet by a Vapor‐Phase Process
US5989634A (en) Process of manufacturing solid oxygen ion conducting oxide layers
JPH0718451A (en) Method and device for forming oxide film on porous substrate
Mineshige et al. Preparation of Yttria‐Stabilized Zirconia Microtube by Electrochemical Vapor Deposition
Gelfond et al. Chemical vapor deposition of electrolyte thin films based on yttria-stabilized zirconia
JP3616243B2 (en) Electrochemical vapor deposition apparatus and solid electrolyte film forming method using the same
Bai et al. The process, structure and performance of pen cells for the intermediate temperature SOFCs
JPH0696791A (en) Solid electrolytic fuel cell and its manufacture
OGAWA et al. A novel method for preparation of Ni/YSZ cermet by vapor-phase processes
JPH07316819A (en) Production of metal oxide film
Mineshinge et al. Preparation of hollow YSZ fibre by electrochemical vapour deposition
JP3152803B2 (en) Method for manufacturing solid oxide fuel cell
Kikuchi et al. Fabrication of hollow thin films of yttria-stabilized zirconia by chemical vapor infiltration using NiO as oxygen source
JP3423874B2 (en) Solid electrolyte film formation method
JP3131077B2 (en) Manufacturing method of metal oxide film

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000905