JP3616243B2 - Electrochemical vapor deposition apparatus and solid electrolyte film forming method using the same - Google Patents

Electrochemical vapor deposition apparatus and solid electrolyte film forming method using the same Download PDF

Info

Publication number
JP3616243B2
JP3616243B2 JP03169198A JP3169198A JP3616243B2 JP 3616243 B2 JP3616243 B2 JP 3616243B2 JP 03169198 A JP03169198 A JP 03169198A JP 3169198 A JP3169198 A JP 3169198A JP 3616243 B2 JP3616243 B2 JP 3616243B2
Authority
JP
Japan
Prior art keywords
vapor deposition
raw material
vapor
electrochemical
solid electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03169198A
Other languages
Japanese (ja)
Other versions
JPH11229142A (en
Inventor
伸二 竹内
淳一 藤田
波子 兼田
正孝 望月
雅克 永田
力 岩澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Kansai Electric Power Co Inc
Original Assignee
Fujikura Ltd
Kansai Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd, Kansai Electric Power Co Inc filed Critical Fujikura Ltd
Priority to JP03169198A priority Critical patent/JP3616243B2/en
Publication of JPH11229142A publication Critical patent/JPH11229142A/en
Application granted granted Critical
Publication of JP3616243B2 publication Critical patent/JP3616243B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電気化学蒸着装置及びそれを用いた固体電解質の成膜方法に関する。
【0002】
【従来の技術】
従来、固体電解質型燃料電池には平板方式と円筒方式とがあり、さらに円筒方式には縦縞方式と横縞方式とがある。そして特に、円筒縦縞方式の固体電解質型燃料電池は図4に示す構造である。この従来の円筒縦縞方式固体電解質型燃料電池106は、内側から順に多孔質ランタンマンガナイト系酸化物(LaMnOx)の空気極支持管101、イットリア安定化ジルコニア(YSZ)製の固体電解質102、ニッケル、コバルト、ニッケル合金又はコバルト合金とYSZとのサーメット製の燃料極103の積層構造にして、外周面の一部にインタコネクタ104を燃料極103から絶縁し、かつ内部の空気極支持管101に接続する形で配置している。
【0003】
しかしながら、このような従来の縦縞円筒方式の固体電解質型燃料電池では、各要素の材料がすべてセラミックス製で、かつ約850〜1050℃の高温で作動するため、特に熱膨張率の違う異種材料が重なり合うインタコネクタ104の付近や電池底部に応力が集中してクラックが発生しやすい問題点があった。
【0004】
そこで、この従来の問題点を解決するものとして、特開平7−263001号公報では、図5に示す構造の固体電解質型燃料電池110が提案されている。この提案されている従来の固体電解質型燃料電池110は、中心部に燃料供給用導電性チューブ111を挿入する構造を特徴としている。すなわち、内側から順に燃料極112、固体電解質113、空気極114を形成し、中心部に燃料噴出のために多数の穴を開けた燃料供給用導電性チューブ111を挿入し、この導電性チューブ111と燃料極112との間に燃料改質機能を持つ導電性フェルト115を充填し、そして導電性チューブ111に燃料ガス116を供給し、外周に空気117を流通させるようにした構造である。
【0005】
この固体電解質型燃料電池110の発電作用について説明すると、電池110の導電性チューブ111内に天然ガス、メタン、石炭ガス化ガスなどの燃料ガス116を供給し、導電性チューブ111の多孔質の管壁を通じて導電性フェルト115の部分に噴出させ、この導電性フェルト115と燃料極112と固体電解質113の部分で高温度条件下、通常、650℃〜1050℃の条件下で次の化1式の改質反応を起こさせる。
【0006】
【化1】

Figure 0003616243
この改質反応で発生する水素に対して、固体電解質113を介して対極する燃料極112と空気極114との部分で次の化2式の発電反応を起こし、遊離した電子を集電することによって発電力を得る。
【0007】
【化2】
Figure 0003616243
つまり、燃料極112においては化2(a)式に示すように、改質反応で生成された水素が、固体電解質113から供給される酸化物イオンと反応して水蒸気と電子を生成する。そして燃料極112で生成された電子が導電性フェルト115と導電性チューブ111を経て陰極118から外部回路に回り、陽極119を経て空気極114に到達すると、この空気極114において、化2(b)式に示すように空気117中の酸素と反応して酸化物イオンを生成し、これが固体電解質113に放出され、燃料極112側に到達して化2(a)式の反応に供されるのである。
【0008】
このような発電機構の燃料電池110において、空気極114、固体電解質113及び燃料極112の部分は次にようにして形成している。まず空気極114となるランタンマンガナイト系の多孔質の基材に対して電気化学蒸着法、つまり、CVD(Chemical Vapor Deposition )−EVD(Electrochemical Vapor Deposition )法を用いて薄く、かつ緻密なYSZ膜を固体電解質113として形成し、さらにこのYSZ膜にニッケル、コバルト、ニッケル又はコバルトを主成分とする合金、あるいはニッケルジルコニアサーメットの粉末をスラリーコートし、同じように電気化学蒸着法を施して多孔質の燃料極112を成膜し、あるいは特開平4−349343号公報に掲載されているような溶射法を用いて成膜するのである。
【0009】
そして固体電解質113の成膜を行う電気化学蒸着装置としては、図6に示す構造のものが使用されている。この従来の電気化学蒸着装置は、反応室21内を真空に近い状態、約1Torrにして、かつヒータ22によって約1000〜1200℃の温度条件下で、空気極支持管となる多孔質のストロンチウム添加ランタンマンガナイト(LSM)製の基体23の外側にはアルゴンAr、酸素O、水蒸気HOの混合酸化ガス24を導入し、他側面にはYSZ膜の原料となるイットリウム、ジルコニウムの塩化物YCl,ZrClの蒸気25をキャリアガスであるアルゴン(Ar)ガスに混入して原料蒸気供給管26から供給する。
【0010】
この原料蒸気25の供給系統は、塩化イットリウムYCl、塩化ジルコニウムZrClの原料微粉末をパウダーフィーダ(MPF)31,32に貯溜しておき、マスフローコントローラ(MFC)33,34によって所定の流量でアルゴンキャリアガス35を供給することによってキャリアガス35に原料微粉末を混入しつつ配管36を通じて反応室21の原料蒸気供給管26まで供給し、この原料蒸気供給管26内でヒータ22の加熱によって気化し、原料蒸気25にして反応室21内に供給する構造である。
【0011】
このような構造の電気化学蒸着装置を使用することによって、図7(a)に示すように、最初は基体23の多数の孔27を通ってくる酸化ガス24と原料蒸気25とが化3式に示す反応をして図7(b)に示すようにYSZ膜28を基体23の表面に生成し、徐々に基体23の多数の孔27を閉塞していく。これがCVD段階である。
【0012】
【化3】
Figure 0003616243
このCVD段階が終了すると、原料蒸気25と酸化ガス24とは直接に反応することはなくなり、酸化ガス24からの酸素がYSZ面上で還元されてYSZ膜28中を酸化物イオンO2−として拡散し、化4式に示す反応を原料塩化物蒸気と行うEVD段階へ進み、同図(c)に示すようにYSZ膜28が成長する。
【0013】
【化4】
Figure 0003616243
こうして電気化学蒸着法によって固体電解質113としてYSZ膜28を成膜した後は、さらに上述した燃料極112をスラリーコーティングした後に電気化学蒸着する方法、その他の方法で燃料電池を作製することになる。
【0014】
【発明が解決しようとする課題】
しかしながら、このような従来の電気化学蒸着装置の場合、次のような問題点があった。すなわち、図6に示すように原料蒸気供給管26の下端開口部から原料蒸気25を基体23内に吐出し、基体23の外側に酸化ガスを供給し、EVD−CVD反応で発生する塩化物排気41、酸化物排気42はそれぞれ、反応炉21の上部に一個所ずつ設けられた排出口43,44を通じて外部に排出する構造であったため、反応炉21内各部でガスの流れに速度差が生じやすく、これが基体23の表面に蒸着する固体電解質28の膜厚を不均一にする問題点があった。
【0015】
本発明はこのような従来の問題点に鑑みてなされたもので、電気化学蒸着の実施中に基体を回転させると共に軸方向に移動させることによって固体電解質の膜厚を一様にすることができる電気化学蒸着装置及びそれを用いた固体電解質の成膜方法を提供することを目的とする。
【0016】
【課題を解決するための手段】
請求項1の発明は、円管状の蒸着基体を内部に収容し、かつ気化された蒸着原料蒸気を蒸気導入管を通じて前記蒸着基体の内部に導入し、かつ前記蒸着基体の外部に酸化ガスを導入して、前記蒸着基体の内周面に電気化学蒸着膜を形成する反応室を備えて成る電気化学蒸着装置において、前記蒸着基体を軸周りに回転させる回転手段と、前記蒸着基体を軸方向に移動させる移動手段とを備えたものである。
【0017】
請求項1の発明の電気化学蒸着装置では、蒸着原料粉末を高温で気化させ、反応室に導入して蒸着基体の内周面に電気化学蒸着させる際に、蒸着基体を軸周りに回転させ、かつ軸方向に移動させることによって、反応室内の蒸着原料蒸気の流れや酸化ガスの流れが不均一であっても蒸着基体の表面各所に均一な膜厚で原料蒸気を蒸着させ、膜厚の均一な固体電解質を成膜する。
【0018】
請求項2の発明は、請求項1に記載された電気化学蒸着装置を用いた固体電解質の成膜方法であって、塩化イットリウム粉末、塩化ジルコニウム粉末それぞれを所定の割合、所定の流量で導出し、高温雰囲気で気化させて蒸着原料蒸気を生成し、この蒸着原料蒸気を前記反応室の前記蒸気導入管に導入して前記蒸着基体を軸周りに回転させ、かつ軸方向に移動させながらその内周面に電気化学蒸着膜を形成するものである。
【0019】
請求項2の発明の固体電解質の成膜方法では、請求項1の電気化学蒸着装置を用いて蒸着基体の内周面に固体電解質膜を成膜するので、蒸着基体の内周面全体に渡り、均一な膜厚の固体電解質膜を成膜することができる。
【0020】
【発明の実施の形態】
以下、本発明の実施の形態を図に基づいて詳説する。図1及び図2は、本発明の1つの実施の形態の電気化学蒸着装置を示している。この第1の実施の形態の電気化学蒸着装置は、図6に示した従来例と同様に反応室21内を真空に近い状態、約1Torrにして、かつヒータ22によって約1000〜1200℃の温度条件下で、空気極支持管となる多孔質のLSM基体23の外側にはアルゴンAr、酸素O、水蒸気HOの混合酸化ガス24を導入し、内側にはYSZ膜の原料となるイットリウム、ジルコニウムの塩化物YCl,ZrClの蒸気25をキャリアガスであるアルゴン(Ar)ガスに混入して原料蒸気供給管26から供給する構成である。また原料蒸気25の供給系統は、塩化イットリウムYCl、塩化ジルコニウムZrClの原料微粉末をパウダーフィーダ(MPF)31,32に貯溜しておき、マスフローコントローラ(MFC)33,34によって所定の流量でアルゴンキャリアガス35を供給することによってキャリアガス35に原料微粉末を混入しつつ配管36を通じて反応室21の原料蒸気供給管26まで供給し、この原料蒸気供給管26内でヒータ22の加熱によって気化し、原料蒸気25にして反応室21内に供給する構成である。
【0021】
そして外部固定部材(図示せず)に固定されたスライドベース51に係合されたスライダ52によって上下垂直方向にスライド自在にモータ53が支持されており、このモータ53の回転出力軸54に回転ねじ体55が垂直軸の周りに水平に回転するように固定されている。回転ねじ体55の下面側には締付けリング56によってLSM基体23の上端部が固定されている。なお、LSM基体23の上部(固体電解質膜を成膜しない部分)には後述する塩化物排気を排出するための通気口23aが複数箇所に形成されているものとする。
【0022】
一方、上部に雌ねじ部61が形成され、下部に追うOリング62のはめ込まれたスライドガイド63が形成された支持筒体64が反応室21の上端部に固定されている。また支持筒体64には複数の位置に塩化物排気用の通気口65が形成されている。そしてこの支持筒体64の雌ねじ部61に前述の回転ねじ体55が螺合させられている。
【0023】
支持筒体64よりも下方の位置において、反応室21の内部に仕切板71が気密的に取り付けられている。この仕切板71の内周部にはOリング72がはめ込まれ、LSM基体23の外周面に気密的に、かつスライド可能に接触させられている。そしてこの仕切板71の上側の位置において反応室21に塩化物排気用の排気口73が形成され、また仕切板71の下側の位置において反応室21に酸化物排気用の排気口74が形成されている。
【0024】
なお、原料蒸気供給管26はモータ53、回転出力軸54、回転ねじ体55及び締付けリング56の各中心部を貫通するように配管されており、シーリング手段(図示せず)によって気密的にシーリングされていて、これらモータ53、回転出力軸54、回転ねじ体55及び締付けリング56が原料蒸気供給管26に対して気密的に回転、スライドできるようにしてある。
【0025】
次に、上記構成の電気化学蒸着装置による固体電解質成膜の手順について説明する。塩化イットリウムYCl、塩化ジルコニアZrClの原料微粉末をパウダーフィーダ(MPF)31,32に貯留しておき、マスフローコントローラ(MFC)33,34によって所定の流量でアルゴンキャリアガス35を供給することによってキャリアガス35に原料微粉末が混入した原料(例えば、ZrCl:YCl=5:1の重量比に混合)を配管36を通じて原料蒸気供給管26に4〜10g/hr程度の速度で供給し、ヒータ22の加熱によって原料を気化させ、原料蒸気にして反応室21内のLSM基体23の内側に下部から供給する。
【0026】
反応室21内は真空に近い状態、約1Torrにして、かつヒータ22によって約1000〜1200℃の温度条件で、空気極支持管となる多孔質のLSM基体23の外側にはアルゴンAr、酸素O、水蒸気HOの混合酸化ガス24を0.4〜2.0リットル/min の流量で導入し、内側にはYSZ膜の原料となるイットリウム、ジルコニウムの塩化物YCl,ZClの蒸気25をキャリアガスであるアルゴンArに混入して原料蒸気供給管26の下端部から供給する。これによって、図7に示したCVD−EVD作用によって基体23の内側面に固体電解質膜としてYSZ膜28が成膜される。
【0027】
そしてこの原料蒸気25の供給中、モータ53を正逆回転させ、回転出力軸54を介して回転ねじ体55をゆっくりと正逆回転させることによって、反応室21の上部の支持筒体64の雌ねじ部1との螺合により回転ねじ体55を回転させながらモータ53と共に上下移動させ、これに取り付けられている基体23をも回転させながら上下移動させる。基体23の回転速度は0.005〜0.05rpmの微速である。これによって、原料蒸気25の速度、濃度、反応室21内の温度条件などのばらつきや中心軸のオフセットがあってもYSZ膜28が基体23の内側面の各部に均一な膜厚で蒸着される。
【0028】
なお、CVD−EVD法で生まれる塩化物排気41は基体23上部の通気口23a、支持筒体64の通気口65を通じて反応室21内の仕切板71の上側の部屋に集まり、ここから排気口73を通じて外部に排出される。また酸化物排気42は反応室21内の仕切板72の下側に集まり、ここから排気口74を通じて外部に排出される。
【0029】
このようにしてこの第1の実施の形態の電気化学蒸着装置を用いた固体電解質成膜方法では、CVD−EVD法に基体23に固体電解質YSZ膜28を成膜する際に、基体23を反応室21内で回転させながら上下に移動させるので、反応室21内の上下で、また円周方向で原料蒸気25の速度、濃度、温度条件などのばらつきがあっても、YSZ膜28が基体23の内側面の各部に均一な膜厚で蒸着できる。
【0030】
次に、本発明の第2の実施の形態の電気化学蒸着装置を図3に基づいて説明する。第2の実施の形態の電気化学蒸着装置は、原料液貯留部81,82を備え、原料微粉末である塩化イットリウムYClと塩化ジルコニウムZrClそれぞれを希釈剤としてのエタノールによって希釈して混合液にしてここに一時的に貯留する。この原料液貯留部81,82に貯留される原料液はマスフローコントローラ(MFC)83,84それぞれによって一定時間に一定量を排出するように制御する。
【0031】
反応室21の構造と反応室21内の基体23に対する回転、スライド機構の構造は図1、図2に示した第1の実施の形態と同じである。
【0032】
次に、この第2の実施の形態の電気化学蒸着装置を用いた固体電解質成膜の手順について説明する。塩化イットリウムと塩化ジルコニウムとの微粉末それぞれを適当な量のエタノールと混合して原料混合液を作成し、これらを原料液貯留部81,82それぞれに貯留させる。
【0033】
反応室21は真空に近い気圧、約1Torr程度まで減圧し、さらにヒータ22によって1000〜1200℃の温度まで加熱する。そしてアルゴン、水蒸気及び酸素の混合酸化ガス24を0.4〜2.0リットル/min の流量で反応室21内の基体23の外側に供給する。
【0034】
こうした予備工程の後、原料貯留部81,82に貯留されている原料液に対して、マスフローコントローラ83,84によってアルゴンガスを所定流量で供給してこれらの原料液を、例えば、両方の原料液の供給量がその中に含まれる原料粉末の重量に換算して合計で4〜10g/hr程度の流量で供給し、図示していない気化室で加熱して希釈剤を蒸発分解させ、さらに残った塩化イットリウム、塩化ジルコニウムを気化させた後、キャリアガスであるアルゴンガスArと共に原料蒸気供給管26に供給し、この原料蒸気供給管26から原料蒸気25を反応室21内のLSM基体23の内側に下部から供給する。
【0035】
そしてこの原料蒸気25の供給中、モータ53を回転させ、回転出力軸54を介して回転ねじ体55をゆっくりと回転させることによって、回転ねじ体55と共に基体23を回転させながら上下移動させる。
【0036】
この手順を所定時間、例えば5時間継続することにより、第1の実施の形態と同様にCVD−EVD作用によって基体23の内側面に固体電解質膜としてYSZ膜28を成膜することができる。しかも、原料蒸気25の速度、濃度、反応室21内の温度条件などのばらつきがあっても、基体23が回転しながら上下移動するのでYSZ膜28を基体23の内側面の各部に均一な膜厚で蒸着させることができる。
【0037】
【実施例】
<実施例1>
図1及び図2に示した電気化学蒸着装置を用いてYSZ固体電解質の成膜を行った。そのために、空気極支持管をなす基体23のLSM管(外径21mmφ、内径17mmφ、長さ50cm)を反応室21において回転ねじ体55の下部に取り付け、また外径12mmφ、内径9mmφのカーボン製の原料蒸気供給管26を反応室21の中心部に取り付けた。そして、反応室21を1Torr程度まで真空にし、ヒータ22によって1200℃に加熱し、さらに反応室21の基体23の外側にアルゴン/水蒸気/酸素の酸化ガス24を0.5リットル/min の流量で供給した。
【0038】
そしてマスフローコントローラ33,34によって塩化イットリウム、塩化ジルコニウムそれぞれの微粉末を1:5の重量比で、かつ原料粉末重量に換算して両方で5g/hr程度となる流量で気化室(図示せず)に供給して1200℃に加熱して気化させて原料蒸気とし、これをさらに原料蒸気供給管26から反応室21の基体23の内側に供給し、5時間の電気化学蒸着を行い、約50μmのYSZ固体電解質膜28を成膜した。この電気化学蒸着の間、モータ53によって原料蒸気供給管26を0.01rpmでゆっりくと正逆回転させることによって最下位置から最上位置まで上下移動させた。
【0039】
得られた固体電解質膜は緻密で均一な膜厚であった。
【0040】
<実施例2>
図3に示した電気化学蒸着装置を用い、塩化イットリウム、塩化ジルコニウムそれぞれの微粉末をエタノールと重量比で1:1に混合した原料液を1:5の割合で、かつ原料粉末重量に換算して両方で5g/hr程度となる流量で装置に供給し、1200℃に加熱して希釈剤を蒸発分解し、また原料粉末を気化させて原料蒸気にし、これを実施例1と同じく1Torr程度の真空で、1200℃に加熱した反応室21の基体23の内側に原料蒸気供給管26を通じて供給しつつ、電気化学蒸着を行った。基体23の回転速度の設定は実施例1と同じにした。
【0041】
得られたYSZ固体電解質膜28は約50μmであり、緻密で均一な膜厚であった。
【0042】
【発明の効果】
以上のように請求項1の発明の電気化学蒸着装置によれば、蒸着原料粉末を気化させて反応室に導入して蒸着基体の内周面に電気化学蒸着させる際に、蒸着基体を軸周りに回転させ、かつ軸方向に移動させることによって、反応室内の蒸着原料蒸気の流れや酸化ガスの流れが不均一であっても蒸着基体の表面各所に均一な膜厚で蒸着原料蒸気を蒸着させ、膜厚の均一な固体電解質を成膜することができる。
【0043】
請求項2の発明の固体電解質の成膜方法によれば、請求項1の発明の電気化学蒸着装置を用いて蒸着基体の内周面に固体電解質膜を成膜するので、蒸着基体の内周面全体に渡り、均一な膜厚の固体電解質膜を成膜することができる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態の電気化学蒸着装置の断面図。
【図2】上記の実施の形態の電気化学蒸着装置の基体回転・移動機構部分の拡大断面図。
【図3】本発明の第2の実施の形態の電気化学蒸着装置の断面図。
【図4】従来の円筒固体電解質型燃料電池の斜視図。
【図5】他の従来の円筒固体電解質型燃料電池の断面図。
【図6】従来の電気化学蒸着装置の断面図。
【図7】一般的な電気化学蒸着作用の説明図。
【符号の説明】
21 反応室
22 ヒータ
23 基体
24 酸化ガス
25 原料蒸気
26 原料蒸気供給管
28 YSZ膜
31 パウダーフィーダ
32 パウダーフィーダ
33 マスフローコントローラ
34 マスフローコントローラ
51 スライドベース
52 スライダ
53 モータ
54 回転出力軸
55 回転ねじ体
61 雌ねじ部
63 スライドガイド
64 支持筒体
73 排気口
74 排気口
81 原料液貯留部
82 原料液貯留部
83 マスフローコントローラ
84 マスフローコントローラ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electrochemical vapor deposition apparatus and a solid electrolyte film forming method using the same.
[0002]
[Prior art]
Conventionally, a solid oxide fuel cell has a flat plate method and a cylindrical method, and the cylindrical method has a vertical stripe method and a horizontal stripe method. In particular, a cylindrical vertical stripe type solid oxide fuel cell has the structure shown in FIG. This conventional cylindrical vertical stripe type solid electrolyte fuel cell 106 includes an air electrode support tube 101 of porous lanthanum manganite oxide (LaMnOx), a solid electrolyte 102 made of yttria-stabilized zirconia (YSZ), nickel, A cermet fuel electrode 103 made of cobalt, nickel alloy or cobalt alloy and YSZ is laminated, and the interconnector 104 is insulated from the fuel electrode 103 at a part of the outer peripheral surface and connected to the internal air electrode support tube 101. Are arranged in the form of
[0003]
However, in such a conventional vertical-stripe cylindrical solid oxide fuel cell, the materials of each element are all made of ceramics and operate at a high temperature of about 850 to 1050 ° C. There is a problem in that stress is concentrated near the overlapping interconnector 104 and the bottom of the battery and cracks are likely to occur.
[0004]
In order to solve this conventional problem, Japanese Patent Application Laid-Open No. 7-263001 proposes a solid oxide fuel cell 110 having a structure shown in FIG. This proposed conventional solid oxide fuel cell 110 is characterized by a structure in which a conductive tube 111 for fuel supply is inserted in the center. That is, a fuel electrode 112, a solid electrolyte 113, and an air electrode 114 are formed in this order from the inside, and a fuel supply conductive tube 111 having a number of holes for fuel injection is inserted in the center, and this conductive tube 111 is inserted. A conductive felt 115 having a fuel reforming function is filled between the fuel electrode 112 and the fuel electrode 112, a fuel gas 116 is supplied to the conductive tube 111, and air 117 is circulated on the outer periphery.
[0005]
The power generation operation of the solid oxide fuel cell 110 will be described. A fuel gas 116 such as natural gas, methane, or coal gasification gas is supplied into the conductive tube 111 of the battery 110, and the porous tube of the conductive tube 111 is supplied. The conductive felt 115 is ejected through the wall, and the conductive felt 115, the fuel electrode 112, and the solid electrolyte 113 are subjected to the following chemical formula 1 under high temperature conditions, usually 650 ° C. to 1050 ° C. Initiate a reforming reaction.
[0006]
[Chemical 1]
Figure 0003616243
For the hydrogen generated by this reforming reaction, a power generation reaction of the following chemical formula 2 is caused at the portion of the fuel electrode 112 and the air electrode 114 opposite to each other through the solid electrolyte 113, and the released electrons are collected. To get the generated power.
[0007]
[Chemical formula 2]
Figure 0003616243
That is, at the fuel electrode 112, as shown in the chemical formula 2 (a), hydrogen generated by the reforming reaction reacts with oxide ions supplied from the solid electrolyte 113 to generate water vapor and electrons. Then, when the electrons generated at the fuel electrode 112 pass through the conductive felt 115 and the conductive tube 111 to the external circuit from the cathode 118 and reach the air electrode 114 through the anode 119, the air electrode 114 has chemical formula 2 (b As shown in the formula, it reacts with oxygen in the air 117 to generate oxide ions, which are released to the solid electrolyte 113, reach the fuel electrode 112 side, and are subjected to the reaction of formula 2 (a). It is.
[0008]
In the fuel cell 110 of such a power generation mechanism, the air electrode 114, the solid electrolyte 113, and the fuel electrode 112 are formed as follows. First, a thin and dense YSZ film is formed on a lanthanum manganite-based porous substrate to be the air electrode 114 by using an electrochemical deposition method, that is, a CVD (Chemical Vapor Deposition) -EVD (Electrochemical Vapor Deposition) method. Is formed as a solid electrolyte 113, and the YSZ film is further coated with nickel, cobalt, nickel or an alloy containing nickel as a main component, or nickel zirconia cermet powder, and similarly subjected to electrochemical vapor deposition to be porous. The fuel electrode 112 is formed into a film, or is formed by using a spraying method as disclosed in Japanese Patent Laid-Open No. 4-349343.
[0009]
As an electrochemical vapor deposition apparatus for forming a film of the solid electrolyte 113, an apparatus having a structure shown in FIG. 6 is used. In this conventional electrochemical vapor deposition apparatus, the inside of the reaction chamber 21 is in a state close to a vacuum, about 1 Torr, and the heater 22 adds porous strontium serving as an air electrode support tube under a temperature condition of about 1000 to 1200 ° C. A mixed oxidation gas 24 of argon Ar, oxygen O 2 , and water vapor H 2 O is introduced to the outside of the lanthanum manganite (LSM) substrate 23, and yttrium and zirconium chlorides that are raw materials for the YSZ film on the other side. A vapor 25 of YCl 3 and ZrCl 4 is mixed with argon (Ar) gas as a carrier gas and supplied from a raw material vapor supply pipe 26.
[0010]
The raw material vapor 25 supply system stores fine powders of yttrium chloride YCl 3 and zirconium chloride ZrCl 4 in powder feeders (MPF) 31 and 32, and mass flow controllers (MFC) 33 and 34 at a predetermined flow rate. By supplying the argon carrier gas 35, the raw material fine powder is mixed into the carrier gas 35 and supplied to the raw material vapor supply pipe 26 of the reaction chamber 21 through the pipe 36, and the heater 22 is heated in the raw material vapor supply pipe 26 to heat the gas. The raw material vapor 25 is supplied into the reaction chamber 21.
[0011]
By using the electrochemical vapor deposition apparatus having such a structure, as shown in FIG. 7A, the oxidizing gas 24 and the raw material vapor 25 that initially pass through the numerous holes 27 of the base 23 are converted into the chemical formula 3 As shown in FIG. 7B, the YSZ film 28 is generated on the surface of the base 23 and the many holes 27 of the base 23 are gradually closed. This is the CVD stage.
[0012]
[Chemical 3]
Figure 0003616243
When this CVD step is completed, the raw material vapor 25 and the oxidizing gas 24 do not react directly, and oxygen from the oxidizing gas 24 is reduced on the YSZ surface, and the inside of the YSZ film 28 is converted into oxide ions O 2−. Then, the process proceeds to the EVD stage where the reaction shown in the chemical formula 4 is performed with the raw material chloride vapor, and the YSZ film 28 is grown as shown in FIG.
[0013]
[Formula 4]
Figure 0003616243
Thus, after the YSZ film 28 is formed as the solid electrolyte 113 by the electrochemical vapor deposition method, a fuel cell is manufactured by a method in which the fuel electrode 112 is further slurry-coated and then electrochemical vapor deposition or other methods.
[0014]
[Problems to be solved by the invention]
However, such a conventional electrochemical vapor deposition apparatus has the following problems. That is, as shown in FIG. 6, the raw material vapor 25 is discharged into the base 23 from the lower end opening of the raw material vapor supply pipe 26, the oxidizing gas is supplied to the outside of the base 23, and the chloride exhaust generated by the EVD-CVD reaction. 41 and the oxide exhaust 42 are structured to be discharged to the outside through the discharge ports 43 and 44 provided one by one in the upper part of the reaction furnace 21, respectively, so that a speed difference occurs in the gas flow in each part in the reaction furnace 21. There is a problem that this makes the film thickness of the solid electrolyte 28 deposited on the surface of the substrate 23 non-uniform.
[0015]
The present invention has been made in view of such conventional problems, and the thickness of the solid electrolyte can be made uniform by rotating the substrate and moving it in the axial direction during the electrochemical deposition. An object of the present invention is to provide an electrochemical deposition apparatus and a method for forming a solid electrolyte using the same.
[0016]
[Means for Solving the Problems]
According to the first aspect of the present invention, a tubular vapor deposition substrate is housed inside, vaporized vapor deposition raw material vapor is introduced into the vapor deposition substrate through a vapor introduction tube, and an oxidizing gas is introduced outside the vapor deposition substrate. Then, in an electrochemical vapor deposition apparatus comprising a reaction chamber for forming an electrochemical vapor deposition film on the inner peripheral surface of the vapor deposition substrate, rotating means for rotating the vapor deposition substrate around an axis, and the vapor deposition substrate in the axial direction And a moving means for moving.
[0017]
In the electrochemical vapor deposition apparatus of the invention of claim 1, when vapor deposition raw material powder is vaporized at a high temperature, introduced into the reaction chamber and electrochemical vapor deposited on the inner peripheral surface of the vapor deposition substrate, the vapor deposition substrate is rotated about its axis, In addition, by moving in the axial direction, even if the flow of the vapor deposition raw material vapor and the flow of the oxidizing gas in the reaction chamber are non-uniform, the vapor of the raw material is deposited in a uniform film thickness on the surface of the vapor deposition substrate. A solid electrolyte is formed into a film.
[0018]
The invention of claim 2 is a solid electrolyte film forming method using the electrochemical vapor deposition apparatus according to claim 1, wherein each of the yttrium chloride powder and the zirconium chloride powder is derived at a predetermined ratio and a predetermined flow rate. Vaporizing in a high temperature atmosphere to generate a vapor deposition raw material vapor, introducing the vapor deposition raw material vapor into the vapor introducing pipe of the reaction chamber, rotating the vapor deposition substrate around the axis, and moving it in the axial direction An electrochemical deposition film is formed on the peripheral surface.
[0019]
In the solid electrolyte film forming method according to the second aspect of the present invention, since the solid electrolyte film is formed on the inner peripheral surface of the vapor deposition substrate using the electrochemical vapor deposition apparatus according to the first aspect, the entire inner peripheral surface of the vapor deposition substrate is formed. A solid electrolyte membrane with a uniform film thickness can be formed.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. 1 and 2 show an electrochemical vapor deposition apparatus according to one embodiment of the present invention. The electrochemical vapor deposition apparatus according to the first embodiment is similar to the conventional example shown in FIG. 6, and the reaction chamber 21 is in a state close to a vacuum, about 1 Torr, and a temperature of about 1000 to 1200 ° C. by the heater 22. Under the conditions, a mixed oxidizing gas 24 of argon Ar, oxygen O 2 and water vapor H 2 O is introduced to the outside of the porous LSM base 23 serving as the air electrode support tube, and yttrium serving as a raw material for the YSZ film is introduced inside. In this configuration, a vapor 25 of zirconium chlorides YCl 3 and ZrCl 4 is mixed with an argon (Ar) gas as a carrier gas and supplied from a raw material vapor supply pipe 26. In addition, the raw material vapor 25 is supplied by storing fine powders of yttrium chloride YCl 3 and zirconium chloride ZrCl 4 in powder feeders (MPF) 31 and 32, and mass flow controllers (MFC) 33 and 34 at a predetermined flow rate. By supplying the argon carrier gas 35, the raw material fine powder is mixed into the carrier gas 35 and supplied to the raw material vapor supply pipe 26 of the reaction chamber 21 through the pipe 36, and the heater 22 is heated in the raw material vapor supply pipe 26 to heat the gas. The raw material vapor 25 is supplied into the reaction chamber 21.
[0021]
A motor 53 is slidably supported in the vertical direction by a slider 52 engaged with a slide base 51 fixed to an external fixing member (not shown). The body 55 is fixed to rotate horizontally around the vertical axis. An upper end portion of the LSM base 23 is fixed to the lower surface side of the rotating screw body 55 by a fastening ring 56. It is assumed that vent holes 23a for discharging chloride exhaust described later are formed at a plurality of locations in the upper portion of the LSM substrate 23 (the portion where the solid electrolyte membrane is not formed).
[0022]
On the other hand, a support cylinder 64 in which a female thread 61 is formed in the upper part and a slide guide 63 in which an O-ring 62 that follows the lower part is fitted is fixed to the upper end of the reaction chamber 21. The support cylinder 64 is formed with chloride exhaust vents 65 at a plurality of positions. The aforementioned rotating screw body 55 is screwed into the female thread portion 61 of the support cylinder 64.
[0023]
A partition plate 71 is airtightly attached to the inside of the reaction chamber 21 at a position below the support cylinder 64. An O-ring 72 is fitted into the inner peripheral portion of the partition plate 71 and is brought into airtight and slidable contact with the outer peripheral surface of the LSM base 23. An exhaust port 73 for exhausting chloride is formed in the reaction chamber 21 at a position above the partition plate 71, and an exhaust port 74 for exhausting oxide is formed in the reaction chamber 21 at a position below the partition plate 71. Has been.
[0024]
The raw material vapor supply pipe 26 is piped through the central portions of the motor 53, the rotary output shaft 54, the rotary screw body 55, and the tightening ring 56, and is hermetically sealed by a sealing means (not shown). The motor 53, the rotation output shaft 54, the rotating screw body 55 and the tightening ring 56 can be rotated and slid in an airtight manner with respect to the raw material vapor supply pipe 26.
[0025]
Next, a procedure for forming a solid electrolyte film by the electrochemical vapor deposition apparatus having the above configuration will be described. By storing raw material fine powders of yttrium chloride YCl 3 and zirconia chloride ZrCl 4 in powder feeders (MPF) 31 and 32 and supplying an argon carrier gas 35 at a predetermined flow rate by mass flow controllers (MFC) 33 and 34 A raw material (for example, mixed in a weight ratio of ZrCl 4 : YCl 3 = 5: 1) mixed with the raw material fine powder in the carrier gas 35 is supplied to the raw material vapor supply pipe 26 through the pipe 36 at a speed of about 4 to 10 g / hr. The raw material is vaporized by the heating of the heater 22 and supplied as raw material vapor to the inside of the LSM substrate 23 in the reaction chamber 21 from below.
[0026]
The inside of the reaction chamber 21 is in a state close to a vacuum, about 1 Torr, and a temperature condition of about 1000 to 1200 ° C. by the heater 22, and the outside of the porous LSM substrate 23 serving as an air electrode support tube is argon Ar, oxygen O 2 , a mixed oxidizing gas 24 of water vapor H 2 O is introduced at a flow rate of 0.4 to 2.0 liters / min. Inside, vapors of yttrium and zirconium chlorides YCl 3 and ZCl 4 which are raw materials for the YSZ film 25 is mixed with argon Ar as a carrier gas and supplied from the lower end of the raw material vapor supply pipe 26. As a result, the YSZ film 28 is formed as a solid electrolyte film on the inner surface of the substrate 23 by the CVD-EVD action shown in FIG.
[0027]
During the supply of the raw material vapor 25, the motor 53 is rotated in the forward and reverse directions, and the rotating screw body 55 is slowly rotated in the forward and reverse directions via the rotation output shaft 54, whereby the internal thread of the support cylinder 64 in the upper part of the reaction chamber 21 is obtained. The rotary screw body 55 is rotated up and down together with the motor 53 by being screwed with the part 1, and the base member 23 attached thereto is also moved up and down while rotating. The rotation speed of the substrate 23 is a fine speed of 0.005 to 0.05 rpm. As a result, the YSZ film 28 is deposited with a uniform film thickness on each part of the inner surface of the substrate 23 even when there are variations in the speed, concentration, temperature conditions in the reaction chamber 21, and offset of the central axis. .
[0028]
The chloride exhaust 41 produced by the CVD-EVD method gathers in a room above the partition plate 71 in the reaction chamber 21 through the vent 23 a on the base 23 and the vent 65 of the support cylinder 64, and from here the exhaust 73 It is discharged to the outside through. The oxide exhaust 42 gathers below the partition plate 72 in the reaction chamber 21, and is exhausted to the outside through the exhaust port 74.
[0029]
In this way, in the solid electrolyte film forming method using the electrochemical vapor deposition apparatus of the first embodiment, the substrate 23 is reacted when the solid electrolyte YSZ film 28 is formed on the substrate 23 by the CVD-EVD method. Since it is moved up and down while rotating in the chamber 21, the YSZ film 28 is formed on the substrate 23 even if there are variations in the speed, concentration, temperature conditions, etc. of the raw material vapor 25 in the upper and lower directions in the reaction chamber 21 and in the circumferential direction. It can deposit with a uniform film thickness on each part of the inner surface.
[0030]
Next, the electrochemical vapor deposition apparatus of the 2nd Embodiment of this invention is demonstrated based on FIG. The electrochemical vapor deposition apparatus according to the second embodiment includes raw material liquid storage units 81 and 82, and each of the raw material fine powders yttrium chloride YCl 3 and zirconium chloride ZrCl 4 is diluted with ethanol as a diluent to be a mixed liquid. And temporarily store here. The raw material liquids stored in the raw material liquid storage units 81 and 82 are controlled to be discharged at a constant time by mass flow controllers (MFCs) 83 and 84, respectively.
[0031]
The structure of the reaction chamber 21 and the structure of the rotation and slide mechanism with respect to the base 23 in the reaction chamber 21 are the same as those of the first embodiment shown in FIGS.
[0032]
Next, a solid electrolyte film forming procedure using the electrochemical vapor deposition apparatus of the second embodiment will be described. Each fine powder of yttrium chloride and zirconium chloride is mixed with an appropriate amount of ethanol to prepare a raw material mixture, and these are stored in the raw material liquid storage portions 81 and 82, respectively.
[0033]
The reaction chamber 21 is depressurized to a pressure close to vacuum, about 1 Torr, and further heated to a temperature of 1000 to 1200 ° C. by the heater 22. Then, a mixed oxidizing gas 24 of argon, water vapor and oxygen is supplied to the outside of the substrate 23 in the reaction chamber 21 at a flow rate of 0.4 to 2.0 liter / min.
[0034]
After such a preliminary process, argon gas is supplied at a predetermined flow rate by the mass flow controllers 83 and 84 to the raw material liquid stored in the raw material storage portions 81 and 82, and these raw material liquids are supplied to, for example, both raw material liquids. Is supplied at a flow rate of about 4 to 10 g / hr in total in terms of the weight of the raw material powder contained therein, and is heated in a vaporization chamber (not shown) to evaporate and decompose the diluent. After yttrium chloride and zirconium chloride are vaporized, the raw material vapor supply pipe 26 is supplied together with the argon gas Ar serving as a carrier gas, and the raw material vapor 25 is supplied from the raw material vapor supply pipe 26 to the inside of the LSM substrate 23 in the reaction chamber 21. Supply from the bottom.
[0035]
During the supply of the raw material vapor 25, the motor 53 is rotated, and the rotating screw body 55 is slowly rotated via the rotation output shaft 54, so that the base 23 is moved up and down together with the rotating screw body 55.
[0036]
By continuing this procedure for a predetermined time, for example, 5 hours, the YSZ film 28 can be formed as a solid electrolyte film on the inner surface of the substrate 23 by the CVD-EVD action as in the first embodiment. Moreover, even if there are variations in the speed and concentration of the raw material vapor 25 and the temperature conditions in the reaction chamber 21, the base 23 moves up and down while rotating, so the YSZ film 28 is a uniform film on each part of the inner surface of the base 23. It can be deposited in thickness.
[0037]
【Example】
<Example 1>
A YSZ solid electrolyte was formed using the electrochemical vapor deposition apparatus shown in FIGS. For this purpose, the LSM tube (outer diameter 21 mmφ, inner diameter 17 mmφ, length 50 cm) of the base 23 forming the air electrode support tube is attached to the lower part of the rotating screw body 55 in the reaction chamber 21, and is made of carbon having an outer diameter of 12 mmφ and an inner diameter of 9 mmφ. The raw material vapor supply pipe 26 was attached to the center of the reaction chamber 21. Then, the reaction chamber 21 is evacuated to about 1 Torr, heated to 1200 ° C. by the heater 22, and an argon / water vapor / oxygen oxidizing gas 24 is flown outside the base 23 of the reaction chamber 21 at a flow rate of 0.5 liter / min. Supplied.
[0038]
The mass flow controllers 33 and 34 vaporize the yttrium chloride and zirconium chloride fine powders at a weight ratio of 1: 5 and at a flow rate of about 5 g / hr in terms of both raw material powder weights (not shown). Is heated to 1200 ° C. and vaporized to form raw material vapor, which is further supplied from the raw material vapor supply pipe 26 to the inside of the substrate 23 of the reaction chamber 21 and subjected to electrochemical vapor deposition for 5 hours. A YSZ solid electrolyte membrane 28 was formed. During this electrochemical vapor deposition, the raw material vapor supply pipe 26 was moved up and down from the lowest position to the highest position by slowly rotating the raw material vapor supply pipe 26 at 0.01 rpm.
[0039]
The obtained solid electrolyte membrane was dense and uniform.
[0040]
<Example 2>
Using the electrochemical vapor deposition apparatus shown in FIG. 3, a raw material liquid in which fine powders of yttrium chloride and zirconium chloride were mixed with ethanol in a weight ratio of 1: 1 was converted to the weight of the raw material powder at a ratio of 1: 5. Then, both are supplied to the apparatus at a flow rate of about 5 g / hr, heated to 1200 ° C. to evaporate and decompose the diluent, and the raw material powder is vaporized into raw material vapor, which is about 1 Torr as in Example 1. While being supplied through the raw material vapor supply pipe 26 to the inside of the base 23 of the reaction chamber 21 heated to 1200 ° C. in vacuum, electrochemical deposition was performed. The setting of the rotation speed of the substrate 23 was the same as that in Example 1.
[0041]
The obtained YSZ solid electrolyte membrane 28 was about 50 μm, and had a dense and uniform thickness.
[0042]
【The invention's effect】
As described above, according to the electrochemical vapor deposition apparatus of the first aspect of the present invention, when the vapor deposition raw material powder is vaporized and introduced into the reaction chamber for electrochemical vapor deposition on the inner peripheral surface of the vapor deposition base, the vapor deposition base is rotated around the axis. By rotating and rotating in the axial direction, vapor deposition raw material vapor is deposited with a uniform film thickness on the surface of the vapor deposition substrate even if the flow of vapor deposition raw material vapor and the flow of oxidizing gas in the reaction chamber are not uniform. A solid electrolyte having a uniform film thickness can be formed.
[0043]
According to the solid electrolyte film forming method of the second aspect of the invention, the solid electrolyte film is formed on the inner peripheral surface of the vapor deposition substrate using the electrochemical vapor deposition apparatus of the first aspect of the invention. A solid electrolyte membrane having a uniform film thickness can be formed over the entire surface.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of an electrochemical vapor deposition apparatus according to a first embodiment of the present invention.
FIG. 2 is an enlarged cross-sectional view of a substrate rotation / movement mechanism portion of the electrochemical vapor deposition apparatus according to the above embodiment.
FIG. 3 is a cross-sectional view of an electrochemical vapor deposition apparatus according to a second embodiment of the present invention.
FIG. 4 is a perspective view of a conventional cylindrical solid oxide fuel cell.
FIG. 5 is a cross-sectional view of another conventional cylindrical solid oxide fuel cell.
FIG. 6 is a cross-sectional view of a conventional electrochemical vapor deposition apparatus.
FIG. 7 is an explanatory view of a general electrochemical vapor deposition action.
[Explanation of symbols]
21 Reaction chamber 22 Heater 23 Substrate 24 Oxidizing gas 25 Raw material vapor 26 Raw material vapor supply pipe 28 YSZ film 31 Powder feeder 32 Powder feeder 33 Mass flow controller 34 Mass flow controller 51 Slide base 52 Slider 53 Motor 54 Rotation output shaft 55 Rotating screw body 61 Female screw Unit 63 slide guide 64 support cylinder 73 exhaust port 74 exhaust port 81 raw material liquid storage unit 82 raw material liquid storage unit 83 mass flow controller 84 mass flow controller

Claims (2)

円管状の蒸着基体を内部に収容し、かつ気化された蒸着原料蒸気を蒸気導入管を通じて前記蒸着基体の内部に導入し、かつ前記蒸着基体の外部に酸化ガスを導入して、前記蒸着基体の内周面に電気化学蒸着膜を形成する反応室を備えて成る電気化学蒸着装置において、
前記蒸着基体を軸周りに回転させる回転手段と、前記蒸着基体を軸方向に移動させる移動手段とを備えたことを特徴とする電気化学蒸着装置。
A cylindrical vapor deposition substrate is housed inside, vaporized vapor deposition raw material vapor is introduced into the vapor deposition substrate through a vapor introduction tube, and an oxidizing gas is introduced outside the vapor deposition substrate, so that the vapor deposition substrate In an electrochemical vapor deposition apparatus comprising a reaction chamber for forming an electrochemical vapor deposition film on the inner peripheral surface,
An electrochemical deposition apparatus comprising: a rotating unit that rotates the deposition substrate about an axis; and a moving unit that moves the deposition substrate in the axial direction.
塩化イットリウム粉末、塩化ジルコニウム粉末それぞれを所定の割合、所定の流量で導出し、高温雰囲気で気化させて蒸着原料蒸気を生成し、
この蒸着原料蒸気を前記反応室の前記蒸気導入管に導入して前記蒸着基体を軸周りに回転させ、かつ軸方向に移動させながらその内周面に電気化学蒸着膜を形成することを特徴とする請求項1に記載の電気化学蒸着装置を用いた固体電解質の成膜方法。
Deriving each of yttrium chloride powder and zirconium chloride powder at a predetermined ratio and a predetermined flow rate, and vaporizing in a high temperature atmosphere to generate a vapor deposition raw material vapor,
The vapor deposition raw material vapor is introduced into the vapor introduction pipe of the reaction chamber, the vapor deposition substrate is rotated around an axis, and an electrochemical vapor deposition film is formed on the inner peripheral surface while moving in the axial direction. A solid electrolyte film forming method using the electrochemical vapor deposition apparatus according to claim 1.
JP03169198A 1998-02-13 1998-02-13 Electrochemical vapor deposition apparatus and solid electrolyte film forming method using the same Expired - Fee Related JP3616243B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03169198A JP3616243B2 (en) 1998-02-13 1998-02-13 Electrochemical vapor deposition apparatus and solid electrolyte film forming method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03169198A JP3616243B2 (en) 1998-02-13 1998-02-13 Electrochemical vapor deposition apparatus and solid electrolyte film forming method using the same

Publications (2)

Publication Number Publication Date
JPH11229142A JPH11229142A (en) 1999-08-24
JP3616243B2 true JP3616243B2 (en) 2005-02-02

Family

ID=12338108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03169198A Expired - Fee Related JP3616243B2 (en) 1998-02-13 1998-02-13 Electrochemical vapor deposition apparatus and solid electrolyte film forming method using the same

Country Status (1)

Country Link
JP (1) JP3616243B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW460756B (en) 1998-11-02 2001-10-21 Advantest Corp Electrostatic deflector for electron beam exposure apparatus
US7371467B2 (en) 2002-01-08 2008-05-13 Applied Materials, Inc. Process chamber component having electroplated yttrium containing coating
CN115449775B (en) * 2022-08-25 2024-06-25 武汉理工大学 Corrosion-resistant special air pipe with silicon carbide coating coated on inner wall and preparation method thereof

Also Published As

Publication number Publication date
JPH11229142A (en) 1999-08-24

Similar Documents

Publication Publication Date Title
US5085742A (en) Solid oxide electrochemical cell fabrication process
JPH05135787A (en) Manufacture of solid electrolyte film and manufacture of solid electrolyte fuel cell
US20120328971A1 (en) Solid electrolyte membrane, fuel battery cell, and fuel battery
US5391440A (en) Method of forming a leak proof plasma sprayed interconnection layer on an electrode of an electrochemical cell
EP0454925A1 (en) Method of bonding an interconnection layer on an electrode
US20030224232A1 (en) Method for manufacturing fuel cells, and articles made therewith
JP3616243B2 (en) Electrochemical vapor deposition apparatus and solid electrolyte film forming method using the same
US5989634A (en) Process of manufacturing solid oxygen ion conducting oxide layers
JP3423874B2 (en) Solid electrolyte film formation method
Sasaki et al. Reaction mechanism of electrochemical‐vapor deposition of yttria‐stabilized zirconia film
JPH0696791A (en) Solid electrolytic fuel cell and its manufacture
JPH1112737A (en) Electrochemical vapor deposition device, and solid electrolyte film forming method using it
JPH08293310A (en) Manufacture of solid electrolytic film
JPH11323557A (en) Raw material vaporizer for electrochemical vapor-deposition, electrochemical vapor deposition device and solid electrolytic film forming method using the device
JPH0718451A (en) Method and device for forming oxide film on porous substrate
JP3758818B2 (en) Method for depositing solid electrolyte, method for depositing fuel electrode, and method for depositing solid electrolyte and fuel electrode
JPH10312816A (en) Equipment for electrochemical vapor deposition and method for making solid electrolyte film of solid electrolyte type fuel cell
Cassir et al. ALD‐Processed Oxides for High‐Temperature Fuel Cells
JPH04324251A (en) Manufacture of interconnector for solid electrolyte fuel cell
JP3152803B2 (en) Method for manufacturing solid oxide fuel cell
JPH07316819A (en) Production of metal oxide film
JP3131077B2 (en) Manufacturing method of metal oxide film
JP2000182634A (en) Film forming method for solid electrolyte
JP3795172B2 (en) Method for forming a fuel electrode in a solid oxide fuel cell
JPH0673546A (en) Electrochemical vapor depositing device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041026

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041104

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101112

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees