JPH0721843A - Bending-resistant cable - Google Patents

Bending-resistant cable

Info

Publication number
JPH0721843A
JPH0721843A JP16060693A JP16060693A JPH0721843A JP H0721843 A JPH0721843 A JP H0721843A JP 16060693 A JP16060693 A JP 16060693A JP 16060693 A JP16060693 A JP 16060693A JP H0721843 A JPH0721843 A JP H0721843A
Authority
JP
Japan
Prior art keywords
cable
bending
pure copper
copper wire
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16060693A
Other languages
Japanese (ja)
Other versions
JP3173226B2 (en
Inventor
Masayoshi Aoyama
正義 青山
Takao Ichikawa
貴朗 市川
Koichi Tamura
幸一 田村
Shiro Sakata
史朗 坂田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP16060693A priority Critical patent/JP3173226B2/en
Publication of JPH0721843A publication Critical patent/JPH0721843A/en
Application granted granted Critical
Publication of JP3173226B2 publication Critical patent/JP3173226B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Insulated Conductors (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

PURPOSE:To provide an economical bending-resistant cable by using pure copper wire for which crystal particle size is adjusted merely by annealing. CONSTITUTION:The crystal particle size of a pure copper wire is adjusted to be 8mum or smaller by annealing and a cable 3 is manufacture by twisting pure copper wires adjusted in this way and coated with an insulating coating. For the pure copper wire, copper with little oxide particles of Cu2O such as oxygen-free copper (OFC) is preferable. When the wire diameter of the pure copper wire becomes as thin as phi0.1mm, the size of the crystalline particles of the pure copper wire affects on the mechanical properties and in the case the crystal particle size is made to be 8mum or small, the bending resistant is greatly improved. That is proved by bending life evaluation of the cable 3 by setting the cable 3 between the upper and the lower clamps 1, 2 of a bending test apparatus.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ロボット用ケーブルや
車輌用ケーブルに好適な耐屈曲性ケーブルに関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bending resistant cable suitable for robot cables and vehicle cables.

【0002】[0002]

【従来の技術】近年、ロボット用ケーブルや車輌用ケー
ブルなどにおいては、細径化の要請が強く、細径化して
も繰返し曲げや振動などに十分に耐えられる、耐屈曲性
ケーブルが要求されている。
2. Description of the Related Art In recent years, there has been a strong demand for smaller diameters for cables for robots and cables for vehicles, and there has been a demand for flex-resistant cables that can sufficiently withstand repeated bending and vibration even if the diameter is reduced. There is.

【0003】そこで、従来、ケーブルの耐屈曲性を向上
させるために耐屈曲性ケーブル用導体として、Cu−F
e−P系の析出型高力合金が報告されている(藤尾他9
名:タツタ電線技報、平成4年7月、P1)。
Therefore, conventionally, Cu-F has been used as a flexible cable conductor in order to improve the flexible cable.
An eP precipitation-type high-strength alloy has been reported (Fujio et al. 9
Name: Tatsuta Electric Wire Technical Report, July 1992, P1).

【0004】また、通常の純銅を導体として用いた場
合、より線構造に対して密に導体を横巻きすることで、
屈曲特性を向上させた横巻き構造の横巻き導体が知られ
ている。
When ordinary pure copper is used as a conductor, the conductor is densely wound around the stranded wire structure,
A horizontally wound conductor having a horizontally wound structure with improved bending characteristics is known.

【0005】[0005]

【発明が解決しようとする課題】ケーブルの耐屈曲性の
向上に、上記のCu−Fe−P系の析出型高力合金のよ
うな特殊な銅合金を用いれば、確かにケーブルの耐屈曲
疲労強度は増加するが、製造コストが高く経済性に問題
がある。また、横巻構造の純銅線を用いたケーブルで
は、横巻きにするための複雑な工程を必要とし、ケーブ
ルコストが高くなってしまう。
If a special copper alloy such as the above-mentioned Cu--Fe--P type precipitation-type high strength alloy is used to improve the flex resistance of the cable, the flex fatigue resistance of the cable is surely achieved. Although the strength is increased, the manufacturing cost is high and there is a problem in economic efficiency. Further, a cable using a pure copper wire having a horizontal winding structure requires a complicated process for horizontal winding, resulting in an increase in cable cost.

【0006】このことから、純銅線を用い、しかも横巻
構造など複雑な構造としなくても耐屈曲特性に優れたケ
ーブルの出現が望まれる。
From this, it is desired to develop a cable having excellent bending resistance without using a pure copper wire and having a complicated structure such as a horizontal winding structure.

【0007】本発明の目的は、前記した従来技術の欠点
を解消し、純銅にて屈曲特性を向上させることができる
安価な耐屈曲性ケーブルを提供することにある。
An object of the present invention is to solve the above-mentioned drawbacks of the prior art and to provide an inexpensive bending resistant cable which can improve bending characteristics with pure copper.

【0008】[0008]

【課題を解決するための手段】本発明に係る耐屈曲性ケ
ーブルは、焼なましにより結晶粒径を8μm以下に調整
した純銅線を用いたものである。この耐屈曲性ケーブル
は、その特性上、ロボット用または車輌用に用いること
が好ましい。
The flex resistant cable according to the present invention uses a pure copper wire whose grain size is adjusted to 8 μm or less by annealing. Due to its characteristics, this flex-resistant cable is preferably used for robots or vehicles.

【0009】この結晶粒径8μm以下の純銅線に絶縁体
を被覆し、これらをより合わせてケーブルとする。ある
いは、純銅線をより線した後、絶縁体を被覆してより合
わせケーブルを作製する。また、より線構造ではなく、
上記純銅線を密に横巻きとした横巻き構造導体のケーブ
ルとしてもよい。
A pure copper wire having a crystal grain size of 8 μm or less is coated with an insulator and twisted together to form a cable. Alternatively, a pure copper wire is twisted and then covered with an insulator to form a twisted cable. Also, rather than a stranded structure,
A cable having a horizontally-wound structure conductor in which the pure copper wire is tightly horizontally wound may be used.

【0010】また、純銅線の材質としては、タフピッチ
銅、無酸素銅(OFC)いずれでも屈曲寿命が改善され
るが、酸化物粒子(Cu2 O)が一種の欠陥の役目をす
るので、OFCを用いたほうが望ましい。しかし、OF
Cでなくても、100ppm以下のO2 を含む銅線(タ
フピッチ銅では約350wtppmO2 )でも屈曲寿命
の改善効果は大である。
As for the material of the pure copper wire, the tough pitch copper and the oxygen-free copper (OFC) can improve the bending life, but since the oxide particles (Cu 2 O) play a role of a kind of defect, the OFC It is preferable to use. But OF
Not be a C, (in the tough pitch copper about 350wtppmO 2) copper wire, including the following O 2 100 ppm improving effect even bending life is great.

【0011】[0011]

【作用】ケーブル導体の素線となる純銅線の線径が0.
1mm程度となると、純銅の結晶粒径の大きさが機械的
特性に大きな影響を与えることを知見し、結晶粒系を8
μm以下に調整することによって、優れた耐屈曲特性の
ケーブルが得られることがわかった。これに対し、結晶
粒径が8μm以上の純銅線の場合には、耐屈曲特性の向
上が少なく、結晶粒径のばらつきも大きく機械的特定の
安定性も劣る。
[Function] The diameter of the pure copper wire, which is the strand of the cable conductor, is 0.
It was found that the size of the crystal grain size of pure copper greatly affects the mechanical properties when it becomes about 1 mm.
It was found that a cable having excellent bending resistance can be obtained by adjusting the thickness to less than or equal to μm. On the other hand, in the case of a pure copper wire having a crystal grain size of 8 μm or more, the bending resistance is not improved so much, the crystal grain size varies greatly, and the mechanical specific stability is poor.

【0012】[0012]

【実施例】以下に本発明の実施例について述べる。EXAMPLES Examples of the present invention will be described below.

【0013】まず、無酸素銅(OFC)よりなるφ0.
12mmの純銅線を用い、この純銅線を焼鈍して結晶粒
径を調整し、下記の表1に示すように、結晶粒径が2μ
m以下の素線(実施例1)、2〜4μmの素線(実施例
2)、4〜6μmの素線(実施例3)、5〜8μmの素
線(実施例4)を作製した。なお、表1の比較例は結晶
粒径が40μm以下で30μm程度の結晶粒径が多く存
在する通常の純銅線である。次に、上記の素線(純銅
線)112本をより線した後、絶縁体を被覆してより合
わせたロボット用のケーブルを作製した。
First, φ 0. made of oxygen-free copper (OFC).
Using a pure copper wire of 12 mm, the pure copper wire was annealed to adjust the crystal grain size, and as shown in Table 1 below, the crystal grain size was 2 μm.
m or less strands (Example 1), 2 to 4 μm strands (Example 2), 4 to 6 μm strands (Example 3), and 5 to 8 μm strands (Example 4) were produced. The comparative example in Table 1 is an ordinary pure copper wire having a crystal grain size of 40 μm or less and a large crystal grain size of about 30 μm. Next, after 112 wires of the above-mentioned strands (pure copper wires) were twisted, a cable for a robot was produced by covering the wires with an insulator and twisting them together.

【0014】このようにして作製したケーブルの屈曲寿
命を図1の屈曲試験装置で評価した。この試験は、法令
上、耐震試験と呼ばれるものに準じたもので、試験方法
は次のとおりである。試料として、適当な長さのケーブ
ル3をとり、このケーブル3をU字形に曲げ、ケーブル
3の両端を図1の屈曲試験装置の上部クランプ1で固定
すると共に、ケーブル3の下端部側に下部クランプ1を
取り付ける。上部クランプ1と下部クランプ2との間に
は、屈曲案内支持具4がケーブル3を挟むように設置さ
れる。屈曲案内支持具4のケーブル3に対向する面の曲
率半径rは3mm、上下方向の厚さdは約6mmであ
り、下部クランプ2と屈曲案内支持具4との距離hは約
30mmである(図1(A))。試験は、下部クランプ
2を屈曲案内支持具4を支点として左右にそれぞれ45
°振動させて屈曲させる操作を毎分約200回の速さで
連続して行う。各ケーブルの屈曲寿命の結果は表1に示
す通りである。
The bending life of the cable thus manufactured was evaluated by the bending test apparatus shown in FIG. This test conforms to what is legally called a seismic test, and the test method is as follows. As a sample, take a cable 3 of an appropriate length, bend the cable 3 into a U shape, fix both ends of the cable 3 with the upper clamp 1 of the bending test apparatus of FIG. 1, and lower the cable 3 to the lower end side. Install the clamp 1. Between the upper clamp 1 and the lower clamp 2, a bending guide support 4 is installed so as to sandwich the cable 3. The curvature radius r of the surface of the bending guide support 4 facing the cable 3 is 3 mm, the vertical thickness d is about 6 mm, and the distance h between the lower clamp 2 and the bending guide support 4 is about 30 mm ( FIG. 1A). In the test, the lower clamp 2 is bent to the left and right with the bending guide support 4 as a fulcrum.
° The operation of vibrating and bending is continuously performed at a speed of about 200 times per minute. The results of the flex life of each cable are shown in Table 1.

【0015】[0015]

【表1】 [Table 1]

【0016】表1に見られるように、結晶粒径40μm
以下で30μm程度の結晶粒径が多い通常銅線を用いた
比較例のケーブルに対し、結晶粒径8μm以下の実施例
1〜4のケーブルでは、いずれも屈曲寿命が約2倍に伸
び、顕著な屈曲寿命の改善効果が認められる。
As can be seen in Table 1, the crystal grain size is 40 μm.
In the cables of Examples 1 to 4 having a crystal grain size of 8 μm or less, the bending life is extended to about twice as long as that of the cable of the comparative example using the normal copper wire having a large crystal grain size of about 30 μm. The effect of improving the flex life is recognized.

【0017】[0017]

【発明の効果】以上の説明から明らかなように、本発明
によれば次のような効果を発揮する。 (1)屈曲特性向上に、高価な合金線を用いずに、焼な
ましにより結晶粒径を調整しただけの純銅線を用いるの
で、経済性に優れている。
As is apparent from the above description, the present invention has the following effects. (1) In order to improve the bending property, since an expensive alloy wire is not used and a pure copper wire whose crystal grain size is simply adjusted by annealing is used, it is excellent in economic efficiency.

【0018】(2)結晶粒径を8μm以下としたので、
結晶粒径がほぼ均一な純銅線で構成されたケーブルが得
られ、耐力強度などの機械的特性が安定している。
(2) Since the crystal grain size is 8 μm or less,
A cable composed of pure copper wire having a substantially uniform crystal grain size is obtained, and mechanical properties such as proof strength are stable.

【0019】(3)屈曲特性改善のために複雑な工程で
ある横巻きをあえて行う必要はなく、より線構造のまま
でも従来品の2倍程度に屈曲寿命を伸ばせる。この場
合、従来の通常のケーブルと比較してもケーブルコスト
の上昇はほとんどなく、経済性のよい高性能の耐屈曲性
ケーブルを提供できる。
(3) It is not necessary to intentionally perform horizontal winding, which is a complicated process for improving the bending characteristics, and the bending life can be extended to about twice that of the conventional product even with the stranded wire structure. In this case, there is almost no increase in cable cost as compared with the conventional ordinary cable, and it is possible to provide a high-performance flex-resistant cable with good economical efficiency.

【0020】(4)特に、細径化の要請が強いロボット
用ケーブルや車輌用ケーブルに用いても、繰返し曲げや
振動などに十分に耐えることができる。
(4) In particular, even when it is used as a cable for a robot or a cable for a vehicle, which is strongly required to have a small diameter, it can sufficiently withstand repeated bending and vibration.

【図面の簡単な説明】[Brief description of drawings]

【図1】ケーブルの屈曲試験装置の概略を示すもので、
同図(A)は側断面図、同図(B)は正面図である。
FIG. 1 shows an outline of a cable bending test apparatus.
The figure (A) is a side sectional view and the figure (B) is a front view.

【符号の説明】[Explanation of symbols]

1 上部クランプ 2 下部クランプ 3 ケーブル 4 屈曲案内支持具 d 厚さ r 曲率半径 h 距離 1 Upper clamp 2 Lower clamp 3 Cable 4 Bending guide support d Thickness r Curvature radius h Distance

フロントページの続き (72)発明者 坂田 史朗 茨城県日立市日高町5丁目1番1号 日立 電線株式会社日高工場内Front Page Continuation (72) Inventor Shiro Sakata 5-1-1 Hidaka-cho, Hitachi-shi, Ibaraki Hitachi Cable Co., Ltd. Hidaka Plant

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】焼なましにより結晶粒径を8μm以下とし
た純銅線を用いたことを特徴とする耐屈曲性ケーブル。
1. A flex-resistant cable characterized by using a pure copper wire having a crystal grain size of 8 μm or less by annealing.
【請求項2】上記耐屈曲性ケーブルをロボット用または
車輌用に用いたことを特徴とする耐屈曲性ケーブル。
2. A bend-resistant cable, characterized in that the bend-resistant cable is used for a robot or a vehicle.
JP16060693A 1993-06-30 1993-06-30 Flexible cable Expired - Fee Related JP3173226B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16060693A JP3173226B2 (en) 1993-06-30 1993-06-30 Flexible cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16060693A JP3173226B2 (en) 1993-06-30 1993-06-30 Flexible cable

Publications (2)

Publication Number Publication Date
JPH0721843A true JPH0721843A (en) 1995-01-24
JP3173226B2 JP3173226B2 (en) 2001-06-04

Family

ID=15718582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16060693A Expired - Fee Related JP3173226B2 (en) 1993-06-30 1993-06-30 Flexible cable

Country Status (1)

Country Link
JP (1) JP3173226B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5920163A (en) * 1996-05-31 1999-07-06 Sharp Kabushiki Kaisha Phase detecting circuit of brushless motor and magnetic recording and reproducing apparatus using the same
US6077364A (en) * 1997-06-30 2000-06-20 Phelps Dodge Industries, Inc. Copper trolley wire and a method of manufacturing copper trolley wire
WO2013146762A1 (en) * 2012-03-29 2013-10-03 大電株式会社 Microcrystal metal conductor and method for manufacturing same
JP2017162585A (en) * 2016-03-08 2017-09-14 古河電気工業株式会社 Electric cable connection structure

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5920163A (en) * 1996-05-31 1999-07-06 Sharp Kabushiki Kaisha Phase detecting circuit of brushless motor and magnetic recording and reproducing apparatus using the same
US6077364A (en) * 1997-06-30 2000-06-20 Phelps Dodge Industries, Inc. Copper trolley wire and a method of manufacturing copper trolley wire
WO2013146762A1 (en) * 2012-03-29 2013-10-03 大電株式会社 Microcrystal metal conductor and method for manufacturing same
JPWO2013146762A1 (en) * 2012-03-29 2015-12-14 大電株式会社 Microcrystalline metal conductor and method for producing the same
JP2017162585A (en) * 2016-03-08 2017-09-14 古河電気工業株式会社 Electric cable connection structure

Also Published As

Publication number Publication date
JP3173226B2 (en) 2001-06-04

Similar Documents

Publication Publication Date Title
JP4728603B2 (en) Aluminum conductive wire for automobile wiring and electric wire for automobile wiring
JP2003303515A (en) Composite stranded conductor for carrying electricity
JP4288844B2 (en) Extra fine copper alloy wire
JPH0721843A (en) Bending-resistant cable
JPS62262315A (en) Manufacture of stranded conductor for portable cable
JP2006079885A (en) Aluminum conductive wire
JP2005174554A (en) Aluminum conductive wire
JP3680541B2 (en) Method for producing copper alloy wire of Cu-Zr alloy
JPH01289021A (en) Manufacture of copper clad steel stranded wire
JPH0917237A (en) Copper or copper alloy sheathed aluminum alloy wire
JPH06187831A (en) Automobile wire conductor and automobile wire
JP2005197135A (en) Power supply line for automobile
JP4667799B2 (en) Aluminum conductive wire
JPH07249315A (en) Conductor excellent in bending resistance for electrical and electronic equipment
JP2562447B2 (en) Flexible cable conductor
JP2000251529A (en) Ultra-fine conductor for wiring material in movable portion
JP3275506B2 (en) Automotive wire and method of manufacturing the same
JPH0830231B2 (en) Flexible cable conductor
JP4667770B2 (en) Aluminum conductive wire for automobile wiring and electric wire for automobile wiring
JP2000160311A (en) Copper-zirconium alloy wire and its production
JP2000251530A (en) Ultra-fine conductor for wiring material in movable portion
JP2000260238A (en) Ultra-thin conductor for wiring in movable part
JPH01231213A (en) Copper covered steel wire
JPH03184210A (en) Cable conductor for automobile
JP2000282157A (en) Foil conductor

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010227

LAPS Cancellation because of no payment of annual fees