JP2000251530A - Ultra-fine conductor for wiring material in movable portion - Google Patents

Ultra-fine conductor for wiring material in movable portion

Info

Publication number
JP2000251530A
JP2000251530A JP11048059A JP4805999A JP2000251530A JP 2000251530 A JP2000251530 A JP 2000251530A JP 11048059 A JP11048059 A JP 11048059A JP 4805999 A JP4805999 A JP 4805999A JP 2000251530 A JP2000251530 A JP 2000251530A
Authority
JP
Japan
Prior art keywords
conductor
ultrafine
conductivity
tensile strength
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11048059A
Other languages
Japanese (ja)
Inventor
Takao Ichikawa
貴朗 市川
Ryo Matsui
量 松井
Masayoshi Aoyama
正義 青山
Hitoshi Ueno
仁志 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP11048059A priority Critical patent/JP2000251530A/en
Publication of JP2000251530A publication Critical patent/JP2000251530A/en
Pending legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To greatly improve tensile strength and bending resistance without causing reduction in conductivity. SOLUTION: In this ultra-fine conductor 1 for wiring material in a movable portion, a copper alloy formed by adding from 0.025 wt.% to 0.15 wt.% Mg and less than 0.20 wt.% Sn to Cu is extended and machined to less than 0.08 mm element wire diameter to form ultra-fine element wires 2 whose tensile strength is higher than 70 kg/mm2 and conductivity is higher than 70% IACS, and a plurality of these ultra-fine element wires 2 are stranded. Thus, tensile strength and bending resistance can be greatly improved without causing reduction in conductivity, and therefore, break or buckling is not caused for heavy bending stress.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、医療機器や産業ロ
ボット等の電子機器可動部に配線される可動部配線材の
芯線として用いられる可動部配線材用極細導体に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrafine conductor for a movable portion wiring member used as a core wire of a movable portion wiring member wired to a movable portion of an electronic device such as a medical device or an industrial robot.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】一般
に、医療機器や産業ロボット等の電子機器可動部に配線
される可動部配線材は、その性格上、過酷な曲げ,捻
り,引張り等の応力を繰り返し受けることから、特にそ
の芯線となる導体には優れた耐屈曲性と引張強度が要求
される。
2. Description of the Related Art Generally, a movable portion wiring member wired to a movable portion of an electronic device such as a medical device or an industrial robot has a stress such as severe bending, twisting, or tension due to its nature. In particular, the conductor serving as the core wire is required to have excellent bending resistance and tensile strength.

【0003】そのため、最近では、このような可動部配
線材に使用される導体として、軟銅線単独でなく、Cu
に適量のSnを添加することで引張強度及び耐屈曲性を
向上させた合金材料からなるものが開発され、一部実用
化に至っている。
[0003] Therefore, recently, as a conductor used for such a movable portion wiring material, not only a soft copper wire but also Cu
An alloy material having improved tensile strength and bending resistance by adding an appropriate amount of Sn to the alloy has been developed, and has been partially commercialized.

【0004】一方、近年の電子機器の小型・軽量・高性
能化の要請に受け、このような可動部配線材には、小型
・軽量化のための細径化と共に情報伝送量の増大に伴う
高導電性が要求されてきているが、引張強度及び耐屈曲
性と共に高導電性をも同時に満足する細径導体は提案さ
れていないのが現状である。
On the other hand, in response to the recent demand for smaller, lighter, and higher-performance electronic devices, such movable section wiring members have been required to have smaller diameters for smaller and lighter weight and to increase the amount of information transmission. Although high conductivity has been demanded, at present, no small-diameter conductor that satisfies high conductivity as well as tensile strength and bending resistance has been proposed.

【0005】すなわち、上述した従来の銅合金を細径導
体の材料として用いた場合、細径化に伴う引張強度や耐
屈曲性を向上させるために、Snの添加量をさらに増加
させる必要があるが、そうすると導電率が著しく低下し
てしまうといった欠点があり、引張強度,耐屈曲性,高
導電性の全てを高い次元で満足することは不可能であっ
た。
That is, when the above-mentioned conventional copper alloy is used as a material for a small-diameter conductor, it is necessary to further increase the addition amount of Sn in order to improve the tensile strength and the bending resistance accompanying the reduction in the diameter. However, there is a disadvantage that the conductivity is remarkably reduced, and it is impossible to satisfy all of tensile strength, bending resistance, and high conductivity at a high level.

【0006】そこで、本発明はこのような課題を有効に
解決するために案出されたものであり、その目的は、導
電性の低下を招くことなく、引張強度及び耐屈曲性を大
幅に向上させることができる新規な可動部配線材用極細
導体を提供するものである。
Accordingly, the present invention has been devised in order to effectively solve such a problem, and an object of the present invention is to significantly improve the tensile strength and the bending resistance without lowering the conductivity. An object of the present invention is to provide a novel ultrafine conductor for a wiring member of a movable portion which can be made to work.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
に本発明は、CuにMg0.025wt%以上0.15
wt%未満、及びSnを0.20wt%以下添加した銅
合金を素線径0.08mm以下に伸線加工して引張強度
70kg/mm2 以上,導電率70%IACS以上の極
細素線を形成し、この極細素線を複数本撚線加工してな
るものである。
In order to solve the above-mentioned problems, the present invention relates to a method for producing Cu containing 0.025 wt% or more of Mg and 0.15 wt% or less.
An ultra-fine wire with a tensile strength of 70 kg / mm 2 or more and a conductivity of 70% IACS or more is formed by drawing a copper alloy containing less than 0.2 wt% of Sn and less than 0.20 wt% of Sn. Then, this ultrafine wire is formed by processing a plurality of stranded wires.

【0008】これによって、導電性を低下させることな
く、引張強度が著しく上昇し、かつ耐屈曲性も向上させ
ることができるため、引張強度,耐屈曲性,導電性の全
てを高い次元で満足することが可能となる。
Accordingly, the tensile strength can be significantly increased and the bending resistance can be improved without lowering the conductivity, so that the tensile strength, the bending resistance and the conductivity are all satisfied at a high level. It becomes possible.

【0009】[0009]

【発明の実施の形態】次に、本発明を実施する好適一形
態を添付図面を参照しながら説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, a preferred embodiment of the present invention will be described with reference to the accompanying drawings.

【0010】図1は、本発明に係る可動部配線材用極細
導体1の実施の一形態を示したものである。
FIG. 1 shows an embodiment of an ultrafine conductor 1 for a movable portion wiring material according to the present invention.

【0011】図示するように、この可動部配線材用極細
導体1は、素線径が0.08mm以下、望ましくは0.
05mm以下の極細素線2を、少なくとも3本以上複数
本撚り線加工してなるものであり、その撚りピッチは、
導体1の外径に対して少なくとも10〜25の比率とな
っている。
As shown in the figure, the ultrafine conductor 1 for a movable portion wiring member has a strand diameter of 0.08 mm or less, preferably 0.1 mm or less.
It is formed by processing at least three or more stranded wires of an ultrafine wire 2 of not more than 05 mm, and the twist pitch is
The ratio is at least 10 to 25 with respect to the outer diameter of the conductor 1.

【0012】ここで、撚線のピッチと導体径の比を10
〜24に限定したのは、この比が24を越えると端末加
工時に撚線の端末がばらけてしまい、人手による端末処
理を行わなければならず、端末加工の自動化ができなく
なるからであり、また、10未満では一般的に屈曲疲労
特性は向上するが、硬銅線のような伸びの小さい材料に
おいては、撚線作業時に素線に加わるたわみ量が大きく
なって屈曲疲労寿命が低下する上に、撚線作業時の速度
が遅くなり、生産性が低下するためである。さらに、望
ましくは撚りピッチと導体径の比は15〜20の範囲で
ある。尚、この極細素線2を撚るようにしたのは、勿
論、強度の向上と強度と密接に関連する屈曲疲労特性の
向上を図るためである。ちなみに軟銅線の場合は、これ
をいくら撚っても強度と屈曲疲労特性について満足する
結果を得ることができない。
Here, the ratio between the pitch of the stranded wires and the conductor diameter is 10
The reason for limiting to ~ 24 is that if this ratio exceeds 24, the terminals of the stranded wire will be disintegrated at the time of terminal processing, it will be necessary to perform terminal processing by hand, and it will not be possible to automate terminal processing, If it is less than 10, the bending fatigue characteristics are generally improved, but in the case of a material having a small elongation such as hard copper wire, the amount of deflection applied to the strand during the twisting operation is increased, and the bending fatigue life is shortened. In addition, the speed at the time of the twisting operation is reduced, and the productivity is reduced. More preferably, the ratio between the twist pitch and the conductor diameter is in the range of 15-20. The reason why the ultrafine wire 2 is twisted is, of course, to improve the strength and the bending fatigue characteristics closely related to the strength. By the way, in the case of annealed copper wire, no matter how much it is twisted, satisfactory results regarding strength and bending fatigue characteristics cannot be obtained.

【0013】また、この極細素線2は、CuにMg0.
025wt%以上0.15wt%未満、及びSnを0.
20wt%以下添加した銅合金を素線径0.08mm以
下に冷間伸線加工したものであり、引張強度70kg/
mm2 以上,導電率70%IACS以上の高い引張強度
と導電率を発揮するようになっている。
The ultrafine wire 2 is made of Cu containing MgO.
025 wt% or more and less than 0.15 wt%, and Sn in an amount of 0.
A copper alloy to which 20 wt% or less is added is cold drawn to a wire diameter of 0.08 mm or less, and has a tensile strength of 70 kg /
It exhibits high tensile strength and electrical conductivity of not less than 2 mm 2 and electrical conductivity of 70% IACS or more.

【0014】ここで、Mgの添加量を0.025〜0.
15wt%に限定した理由は、0.025wt%以下で
も導電率は高く問題ないが、引張強さが不十分となって
70kg/mm2 以上の高い引張強度が得られないから
であり、また、0.15wt%を越えると、Mgが活性
金属であるため、MgOを発生しやすく、それが伸線時
の断線の原因となるからである。また、Snの添加量を
0.20wt%以下としたのは、0.20wt%以上を
越えると導電率が著しく低下し、70%IACS以上の
高い導電率が得られないからである。また、引張強度を
70kg/mm2 以上としたのは、それ以下であると耐
屈曲性が十分に得られないためであり、また、導電率を
70%IACS以上としたのはそれ以下であると従来に
比して高導電性導体としての特徴が得られないためであ
る。
Here, the addition amount of Mg is set to 0.025-0.
The reason why the content is limited to 15 wt% is that even if the content is 0.025 wt% or less, the conductivity is high and there is no problem, but the tensile strength is insufficient and a high tensile strength of 70 kg / mm 2 or more cannot be obtained. If the content exceeds 0.15 wt%, Mg is an active metal, so that MgO is easily generated, which causes disconnection during wire drawing. The reason why the amount of Sn added is set to 0.20 wt% or less is that if it exceeds 0.20 wt%, the conductivity is remarkably reduced, and a high conductivity of 70% IACS or more cannot be obtained. Further, the reason why the tensile strength is 70 kg / mm 2 or more is that if it is less than that, sufficient bending resistance cannot be obtained, and the conductivity is 70% IACS or more. This is because the characteristics as a highly conductive conductor cannot be obtained as compared with the related art.

【0015】そして、このような構成をした本発明の可
動部配線材用極細導体1にあっては、導電率の低下を招
くことなく優れた引張強度及び耐屈曲性を発揮すること
が可能となり、加えて端末加工時の撚線バラケ等の不都
合を招くことなく優れた生産性及び信頼性を発揮するこ
とができる。
The ultra-fine conductor 1 for a movable portion wiring material of the present invention having the above-described structure can exhibit excellent tensile strength and bending resistance without lowering the conductivity. In addition, excellent productivity and reliability can be exhibited without inconvenience such as twisted wire breakage during terminal processing.

【0016】[0016]

【実施例】以下、本発明の具体的実施例を説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, specific embodiments of the present invention will be described.

【0017】MgとSn,又はSn単独を種々の濃度で
添加した銅合金を、それぞれφ0.04mmまで冷間伸
線して極細素線を加工した後、この極細素線を7本を用
い、種々のピッチで撚線加工して複数種の極細導体試料
を形成した。その後、これら複数種の極細導体試料に対
して屈曲寿命試験を行い、その結果を以下の表1に示
す。
A copper alloy to which Mg and Sn or Sn alone are added at various concentrations is cold drawn to φ0.04 mm to process ultrafine wires, and then, using these seven ultrafine wires, A plurality of types of ultrafine conductor samples were formed by twisting at various pitches. Thereafter, a flex life test was performed on these plural kinds of ultrafine conductor samples, and the results are shown in Table 1 below.

【0018】[0018]

【表1】 [Table 1]

【0019】この結果、表1に示すように、MgとSn
の添加量及びピッチ/導体比のいずれもが本発明の範囲
内である実施例1〜4に係る試料の場合は、屈曲寿命が
いずれも1000回を大幅に上回ると共に、引張強さと
導電率のいずれも高い数値を示し、耐屈曲性と引張強さ
及び導電率値のいずれも高い次元で満足した。また、端
末加工時の撚線バラケも発生せず、優れた加工性を発揮
することがわかった。
As a result, as shown in Table 1, Mg and Sn
In the case of the samples according to Examples 1 to 4 in which both the amount of addition and the pitch / conductor ratio are within the scope of the present invention, the flex life greatly exceeds 1000 times, and the tensile strength and the conductivity All exhibited high numerical values, and all of the flex resistance, tensile strength, and conductivity value were satisfied with high dimensions. In addition, it was found that there was no occurrence of stranded wire variation at the time of terminal processing, and excellent workability was exhibited.

【0020】これに対し、Mgを全く添加していない従
来のSn−Cu合金からなる比較例1,2の試料の場合
は、いずれも屈曲寿命が低く、耐屈曲性に乏しい。ま
た、Snの添加量をさらに増やした比較例3の試料のあ
っては、耐屈曲性に付いては良好な値を示したが、導電
率が65%IACSと低く、実用的に満足する値が得ら
れなかった。
On the other hand, in the case of the samples of Comparative Examples 1 and 2 made of the conventional Sn—Cu alloy to which no Mg is added, the flex life is low and the flex resistance is poor. In addition, the sample of Comparative Example 3 in which the amount of Sn added was further increased showed a good value in terms of flex resistance, but had a low conductivity of 65% IACS, which was a practically satisfactory value. Was not obtained.

【0021】さらに、MgとSnの添加量は本発明の範
囲内であるが、ピッチ/導体比が本発明の範囲以下であ
る比較例4にあっては、耐屈曲性に劣ってしまい、ま
た、ピッチ/導体比が本発明範囲を超える比較例5にあ
っては、耐屈曲性,引張強さ,導電率のいずれも高い数
値を示したが、端末加工時の撚線バラケが発生してしま
い、加工性に乏しいものであった。
Further, although the addition amounts of Mg and Sn are within the range of the present invention, in Comparative Example 4 in which the pitch / conductor ratio is less than the range of the present invention, the bending resistance is inferior. In Comparative Example 5, in which the pitch / conductor ratio exceeded the range of the present invention, all of the flex resistance, tensile strength, and electrical conductivity showed high values, but the twisted wire was uneven during terminal processing. In short, the workability was poor.

【0022】尚、この試験と並行して、本発明に係る極
細導体1の各素線2上に、撚り線加工する前に予め銀め
っき,錫めっき,ニッケルめっきのいずれかを施したと
ころ、有効なハンダ付け性も確認された。
Incidentally, in parallel with this test, any one of silver plating, tin plating, and nickel plating was previously applied to each strand 2 of the microfine conductor 1 according to the present invention before the stranded wire was processed. Effective solderability was also confirmed.

【0023】[0023]

【発明の効果】以上要するに本発明によれば、導電性を
犠牲にすることなく、引張強度及び耐屈曲性を大幅に向
上させることができる。この結果、過酷な曲げ応力に対
しても破断や座屈を招くことなく引張強度,耐屈曲性,
高導電性の全てを高い次元で満足することができる。そ
して、このような本発明の可動部配線材用極細導体を使
用することにより、医療機器や電子機器等及びその可動
部の小型・軽量化並びに高性能化等に大いに貢献するこ
とができる等といった優れた効果を発揮することができ
る。
In summary, according to the present invention, the tensile strength and the bending resistance can be greatly improved without sacrificing the conductivity. As a result, tensile strength, flex resistance,
All of the high conductivity can be satisfied at a high level. The use of such an ultrafine conductor for a movable portion wiring material according to the present invention can greatly contribute to a reduction in size, weight, and performance of a medical device, an electronic device, and the like, and a movable portion thereof. Excellent effects can be exhibited.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の一形態を示す拡大側面図であ
る。
FIG. 1 is an enlarged side view showing one embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 可動部配線材用極細導体 2 極細素線 1 Ultrafine conductor for wiring material of movable part 2 Extrafine wire

───────────────────────────────────────────────────── フロントページの続き (72)発明者 青山 正義 茨城県日立市日高町5丁目1番1号 日立 電線株式会社パワーシステム研究所内 (72)発明者 上野 仁志 茨城県日立市日高町5丁目1番1号 日立 電線株式会社日高工場内 Fターム(参考) 5G301 AA01 AA08 AA12 AA14 AA20 AB02 AB05 AD01 5G307 EA01 EB06 EC03 EF09 EF10 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Masayoshi Aoyama 5-1-1 Hidaka-cho, Hitachi City, Ibaraki Prefecture Power Systems Research Laboratory, Hitachi Cable, Ltd. (72) Inventor Hitoshi Ueno 5 Hidaka-cho, Hitachi City, Ibaraki Prefecture No. 1-1, Hitachi Cable Co., Ltd. H-Taka Plant F term (reference) 5G301 AA01 AA08 AA12 AA14 AA20 AB02 AB05 AD01 5G307 EA01 EB06 EC03 EF09 EF10

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 CuにMg0.025wt%以上0.1
5wt%未満、及びSnを0.20wt%以下添加した
銅合金を素線径0.08mm以下に伸線加工して引張強
度70kg/mm2 以上,導電率70%IACS以上の
極細素線を形成し、この極細素線を複数本撚線加工して
なることを特徴とする可動部配線材用極細導体。
1. An alloy containing 0.025 wt% or more of Mg and 0.1 wt.
An ultrafine wire having a tensile strength of 70 kg / mm 2 or more and a conductivity of 70% IACS or more is formed by drawing a copper alloy containing less than 5 wt% and Sn added at 0.20 wt% or less to a wire diameter of 0.08 mm or less. An ultrafine conductor for a movable portion wiring material, wherein a plurality of the ultrafine wires are processed by twisting.
【請求項2】 上記極細素線の素線径が0.05mm以
下であり、この極細素線を少なくとも3本以上撚線加工
してなることを特徴とする請求項1に記載の可動部配線
材用極細導体。
2. The movable part wiring according to claim 1, wherein the wire diameter of the ultrafine wire is 0.05 mm or less, and at least three or more of the ultrafine wires are processed by twisting. Extra fine conductor for materials.
【請求項3】 上記極細素線の撚りピッチと導体径との
比が10〜24であることを特徴とする請求項1又は2
に記載の可動部配線材用極細導体。
3. The method according to claim 1, wherein the ratio between the twist pitch of the ultrafine wires and the conductor diameter is 10 to 24.
4. The ultrafine conductor for a movable portion wiring material according to claim 1.
【請求項4】 上記極細素線の外周に、銀めっき,錫め
っき,ニッケルめっきのいずれかが施されていることを
特徴とする請求項1〜3のいずれかに記載の可動部配線
材用極細導体。
4. The movable part wiring material according to claim 1, wherein one of silver plating, tin plating, and nickel plating is applied to an outer periphery of the ultrafine wire. Extra fine conductor.
JP11048059A 1999-02-25 1999-02-25 Ultra-fine conductor for wiring material in movable portion Pending JP2000251530A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11048059A JP2000251530A (en) 1999-02-25 1999-02-25 Ultra-fine conductor for wiring material in movable portion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11048059A JP2000251530A (en) 1999-02-25 1999-02-25 Ultra-fine conductor for wiring material in movable portion

Publications (1)

Publication Number Publication Date
JP2000251530A true JP2000251530A (en) 2000-09-14

Family

ID=12792785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11048059A Pending JP2000251530A (en) 1999-02-25 1999-02-25 Ultra-fine conductor for wiring material in movable portion

Country Status (1)

Country Link
JP (1) JP2000251530A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6674011B2 (en) * 2001-05-25 2004-01-06 Hitachi Cable Ltd. Stranded conductor to be used for movable member and cable using same
JP2012079563A (en) * 2010-10-01 2012-04-19 Yazaki Corp Electric wire
JP2012142310A (en) * 2012-04-26 2012-07-26 Yazaki Corp Electric wire
WO2012117707A1 (en) * 2011-03-01 2012-09-07 Yazaki Corporation Electric wire

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6674011B2 (en) * 2001-05-25 2004-01-06 Hitachi Cable Ltd. Stranded conductor to be used for movable member and cable using same
JP2012079563A (en) * 2010-10-01 2012-04-19 Yazaki Corp Electric wire
US9443642B2 (en) 2010-10-01 2016-09-13 Yazaki Corporation Electrical wire
WO2012117707A1 (en) * 2011-03-01 2012-09-07 Yazaki Corporation Electric wire
JP2012182000A (en) * 2011-03-01 2012-09-20 Yazaki Corp Electric wire
CN103403812A (en) * 2011-03-01 2013-11-20 矢崎总业株式会社 Electric wire
JP2012142310A (en) * 2012-04-26 2012-07-26 Yazaki Corp Electric wire

Similar Documents

Publication Publication Date Title
JP4143086B2 (en) Extra-fine copper alloy wire, extra-fine copper alloy twisted wire, and manufacturing method thereof
JP2004134212A (en) Aluminum cable for automobile wire harnesses
WO2010147018A1 (en) Electrical wire conductor and electrical wire for automobile
JP2008095202A (en) Copper alloy wire and process for producing the same
JP2008016284A (en) Electric wire conductor for automobile
JP2012094258A (en) Electric wire and cable
JP2697960B2 (en) Wire conductor for harness
JP2520878B2 (en) Method for manufacturing stranded wire conductor for movable cable
JP4413591B2 (en) Aluminum conductive wire for automobile wire harness and aluminum electric wire for automobile wire harness
JP2000251529A (en) Ultra-fine conductor for wiring material in movable portion
JP4330005B2 (en) Aluminum conductive wire
JP2000251530A (en) Ultra-fine conductor for wiring material in movable portion
JP4356417B2 (en) Copper alloy wire for electronic parts
JP4986522B2 (en) Wires for automobile wires and electric wires for automobiles
JP3376672B2 (en) Conductors for electrical and electronic equipment with excellent flex resistance
JP3620330B2 (en) Ultra-fine conductor for movable part wiring material
JP5608993B2 (en) Automotive wire conductors and automotive wires
JP3275506B2 (en) Automotive wire and method of manufacturing the same
JP2005197135A (en) Power supply line for automobile
JP2008091283A (en) Electric wire, and wire harness using it
JP4352996B2 (en) Vibration fatigue resistant copper stranded wire and method for producing the same
JPH06290639A (en) High strength high conductance flexibility complex wire
JP2000243139A (en) Bending resisting composite conductor and its manufacture
JP7295817B2 (en) Conductor stranded wire for wire harness
JPH03184210A (en) Cable conductor for automobile