JPH07218303A - Current meter - Google Patents

Current meter

Info

Publication number
JPH07218303A
JPH07218303A JP2474294A JP2474294A JPH07218303A JP H07218303 A JPH07218303 A JP H07218303A JP 2474294 A JP2474294 A JP 2474294A JP 2474294 A JP2474294 A JP 2474294A JP H07218303 A JPH07218303 A JP H07218303A
Authority
JP
Japan
Prior art keywords
float
fluid
force
tubular portion
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2474294A
Other languages
Japanese (ja)
Inventor
Naoyuki Omatoi
直之 大纒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2474294A priority Critical patent/JPH07218303A/en
Publication of JPH07218303A publication Critical patent/JPH07218303A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PURPOSE:To provide a current meter utilizing ultrasonic echo capable of being arranged in any direction without performing calibration. CONSTITUTION:An ultrasonic oscillator 14 is attached to one end of a tubular part 10 so as to transmit ultrasonic waves toward the float 12 inserted in the tubular part 10 with tapered its caliber and receiving the echos of the ultrasonic waves to detect the position of the float 12 by a predetermined signal processing circuit. The spring 16 exerting force on the float 12 in the direction reverse to the flow direction of a fluid 30 is provided in the tubular part 10. The effective wt. of the float 12 in the fluid 30 is set to zero or to a properly small value so that the float 12 stops at a position where the force in the flow direction of the fluid applied to the float by the flow of the fluid and the force of the spring 16 are almost balanced when the fluid flows through the tubular part 10.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は超音波のエコーを利用し
た流速計に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a velocity meter utilizing ultrasonic echo.

【0002】[0002]

【従来の技術】超音波のエコーを利用した流速計として
特開平1−313720号公報に示されているものがあ
る。図2はこの流速計を説明する模式的部分断面図であ
る。流体58は管状部54を通過し、その口径56はテ
ーパー状に変化している。管状部54の内部には浮子6
0があり、流体58の流速に応じて上下する。浮子60
の上面60aは平坦になっており、管状部54の上端に
は超音波振動子24が設けられていて、この浮子60の
上面60aにて超音波が反射するようになっている。流
速に応じてこの浮子60が上下動するので、超音波振動
子24が浮子60に向けて超音波を発信してから超音波
のエコーを受信するまでの伝播時間を測定することによ
り、この伝播時間と流体58の流速の関係を明らかにす
ることができる。従って、適当な信号処理回路を用いて
この伝播時間を測定することにより流体58の流速を知
ることができる。
2. Description of the Related Art An example of a velocity meter utilizing ultrasonic echo is disclosed in Japanese Patent Application Laid-Open No. 1-313720. FIG. 2 is a schematic partial cross-sectional view illustrating this velocity meter. The fluid 58 passes through the tubular portion 54, and the diameter 56 thereof changes in a tapered shape. The float 6 is provided inside the tubular portion 54.
0, which rises and falls according to the flow velocity of the fluid 58. Float 60
The upper surface 60a of the above is flat, the ultrasonic transducer 24 is provided at the upper end of the tubular portion 54, and the ultrasonic wave is reflected by the upper surface 60a of the float 60. Since the float 60 moves up and down according to the flow velocity, this propagation is measured by measuring the propagation time from the ultrasonic transducer 24 transmitting the ultrasonic wave toward the float 60 until receiving the ultrasonic echo. The relationship between time and the flow velocity of the fluid 58 can be clarified. Therefore, the flow velocity of the fluid 58 can be known by measuring this propagation time using an appropriate signal processing circuit.

【0003】[0003]

【発明が解決しようとする課題】上記の流速計では、流
体58の流れが浮子60により絞られてその前後に発生
する差圧によって流体58の流れの方向に浮子60に力
が加わる。この力は、管状部54の口径が広がる方向に
浮子60が移動するにつれて小さくなる。従って、この
流速計の管状部54を垂直に配置したとき、この力と浮
子の流体内における有効重量とが平衡する位置で浮子6
0は静止する。尚、浮子60の流体58内での有効重量
とは浮子の重量から浮子に働く浮力の大きさを差し引い
た浮子の重量である。この流速計を流れる流体58の流
れが速くなり勢いが増すと、浮子60に働く垂直方向の
重力は常に一定であるのに対し、浮子60の前後の差圧
は大きくなるので、この差圧が浮子の有効重量と平衡す
る位置まで浮子60は上昇し、この浮子60の位置によ
り流速を知ることができる。
In the above velocity meter, the flow of the fluid 58 is restricted by the float 60, and a force is applied to the float 60 in the flow direction of the fluid 58 by the differential pressure generated before and after the flow. This force becomes smaller as the float 60 moves in the direction in which the diameter of the tubular portion 54 expands. Therefore, when the tubular portion 54 of the anemometer is vertically arranged, the float 6 is placed at a position where this force and the effective weight of the float in the fluid are balanced.
0 is stationary. The effective weight of the float 60 in the fluid 58 is the weight of the float obtained by subtracting the amount of buoyancy acting on the float from the weight of the float. When the flow of the fluid 58 flowing through the anemometer becomes faster and the momentum increases, the vertical gravity acting on the float 60 is always constant, but the differential pressure before and after the float 60 becomes large. The float 60 rises to a position where it is in equilibrium with the effective weight of the float, and the flow velocity can be known from the position of the float 60.

【0004】ところが、流速計の管状部を鉛直方向に対
して傾斜させて取り付けると、浮子に働く重力の流体の
流れの方向に沿う成分が傾斜の度合いに応じて変化する
のでこれらの力が釣り合う浮子60の位置が変化し、超
音波振動子24が浮子60に向けて発信した超音波のエ
コーを受信するまでの伝播時間も変化する。このため管
状部54を傾斜させて流速計を取り付ける場合には、実
際の流速と超音波の伝播時間の関係を改めて求めなけれ
ばならない。すなわち、キャリブレーションが必要とな
る。また、流速計の管状部54を水平方向に配置する場
合には流体の流れの方向に沿う重力の成分は0なので流
体の圧力により浮子は管状部54の出口の方に押えつけ
られ、流速を測定することはできない。したがって、本
発明はどの方向に設置しても、キャリブレーションなし
で正確に流速を測定することのできる超音波のエコーを
利用した流速計を提供することを目的とする。
However, when the tubular portion of the anemometer is attached so as to be inclined with respect to the vertical direction, the components of gravity acting on the float along the direction of the fluid flow change depending on the degree of inclination, so these forces are balanced. The position of the float 60 changes, and the propagation time until the ultrasonic transducer 24 receives the echo of the ultrasonic wave transmitted toward the float 60 also changes. Therefore, when the velocimeter is attached with the tubular portion 54 inclined, the relationship between the actual flow velocity and the ultrasonic wave propagation time must be obtained again. That is, calibration is required. Further, when the tubular portion 54 of the anemometer is arranged horizontally, the gravity component along the flow direction of the fluid is 0, so that the float is pressed toward the outlet of the tubular portion 54 by the pressure of the fluid, and It cannot be measured. Therefore, it is an object of the present invention to provide a velocity meter using an ultrasonic echo that can accurately measure the velocity without calibration in any direction.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に本発明では、流速計の管状部を流れる流体の流れの方
向と逆方向に力を及ぼす付勢手段を流速計に設けるよう
にしている。このようにすることで流体の流れによる力
と付勢手段の力をほぼ等しくさせ、浮子に働く重力の影
響を小さくすることができる。すなわち、口径がテーパ
ー状に変化している管状部と、前記管状部に挿入されて
いる浮子と、前記浮子に向けて超音波を発信し、前記超
音波のエコーを受信できるように前記管状部の一端に配
置されている超音波振動子とを有する流速計において、
前記管状部を流れる流体の流れの方向と逆方向に前記浮
子に力を及ぼす付勢手段を有することを特徴とする流速
計が提供される。
In order to achieve the above object, according to the present invention, an urging means for exerting a force in a direction opposite to the flow direction of a fluid flowing through a tubular portion of a velocity meter is provided in the velocity meter. There is. By doing so, the force of the fluid flow and the force of the biasing means can be made substantially equal, and the influence of gravity acting on the float can be reduced. That is, a tubular portion having a tapered diameter, a float inserted in the tubular portion, and an ultrasonic wave emitted toward the float and the tubular portion so that an echo of the ultrasonic wave can be received. In an anemometer having an ultrasonic transducer arranged at one end of
There is provided a velocity meter characterized by comprising biasing means for exerting a force on the float in a direction opposite to a flow direction of a fluid flowing through the tubular portion.

【0006】また、本発明の別の態様では、上記の付勢
手段を設けることに加えて、流体が管状部を流れると
き、流体の流れにより浮子に加わる流体の流れの方向の
力と付勢手段の力とがほぼ釣り合う位置で浮子が静止す
るように浮子の流体内での有効重量を0にするか又は小
さく設定している。このため、浮子に働く重力によらず
に付勢手段が浮子に及ぼす力と流体の流れにより流体の
流れ方向に浮子に働く力とがほぼ釣り合う位置で浮子を
静止させることができる。すなわち、前記流体が前記管
状部を流れるとき前記流体の流れにより前記浮子に加わ
る前記流体の流れの方向の力と前記付勢手段の力とがほ
ぼ釣り合う位置で前記浮子が静止するように前記浮子の
前記流体内での有効重量が0であるか、又は適度に小さ
く設定されている請求項1記載の流速計が提供される。
Further, in another aspect of the present invention, in addition to providing the above-mentioned biasing means, when the fluid flows through the tubular portion, the force and the biasing force applied to the float by the flow of the fluid in the direction of the flow of the fluid. The effective weight of the float in the fluid is set to zero or set small so that the float stands still at a position where the force of the means is almost balanced. Therefore, the float can be stopped at a position where the force exerted on the float by the biasing means and the force exerted on the float in the flow direction of the fluid by the flow of the fluid are substantially balanced without depending on the gravity acting on the float. That is, when the fluid flows through the tubular portion, the float floats so that the float rests at a position where the force in the flow direction of the fluid applied to the float by the flow of the fluid and the force of the biasing means are approximately balanced. The flowmeter according to claim 1, wherein the effective weight of the fluid in the fluid is 0 or is set to be appropriately small.

【0007】[0007]

【実施例】以下図面と共に本発明の好ましい実施例につ
いて説明する。図1は本発明の流速計の実施例を説明す
る模式的部分断面図である。流速計の管状部10の両端
付近には流体30の入口18及び出口20が設けられて
いる。管状部10の口径はテーパー状に変化しており、
入口18から出口20に向かう方向で口径が大きくなっ
ている。以下管状部10の口径の大きい側の端部を上端
部とし、口径の小さい側を下端部とする。管状部10の
内部にはテーパー部分の中心線に沿って軸22が設けら
れており、軸22の両端は管状部10の両端に固定され
ている。浮子12は形が砲弾形で、この軸22によって
貫通され、軸22に沿って移動することができる。流体
30が流れて行く方向を向く浮子12の面を上面13と
すると、この上面13は平坦になっており、後述する超
音波振動子14から発信された超音波を超音波振動子1
4に向けて反射することが可能となっている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A preferred embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic partial cross-sectional view illustrating an embodiment of the velocity meter of the present invention. An inlet 18 and an outlet 20 for the fluid 30 are provided near both ends of the tubular portion 10 of the anemometer. The diameter of the tubular portion 10 changes in a taper shape,
The diameter increases in the direction from the inlet 18 to the outlet 20. Hereinafter, the end portion of the tubular portion 10 on the larger diameter side is referred to as an upper end portion, and the smaller diameter side is referred to as a lower end portion. A shaft 22 is provided inside the tubular portion 10 along the center line of the tapered portion, and both ends of the shaft 22 are fixed to both ends of the tubular portion 10. The float 12 is shell-shaped in shape and is pierced by the shaft 22 and is movable along the shaft 22. When the surface of the float 12 that faces the direction in which the fluid 30 flows is called the upper surface 13, this upper surface 13 is flat, and the ultrasonic wave transmitted from the ultrasonic vibrator 14 to be described later is transmitted by the ultrasonic vibrator 1.
It is possible to reflect toward 4.

【0008】この浮子12の上面にはバネ16の一端が
取り付けられ、バネ16の他端は管状部10の上端部に
取り付けられている。このバネ16は圧縮バネで、流体
の流れにより浮子12が流体の流れの方向に変位したと
き流体の流れの方向と逆方向に浮子12に力を及ぼす。
このバネ16と軸22により流体30の流れの方向と逆
方向に浮子12に力を及ぼす付勢手段が構成される。管
状部10の上端部では軸22の端部が取り付けられてい
る位置の近傍に穴が設けられ、この穴に接着剤で超音波
振動子14が隙間なく接着されている。超音波振動子1
4は図示しない信号処理回路に接続され、信号処理回路
からの信号により超音波振動子14は超音波を発信し、
超音波のエコーを受信したとき信号処理回路に信号を出
力する。
One end of a spring 16 is attached to the upper surface of the float 12, and the other end of the spring 16 is attached to the upper end of the tubular portion 10. The spring 16 is a compression spring and exerts a force on the float 12 in the direction opposite to the direction of the flow of the fluid when the float 12 is displaced in the direction of the flow of the fluid by the flow of the fluid.
The spring 16 and the shaft 22 constitute a biasing means for exerting a force on the float 12 in a direction opposite to the flow direction of the fluid 30. At the upper end of the tubular portion 10, a hole is provided in the vicinity of the position where the end of the shaft 22 is attached, and the ultrasonic transducer 14 is adhered to this hole with an adhesive without a gap. Ultrasonic transducer 1
4 is connected to a signal processing circuit (not shown), and the ultrasonic transducer 14 transmits ultrasonic waves in response to a signal from the signal processing circuit,
When the ultrasonic echo is received, the signal is output to the signal processing circuit.

【0009】次にこの流速計の動作について説明する。
まず、この流速計の管状部10が鉛直方向に平行になる
ように流速計を配置して流体を流速vで流した場合につ
いて説明する。浮子12には、流体30の流れの方向に
浮力及び流体の流れによる力が働くと同時に、流体の流
れの方向と逆方向に重力及びバネ16の弾性力が働く。
浮子12の重量は、材質及び容積を調整することによっ
て浮子が占める体積分の流体30の重量とほぼ等しくな
っている。このため浮子に働く重力と浮力が相殺されて
浮子12の有効重量はほとんど0に等しくなっている。
従って、浮子12に働く力は実質的に流体30の流れに
よる力とバネ16による弾性力と考えることができ、こ
の2つの力が釣り合って浮子12は静止する。また、浮
子の有効重量をほぼ0にするために浮子の内部を中空に
してもよい。
Next, the operation of this anemometer will be described.
First, a case will be described in which the flow velocity meter is arranged so that the tubular portion 10 of the flow velocity meter is parallel to the vertical direction and the fluid is caused to flow at the flow velocity v. A buoyant force and a force due to the fluid flow act on the float 12 in the flow direction of the fluid 30, and at the same time, gravity and elastic force of the spring 16 act in the opposite direction to the flow direction of the fluid.
The weight of the float 12 is made substantially equal to the weight of the fluid 30 corresponding to the volume occupied by the float by adjusting the material and volume. For this reason, the gravitational force acting on the float and the buoyancy are canceled out, and the effective weight of the float 12 is almost equal to zero.
Therefore, the force acting on the float 12 can be considered to be substantially the force due to the flow of the fluid 30 and the elastic force due to the spring 16, and the two forces are balanced to make the float 12 stand still. Further, in order to make the effective weight of the float almost zero, the inside of the float may be hollow.

【0010】この流速vの状態から流速をV(>v)に
大きくすると、流体30の流れによる浮子12に働く力
は大きくなり、バネ16の弾性力に抗して浮子12を上
昇させる。しかし、管状部10の口径が大きくなる方向
に浮子12が上昇するにつれて浮子12とテーパー部分
の壁面との隙間は広がるのでこの力は弱まり、その一方
でバネ16は自然長に戻ろうとしてその弾性力を強め
る。従って、浮子12が管状部10の上端部側にある程
度上昇した後、この2つの力は再び釣り合って浮子12
は静止する。
When the flow velocity is increased to V (> v) from this state of flow velocity v, the force exerted on the float 12 by the flow of the fluid 30 increases, and the float 12 is raised against the elastic force of the spring 16. However, as the float 12 rises in the direction in which the diameter of the tubular portion 10 increases, the gap between the float 12 and the wall surface of the tapered portion widens, so this force weakens, while the spring 16 tries to return to its natural length and its elasticity is reduced. Strengthen. Therefore, after the float 12 has risen to the upper end side of the tubular portion 10 to some extent, these two forces balance again and the float 12
Is stationary.

【0011】逆に流速vの状態から流速をU(<v)に
小さくすると、流体30の流れによる浮子12に働く力
は小さくなり、バネ16の弾性力に押されて浮子12は
下降する。しかし、管状部10の口径が小さくなる方向
に浮子12が下降するにつれて浮子12とテーパー部分
の壁面との隙間が狭くなるのでこの力は強まり、その一
方でバネ16の弾性力は弱まる。従って、浮子12が管
状部10の下端部側にある程度下降した後、この2つの
力は再び釣り合って浮子12は静止する。このように、
流速に応じて浮子の位置が決まる。
On the contrary, if the flow velocity is reduced to U (<v) from the state of the flow velocity v, the force exerted on the float 12 by the flow of the fluid 30 is reduced, and the float 12 is pushed down by the elastic force of the spring 16. However, as the float 12 descends in the direction in which the diameter of the tubular portion 10 decreases, the gap between the float 12 and the wall surface of the tapered portion becomes narrower, so this force becomes stronger, while the elastic force of the spring 16 becomes weaker. Therefore, after the float 12 descends to the lower end side of the tubular portion 10 to some extent, these two forces balance again and the float 12 stands still. in this way,
The position of the float is determined according to the flow velocity.

【0012】一方、信号処理回路からの信号に従って超
音波振動子14より超音波が発信され、この超音波は静
止した浮子12の上面で反射される。超音波振動子14
はこの反射による超音波のエコーを受信し、信号処理回
路に信号を出力する。信号処理回路では、超音波が発信
されてから超音波のエコーが超音波振動子14に受信さ
れるまでの超音波の伝播時間が測定される。この超音波
の伝播時間は浮子の位置に応じて決まる。従って、流速
と超音波の伝播時間の関係を予め求めておけば、超音波
の伝播時間より流速を知ることができる。
On the other hand, ultrasonic waves are transmitted from the ultrasonic vibrator 14 according to the signal from the signal processing circuit, and the ultrasonic waves are reflected by the upper surface of the floating body 12 which is stationary. Ultrasonic transducer 14
Receives the echo of the ultrasonic wave due to this reflection and outputs a signal to the signal processing circuit. The signal processing circuit measures the propagation time of the ultrasonic wave from the time when the ultrasonic wave is transmitted until the ultrasonic wave echo is received by the ultrasonic vibrator 14. The propagation time of this ultrasonic wave is determined according to the position of the float. Therefore, if the relationship between the flow velocity and the propagation time of ultrasonic waves is obtained in advance, the flow velocity can be known from the propagation time of ultrasonic waves.

【0013】次にこの流速計の管状部10を鉛直方向に
対して傾斜させて取り付けた場合について説明する。浮
子12に鉛直方向で下側から上側に向って働く浮力と上
側から下側に向って働く重力は流速計の管状部10が鉛
直方向に平行になるように配置した場合と同様にほぼ等
しく相殺される。このため、浮子12に働く力は管状部
10に沿って働く流体の流れによる力とバネ16による
弾性力の2つと考えることができる。従って、浮子12
に働く力は流速計の管状部10を鉛直方向に配置した場
合と同様になるので、流速計の管状部10を傾けても流
速と、超音波が発信されてから超音波が超音波振動子1
4に受信されるまでの超音波の伝播時間の関係は変化し
ない。
Next, a case where the tubular portion 10 of the anemometer is attached with being inclined with respect to the vertical direction will be described. The buoyancy acting vertically on the float 12 from the lower side to the upper side and the gravity acting from the upper side to the lower side are almost equal to each other as in the case where the tubular portion 10 of the anemometer is arranged so as to be parallel to the vertical direction. To be done. Therefore, the force acting on the float 12 can be considered to be two, namely, the force due to the flow of the fluid acting along the tubular portion 10 and the elastic force due to the spring 16. Therefore, the float 12
Since the force acting on is the same as when the tubular portion 10 of the anemometer is arranged in the vertical direction, even if the tubular portion 10 of the anemometer is tilted, the flow velocity and the ultrasonic wave after the ultrasonic wave is transmitted are ultrasonic transducers. 1
4 does not change the relationship of the propagation time of ultrasonic waves until it is received.

【0014】又、流速計の管状部10を水平に配置した
場合、管状部10に沿って働く力は流体の流れによる力
とバネ16による弾性力の2つのみである。よってこの
ときも流速と超音波の伝播時間の関係は変化しない。こ
のように流速計の管状部10を鉛直方向に対してどのよ
うに傾けてもあるいは水平に配置しても流速と超音波1
2の伝播時間の関係は変らず一定である。
When the tubular portion 10 of the anemometer is arranged horizontally, the two forces acting along the tubular portion 10 are the fluid flow force and the spring 16 elastic force. Therefore, even at this time, the relationship between the flow velocity and the propagation time of ultrasonic waves does not change. Thus, no matter how the tubular portion 10 of the anemometer is inclined with respect to the vertical direction or arranged horizontally, the flow velocity and the ultrasonic wave 1
The relationship between the two propagation times remains unchanged.

【0015】上記の実施例では、管状部10を流れる流
体の流れの方向と逆方向に浮子12に力を及ぼす付勢手
段にバネ16のような弾性部材を用いたが、この代りに
磁石を使用することも可能である。この場合、管状部1
0及び浮子12に磁石を取り付けて、流体の流れ方向を
逆方向に浮子12に力が働くようにする。たとえば、図
1でバネ16を取り去り管状部10の両端部に磁石を設
け、管状部10を挟んでS極が向かい合うようにする。
一方、浮子12には浮子12の上面13と同じ形状の面
を持つ磁石をN極が管状部10の下端部側に向くように
して取り付ける。このように管状部及び浮子に磁石を設
けると流体の流れの方向と逆向きに浮子12に力が働く
ようになる。
In the above embodiment, the elastic member such as the spring 16 is used as the urging means for exerting the force on the float 12 in the direction opposite to the flow direction of the fluid flowing through the tubular portion 10. However, instead of this, a magnet is used. It is also possible to use. In this case, the tubular part 1
The magnets are attached to the zero and the float 12 so that a force acts on the float 12 in the direction opposite to the flow direction of the fluid. For example, in FIG. 1, the spring 16 is removed and magnets are provided at both ends of the tubular portion 10 so that the S poles face each other with the tubular portion 10 interposed therebetween.
On the other hand, a magnet having a surface having the same shape as the upper surface 13 of the float 12 is attached to the float 12 so that the N pole faces the lower end side of the tubular portion 10. When the magnet is provided in the tubular portion and the float in this manner, the force acts on the float 12 in the direction opposite to the direction of fluid flow.

【0016】浮子12に取り付ける磁石の形状はこの例
のものに限らず、浮子に取付可能であればよい。浮子自
体を磁石で構成してもよい。また、上記の例で各磁石の
極性を逆にした構成にしてもよい。上記の例では管状部
10の両端に磁石が設けられているが、どちらか一方に
配置するものであってもよい。管状部10の流体の入口
18付近の端部に磁石を設ける場合は、浮子に例えば鉄
の様な磁性体を取り付けるか、あるいは浮子がそのよう
な磁性体でつくられているかのどちらかであってもよ
い。このようにしても流体の流れの方向と逆向きに浮子
12に力を働かせることができる。
The shape of the magnet attached to the float 12 is not limited to this example, and it is sufficient that the magnet can be attached to the float. The float itself may be composed of a magnet. Further, in the above example, the polarities of the magnets may be reversed. Although magnets are provided at both ends of the tubular portion 10 in the above example, the magnets may be provided at either one of them. When a magnet is provided at the end of the tubular portion 10 near the fluid inlet 18, either the magnetic body such as iron is attached to the float or the float is made of such a magnetic body. May be. Even in this case, the force can be exerted on the float 12 in the direction opposite to the flow direction of the fluid.

【0017】上記の実施例では、バネ16が管状部10
の上端部側に設けられているが、これに代えて一端が浮
子12の上面13と反対側の部分に取り付けられ、他端
が管状部10の下端部に取り付けられている引っ張りバ
ネを設けるようにしてもよい。但し、引っ張りバネをこ
のように設けると、入口18から入ってくる流体にゴミ
が含まれることもあり、そのゴミが引っ張りバネに引っ
掛かってうまく動作しないことがある。このため、バネ
16を出口18付近に設けた方が好ましい。又、浮子1
2は、浮子12の流体内での有効重量が小さいものなら
どの様な形をしていてもよく、薄い板状のものでもよ
い。
In the above embodiment, the spring 16 is the tubular portion 10.
It is provided on the upper end side of the, but instead of this, a tension spring whose one end is attached to the portion opposite to the upper surface 13 of the float 12 and the other end is attached to the lower end of the tubular portion 10 is provided. You may However, when the tension spring is provided in this way, dust may be contained in the fluid entering from the inlet 18, and the dust may be caught by the tension spring and may not operate properly. Therefore, it is preferable to provide the spring 16 near the outlet 18. Also, float 1
2 may have any shape as long as the effective weight of the float 12 in the fluid is small, and may be a thin plate-like shape.

【0018】上記の実施例では、流体の流れの方向と逆
方向に浮子12に力を及ぼす付勢手段として軸22とバ
ネ16が用いられている。バネ16は浮子12に力を作
用させ、軸22はこの力の方向を決める。軸22を取り
去って流体30を管状部10に流す場合に浮子12が流
体30に押されてバネ16が圧縮される過程で、バネ1
6のたわみがほとんどなく、またバネ16の一端に取り
付けられている浮子12が管状部10の内壁に押しつけ
られることがなく、浮子12に適正に力が加わるようバ
ネ16がしっかりしたものであるならば、軸22を取り
去ってバネ16のみを付勢手段として用いてもよい。ま
た、管状部10の口径の変化が緩やかでバネ16が管状
部10の内壁に接近して挿入できるならば、軸22なし
にバネ16が圧縮されても管状部10の内壁によって支
持されるので過度にたわむことがない。したがって、こ
の場合も軸22を取り去ることができ、管状部10の内
壁及びバネ16が付勢手段として機能する。
In the above embodiment, the shaft 22 and the spring 16 are used as the urging means for exerting a force on the float 12 in the direction opposite to the direction of fluid flow. The spring 16 exerts a force on the float 12, and the shaft 22 determines the direction of this force. When the shaft 12 is removed and the fluid 30 is caused to flow into the tubular portion 10, the spring 1 is pressed by the fluid 30 and the spring 16 is compressed.
6 has almost no deflection, and the float 12 attached to one end of the spring 16 is not pressed against the inner wall of the tubular portion 10. For example, the shaft 22 may be removed and only the spring 16 may be used as the biasing means. Further, if the diameter of the tubular portion 10 changes slowly and the spring 16 can be inserted close to the inner wall of the tubular portion 10, the spring 16 is supported by the inner wall of the tubular portion 10 even if the spring 16 is compressed without the shaft 22. Does not bend excessively. Therefore, also in this case, the shaft 22 can be removed, and the inner wall of the tubular portion 10 and the spring 16 function as a biasing means.

【0019】[0019]

【発明の効果】以上説明したように、本発明のように流
速計に流体の流れの方向と逆方向に浮子に力を及ぼす付
勢手段を設け、浮子の流体内での有効重量を小さくする
ことで、キャリブレーションなしに超音波振動子を利用
した流速計をいかなる方向にも配置することができ、配
管を従来より自由に行うことができる。
As described above, as in the present invention, the velocity meter is provided with the biasing means for exerting a force on the float in the direction opposite to the direction of the flow of the fluid, thereby reducing the effective weight of the float in the fluid. As a result, the velocity meter using the ultrasonic transducer can be arranged in any direction without calibration, and the piping can be made more freely than before.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の流速計の実施例を説明する模式的部分
断面図である。
FIG. 1 is a schematic partial cross-sectional view illustrating an example of a velocity meter according to the present invention.

【図2】従来の超音波のエコーを利用した流速計の模式
的部分断面図である。
FIG. 2 is a schematic partial cross-sectional view of a conventional velocity meter using an ultrasonic echo.

【符号の説明】[Explanation of symbols]

10,54 管状部 12,60 浮子 13,60a 上面 14,24 超音波振動子 16 バネ 18 入口 20 出口 30,58 流体 56 口径 10,54 Tubular part 12,60 Float 13,60a Upper surface 14,24 Ultrasonic transducer 16 Spring 18 Inlet 20 Outlet 30,58 Fluid 56 Caliber

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 口径がテーパー状に変化している管状部
と、前記管状部に挿入されている浮子と、前記浮子に向
けて超音波を発信し、前記超音波のエコーを受信できる
ように前記管状部の一端に配置されている超音波振動子
とを有する流速計において、 前記管状部を流れる流体の流れの方向と逆方向に前記浮
子に力を及ぼす付勢手段を有することを特徴とする流速
計。
1. A tubular part having a tapered diameter, a float inserted in the tubular part, an ultrasonic wave emitted toward the float, and an echo of the ultrasonic wave can be received. A velocity meter having an ultrasonic transducer arranged at one end of the tubular portion, characterized in that it has a biasing means for exerting a force on the float in a direction opposite to a flow direction of a fluid flowing through the tubular portion. A current meter.
【請求項2】 前記流体が前記管状部を流れるとき前記
流体の流れにより前記浮子に加わる前記流体の流れの方
向の力と前記付勢手段の力とがほぼ釣り合う位置で前記
浮子が静止するように前記浮子の前記流体内での有効重
量が0であるか、又は適度に小さく設定されている請求
項1記載の流速計。
2. When the fluid flows through the tubular portion, the float is stopped at a position where the force in the flow direction of the fluid exerted on the float by the flow of the fluid and the force of the biasing means are approximately balanced. The flowmeter according to claim 1, wherein the effective weight of the float in the fluid is 0 or is set to be appropriately small.
JP2474294A 1994-01-27 1994-01-27 Current meter Withdrawn JPH07218303A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2474294A JPH07218303A (en) 1994-01-27 1994-01-27 Current meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2474294A JPH07218303A (en) 1994-01-27 1994-01-27 Current meter

Publications (1)

Publication Number Publication Date
JPH07218303A true JPH07218303A (en) 1995-08-18

Family

ID=12146606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2474294A Withdrawn JPH07218303A (en) 1994-01-27 1994-01-27 Current meter

Country Status (1)

Country Link
JP (1) JPH07218303A (en)

Similar Documents

Publication Publication Date Title
US6912918B1 (en) Mass flow sensor and methods of determining mass flow of a fluid
EP1816442A3 (en) Ultrasonic flow meter
GB2259571B (en) Measurement system
JPH02502577A (en) Vortex generator/sensor
CN100414261C (en) Device for determination and/or monitoring of the volumetric and/or mass flow of a medium
US4973062A (en) Vortex flowmeter
US4911019A (en) High sensitivity-high resonance frequency vortex shedding flowmeter
JPH07218303A (en) Current meter
US4003251A (en) Acceleration-proof vortex-type flowmeter
US4972723A (en) Vortex generator-sensor
US5635650A (en) Flowmeter having a vibrator therein
US4976156A (en) Impulse sensor with balanced mass-stiffness distribution
GB1561051A (en) Force-type flowmeter
JP3375899B2 (en) Bypass pipe level gauge
JP5167927B2 (en) Tilt angle sensor and tilt angle sensor device
JP4212374B2 (en) Ultrasonic flow meter
US5237877A (en) Vortex flowmeter with noise rejecting sensor
CN2257603Y (en) Piezoelectric swirl differential flow sensor
JPH0979882A (en) Vibration type measuring device
JP2006017639A (en) Ultrasonic flowmeter
JP2004045425A (en) Flow rate measuring device
CN101387544B (en) Reflexion base for enhancing sound field measurement precision of ultrasonic liquid-immersing transducer
JPS61128125A (en) Liquid level meter
JPH07260529A (en) Vortex generating converter in vortex type flowmeter
ATE389184T1 (en) FLOW VELOCITY TRANSDUCER

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010403