JPH0721564A - Method and device for recording and reproducing optical recording medium - Google Patents

Method and device for recording and reproducing optical recording medium

Info

Publication number
JPH0721564A
JPH0721564A JP16786793A JP16786793A JPH0721564A JP H0721564 A JPH0721564 A JP H0721564A JP 16786793 A JP16786793 A JP 16786793A JP 16786793 A JP16786793 A JP 16786793A JP H0721564 A JPH0721564 A JP H0721564A
Authority
JP
Japan
Prior art keywords
light
recording medium
optical recording
guided
recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16786793A
Other languages
Japanese (ja)
Inventor
Tsuyoshi Tsujioka
強 辻岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP16786793A priority Critical patent/JPH0721564A/en
Publication of JPH0721564A publication Critical patent/JPH0721564A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a method and device for controlling the distance between a probe and a recording layer with high accuracy at all times even under any operation state of a P-STM optical memory. CONSTITUTION:A recording layer 502 of an optical recording medium s installed inside a first evanescent field 301 formed by first light 601 guided in a transparent object 1 provided with a fine opening part at the head part at this fine opening part, and information is recorded in this optical recording medium 5 or recorded information is reproduced by using this first light 601. On the other hand, second light 602 with a wavelength different from that of the first light 601 is guided inside this optical recording medium 5, a second evanescent wave 302 formed by the guided light on the surface of this optical recording medium is detected by this transparent object 1, and the intensity of the second light is detected by separating this wave from the guided light of the first light 601 while using a wavelength separating means 12. Thus, the distance between this transparent object 1 and this optical recording medium 5 can be adjusted.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は光記録媒体への超高密度
な情報の記録が可能なフォトンのトンネル現象を利用し
た記録再生方法および装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a recording / reproducing method and apparatus utilizing a photon tunnel phenomenon capable of recording information at an ultrahigh density on an optical recording medium.

【0002】[0002]

【従来の技術】近年、レーザ光線の高い空間コヒーレン
ト性を利用して、該レーザ光線を回折限界にまで集光し
たレーザスポットを用いて媒体に記録し、あるいは情報
が記録された媒体から情報を再生する光ディスク装置が
オーディオ用コンパクトディスクやコンピュータ用光磁
気ディスクファイルとして実用化されている。
2. Description of the Related Art In recent years, by utilizing the high spatial coherence of a laser beam, the laser beam is recorded on a medium by using a laser spot which is focused to the diffraction limit, or information is recorded from a medium on which information is recorded. An optical disk device for reproducing has been put into practical use as a compact disk for audio and a magneto-optical disk file for computer.

【0003】これらの光ディスクへの記録では、その記
録密度がレーザ波長でほぼ決定され、およそ1bit/
μmとなるが、最近の記録媒体の大容量化の要求に応え
るために記録密度を更に向上させるための研究が行われ
ている。
In recording on these optical disks, the recording density is almost determined by the laser wavelength, and the recording density is about 1 bit /
However, research is being conducted to further improve the recording density in order to meet the recent demand for higher capacity recording media.

【0004】このような次世代超高密度光メモリとして
有望視されているものの一つとして、フォトンのトンネ
ル現象により生じるエバネッセント波を用いて記録・再
生するいわゆるP−STM(フォトン走査型トンネル顕
微鏡)を応用した光メモリ(又は単にP−STMでフォ
トン走査型トンネリングメモリとも言う)が提案されて
いる。
As one of the promising next-generation ultra-high density optical memories, there is a so-called P-STM (photon scanning tunneling microscope) which records and reproduces by using an evanescent wave generated by a photon tunnel phenomenon. An applied optical memory (or simply P-STM and also referred to as a photon scanning tunneling memory) has been proposed.

【0005】P−STMについては例えば第11回応用
物理学会スクール「ミクロの世界を見る」1992年9
月5日テキストp3-15 「超光学顕微鏡の動向」大津元一
著にて詳しく説明されている。
Regarding the P-STM, for example, the 11th Japan Society of Applied Physics, "See the Micro World", September 1992.
May 5th text p3-15 “Trends in Super-Optical Microscopy” is explained in detail in Motoichi Otsu.

【0006】例えば図2にP−STMの顕微鏡としての
原理を説明するための図を示す。同図において観察の対
象となる物体5は使用する光の波長に対し透明であり、
入射光6は前記物体5の界面501に対し、通常全反射
となる角度で入射する。7は前記入射光の反射光であ
る。このとき物体5の界面501近傍には該界面501
から離れるに従って指数関数的に強度が低下するエバネ
ッセント場3が形成される。
For example, FIG. 2 shows a diagram for explaining the principle of the P-STM as a microscope. In the figure, the object 5 to be observed is transparent to the wavelength of the light used,
The incident light 6 is incident on the interface 501 of the object 5 at an angle that normally causes total reflection. Reference numeral 7 is a reflected light of the incident light. At this time, the interface 501 near the interface 501 of the object 5
An evanescent field 3 whose intensity decreases exponentially with increasing distance from is formed.

【0007】もし前記物体5の界面501が完全に平坦
であるならこのエバネッセント場も平面内では均一とな
るが、該物体5の界面501に微小な凹凸や、微小物体
4等が存在すると、形成されるエバネッセント場もこれ
に応じて乱されることになる。
If the interface 501 of the object 5 is perfectly flat, this evanescent field is also uniform in the plane, but if the interface 501 of the object 5 has minute irregularities or minute objects 4, it is formed. The evanescent field will be disturbed accordingly.

【0008】そしてガラスファイバー等で形成された先
端部の鋭いプローブ1をこうして形成されたエバネッセ
ント場3に近づけると、このエバネッセント光の一部が
通常の光8としてプローブを導波し、検出器2によりそ
の強度が検出される。
When the sharp probe 1 formed of glass fiber or the like is brought close to the evanescent field 3 thus formed, a part of this evanescent light is guided as a normal light 8 through the probe and the detector 2 is detected. The intensity is detected by.

【0009】この結果、前記エバネッセント場の乱れに
応じた検出器2の出力が得られるので前記プローブ1を
走査することにより、物体表面形状を表す出力9を得る
ことができる。
As a result, since the output of the detector 2 corresponding to the disturbance of the evanescent field is obtained, the output 9 representing the object surface shape can be obtained by scanning the probe 1.

【0010】斯かるP−STMの解像度は前記プローブ
1の先端部の鋭さを向上すればいくらでも上げることが
できるので、通常の光学的顕微鏡における光の回折限界
による解像度を上回る超解像度を得ることが可能とな
る。
The resolution of such a P-STM can be increased as much as the sharpness of the tip of the probe 1 is improved, so that a super resolution exceeding the resolution due to the diffraction limit of light in an ordinary optical microscope can be obtained. It will be possible.

【0011】上述のような超解像度性を活かした超高密
度光メモリとしての応用が前出の文献やあるいは日本化
学会第65春季年会(1993)講演予稿集IIp287、1
C630にて報告されている。
Application as an ultra-high-density optical memory utilizing the above-mentioned super-resolution property, or the proceedings of the 65th Annual Meeting of the Chemical Society of Japan (1993) IIp287, 1
Reported in C630.

【0012】図3はこの光メモリ応用技術の原理を示す
図である。この場合は先程の図2の例とは異なり、記録
又は再生用光源10からの放射光6はまずプローブ1に
適当な方法により入射され、該プローブ1中を導波し、
鋭く尖ったその先端部に、該先端部の大きさと同程度の
拡がりを有するエバネッセント場3を形成する。
FIG. 3 is a diagram showing the principle of this optical memory application technique. In this case, different from the example of FIG. 2 described above, the emitted light 6 from the recording or reproducing light source 10 is first incident on the probe 1 by an appropriate method, and is guided in the probe 1,
An evanescent field 3 having the same extent as the size of the tip is formed at the sharply pointed tip.

【0013】一方記録媒体には物体としての透明基板5
上にフォトクロミック材料等を含む記録層502を形成
したものが用いられ、前記プローブ1を該記録層502
の記録に用いる光の波長程度以下の距離にまで近づける
ことにより媒体にフォトクロミック反応を起こさせ、一
部の記録層の透過率を変化させて記録マーク503を形
成することにより情報の記録が行われる。
On the other hand, a transparent substrate 5 as an object is used as a recording medium.
A recording layer 502 including a photochromic material or the like is formed on the recording layer 502.
Information is recorded by causing a photochromic reaction in the medium by bringing the medium closer to a distance equal to or less than the wavelength of light used for recording, and forming the recording mark 503 by changing the transmittance of a part of the recording layer. .

【0014】また記録情報の再生については、これと同
様にエバネッセント場3から基板5側へ透過する光8の
強弱を光検出器2で検出することにより行われる。即ち
プローブ1または基板5を走査すれば記録マークの有無
に応じた再生信号が得られることになる。
Similarly, the reproduction of the recorded information is performed by detecting the intensity of the light 8 transmitted from the evanescent field 3 to the substrate 5 side by the photodetector 2. That is, when the probe 1 or the substrate 5 is scanned, a reproduction signal corresponding to the presence or absence of a recording mark can be obtained.

【0015】このようなP−STM型光メモリでは従来
の光メモリの記録密度(約1bit/μm)の100倍
程度の超高密度記録が可能になると考えられている。
It is considered that such a P-STM type optical memory can realize ultra-high density recording of about 100 times the recording density (about 1 bit / μm) of the conventional optical memory.

【0016】[0016]

【発明が解決しようとする課題】ところで前記図3に示
した光メモリ装置ではプローブ1と記録層502との間
の距離を高精度に制御し一定値に保つ必要がある。しか
しながら変調光を用いる記録時や、相対的に弱いパワー
の光を用いる再生時、あるいは媒体上の特定の記録エリ
アにアクセスする時等の状況において、このような高精
度の距離の制御を行うことは困難であるという問題点が
あった。
By the way, in the optical memory device shown in FIG. 3, it is necessary to control the distance between the probe 1 and the recording layer 502 with high accuracy and keep it at a constant value. However, when recording using modulated light, reproducing using light of relatively weak power, or when accessing a specific recording area on the medium, such highly accurate distance control should be performed. Had the problem of being difficult.

【0017】本発明は斯かる従来技術の問題点に鑑みて
なされたものであり、P−STM型光メモリのいかなる
操作状況においても常にプローブと記録層との高精度な
距離の制御が行える方法および装置を提供することを目
的とする。
The present invention has been made in view of the above problems of the prior art, and a method and a method capable of always controlling the distance between the probe and the recording layer with high accuracy in any operating condition of the P-STM type optical memory. The purpose is to provide a device.

【0018】[0018]

【課題を解決するための手段】本発明の方法は、先端部
に微小開口部を有する透明体中を導波する第1の光が該
微小開口部に形成する第1のエバネッセント場中に光記
録媒体の記録層を設置し、前記第1の光を用いて該光記
録媒体へ情報を記録しあるいは記録情報を再生するとと
もに、前記光記録媒体中に前記第1の光とは異なる波長
の第2の光を導波させてその導波光が前記光記録媒体表
面に形成する第2のエバネッセント波を前記透明体によ
り検出し、これを波長分離手段を用いて前記第1の光に
よる導波光と分離して第2の光の強度を検出することに
より前記透明体と前記光記録媒体との距離を調節可能と
したものである。
According to the method of the present invention, a first light guided in a transparent body having a minute opening at its tip is converted into a light in a first evanescent field formed in the minute opening. A recording layer of a recording medium is provided, information is recorded on or reproduced from the optical recording medium by using the first light, and a wavelength different from that of the first light is recorded in the optical recording medium. The second light is guided, and the second evanescent wave formed by the guided light on the surface of the optical recording medium is detected by the transparent body, and this is guided by the first light by using a wavelength separating means. The distance between the transparent body and the optical recording medium can be adjusted by detecting the intensity of the second light separately.

【0019】また本発明の装置は、光記録媒体に情報の
記録再生を行うための第1の光を放射する第1の光源
と、該第1光源からの光を導波させその微小開口部にエ
バネッセント場を形成する透明体と、前記光記録媒体に
対し前記透明体と相対向する位置に設けられ前記光記録
媒体中を導波した第1の光を検出する第1検出手段と、
前記第1の光とは波長の異なる第2の光を放射する第2
の光源と、前記第2の光源からの放射光を前記光記録媒
体中および前記透明体中に導波させるための手段と、前
記第1光源と前記透明体との間に設けられ前記第1およ
び第2の光を分離する波長分離手段と、該波長分離手段
により得られた第2の光を検出する第2検出手段と、該
第2検出手段により得られた信号により前記透明体と前
記光記録媒体との間の距離を制御するための制御手段と
を有するものである。
Further, the apparatus of the present invention comprises a first light source for emitting a first light for recording / reproducing information on / from an optical recording medium, and a minute opening portion for guiding the light from the first light source. A transparent body that forms an evanescent field, and a first detection unit that is provided at a position opposite to the transparent body with respect to the optical recording medium, and that detects first light guided in the optical recording medium,
A second light that emits a second light having a wavelength different from that of the first light.
A light source, means for guiding light emitted from the second light source into the optical recording medium and the transparent body, and the first light source and the transparent body. And a wavelength separating means for separating the second light, a second detecting means for detecting the second light obtained by the wavelength separating means, and the transparent body and the transparent body by the signal obtained by the second detecting means. And a control means for controlling the distance to the optical recording medium.

【0020】[0020]

【作用】上記の構成を有する本発明により、透明体と光
記録媒体との間の距離は、記録・再生等どのような状態
においても、高い精度で制御され、記録誤差、再生誤差
を効率良く抑えることができる。
According to the present invention having the above-described structure, the distance between the transparent body and the optical recording medium is controlled with high accuracy in any state such as recording / reproducing, so that recording error and reproducing error can be efficiently performed. Can be suppressed.

【0021】[0021]

【実施例】以下本発明の記録再生方法および装置をその
一実施例について図面に基づき詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A recording / reproducing method and apparatus according to the present invention will be described below in detail with reference to the drawings.

【0022】まず図1に当該記録再生方法の原理図を示
し、これに基づき説明する。第1の光源としての記録再
生用光源101からの放射光601は、この放射光60
1を透過し且つこれとは波長の異なる第2の光源からの
距離制御用の光602を反射する波長分離手段としての
ダイクロイックミラー12を透過し、前記図3で説明し
た内容と同じ作用により記録層502へ情報の記録およ
び記録情報の再生を行う。
First, FIG. 1 shows a principle diagram of the recording / reproducing method, and the description will be made based on this. The radiated light 601 from the recording / reproducing light source 101 as the first light source is
1 and a dichroic mirror 12 as a wavelength separating means for reflecting a distance control light 602 from a second light source having a wavelength different from that of the first light source, and is recorded by the same operation as that described in FIG. Information is recorded on the layer 502 and the recorded information is reproduced.

【0023】一方前記放射光601のビームの強弱、変
調の有無等にかかわらず、透明体としての媒体基板5を
導波する距離制御用光602は、該媒体5の表面にその
平面内で均一であり且つ法線方向に強度が指数関数的に
変化するエバネッセント場302を形成する。
On the other hand, regardless of the intensity of the beam of the emitted light 601, the presence or absence of modulation, etc., the distance control light 602 guided through the medium substrate 5 as a transparent body is uniform on the surface of the medium 5 within its plane. And an evanescent field 302 whose intensity changes exponentially in the normal direction.

【0024】前記距離制御用光602については、前記
記録層502に不所望なフォトクロミック反応を起こさ
ないように、媒体5に含まれるフォトクロミック材料が
吸収を有しない波長域の光が選定される。
As the distance controlling light 602, light in a wavelength range in which the photochromic material contained in the medium 5 does not absorb is selected so as not to cause an undesired photochromic reaction in the recording layer 502.

【0025】さてプローブ1はこのエバネッセント場3
02を検出して通常の導波光802へと変換し、ダイク
ロイックミラー12で反射されて第2の検出器202に
より光電変換され、変換された信号が距離制御用制御回
路11へと伝達される。
Now, the probe 1 uses this evanescent field 3
02 is detected and converted into a normal guided light 802, reflected by the dichroic mirror 12 and photoelectrically converted by the second detector 202, and the converted signal is transmitted to the control circuit 11 for distance control.

【0026】次に上記原理に基づく光記録媒体の記録再
生方法を実現するための装置について図4に基づき説明
する。媒体5の材料であるフォトクロミック材料は紫外
〜可視の波長域に吸収を有するものが多いため、第1光
源である記録再生用光源100としては可視半導体レー
ザやSHG素子を利用したもの、さらにはインコヒーレ
ント光源である発光ダイオード等が使用できる。
Next, an apparatus for realizing the recording / reproducing method of the optical recording medium based on the above principle will be described with reference to FIG. Since many of the photochromic materials that are the materials of the medium 5 have absorption in the ultraviolet to visible wavelength range, the recording / reproducing light source 100 that is the first light source uses a visible semiconductor laser or an SHG element, A light emitting diode which is a coherent light source can be used.

【0027】前記光源100は、駆動回路13によっ
て、情報の記録時には記録信号に応じて強度変調された
光を比較的強いパワーで放射し、記録情報の再生時には
一定で且つ相対的に弱いパワーで放射されるように制御
される。
The light source 100 emits light whose intensity is modulated according to a recording signal by the driving circuit 13 with a relatively strong power when the information is recorded, and has a constant and relatively weak power when reproducing the recorded information. It is controlled to be emitted.

【0028】前記光源100からの放射光はレンズ19
1および波長分離手段としてのダイクロイックミラー1
2を透過し、レンズ192によってガラス製キャピラリ
ープローブ1へと入射する。
The light emitted from the light source 100 is reflected by the lens 19
1 and dichroic mirror 1 as wavelength separating means
2 and then enters the glass capillary probe 1 through the lens 192.

【0029】前記プローブ1の先端部はその直径が0.
1μmオーダーまで先鋭化されており、該先端部にエバ
ネッセント場3を形成する。そしてプローブ1と媒体5
との距離は、該エバネッセント場3を形成するエバネッ
セント波の波長のオーダー以下に保たれ、エバネッセン
ト波による記録や、第1検出器201による再生が行わ
れる。
The tip of the probe 1 has a diameter of 0.
It is sharpened to the order of 1 μm, and an evanescent field 3 is formed at the tip. And probe 1 and medium 5
The distance between and is kept below the order of the wavelength of the evanescent wave forming the evanescent field 3, and recording by the evanescent wave and reproduction by the first detector 201 are performed.

【0030】一方第2光源としての距離制御用光源60
0には、多くのフォトクロミック材料が吸収を有しない
波長の光を放射できる近赤外半導体レーザが使用でき
る。そしてこの光源600から駆動回路16により一定
パワーで放射されたレーザビームは、コリメートレンズ
193によって平行光へと整形され、ミラー17により
反射されて媒体5へと入射する。
On the other hand, the distance control light source 60 as the second light source.
For 0, a near-infrared semiconductor laser that can emit light having a wavelength that many photochromic materials do not absorb can be used. The laser beam emitted from the light source 600 with a constant power by the drive circuit 16 is shaped into parallel light by the collimator lens 193, reflected by the mirror 17 and incident on the medium 5.

【0031】このとき媒体5の表面で光が全反射となる
ように前記光源600からのビーム入射角度や偏光状態
等が調整される。尚、媒体5のプローブ1と反対側の表
面500での光の反射は、検出器201における光のロ
スや、迷光成分となるのでこの面500に反射防止処理
を行っておくことが望ましい。また検出器201の全面
には距離制御用光源600からの光が入射しないよう
に、記録再生用の光の波長のみを透過するフィルターを
設けておくことが望ましい。
At this time, the beam incident angle from the light source 600 and the polarization state are adjusted so that the light is totally reflected on the surface of the medium 5. It should be noted that reflection of light on the surface 500 of the medium 5 on the side opposite to the probe 1 causes a loss of light in the detector 201 and a stray light component. Further, it is desirable to provide a filter that transmits only the wavelength of the recording / reproducing light so that the light from the distance control light source 600 does not enter the entire surface of the detector 201.

【0032】さて距離制御用光源600から放射された
光により媒体5表面に形成されたエバネッセント場は、
プローブ1によりピックアップされてレンズ192へと
導かれ、ダイクロイックミラー12で反射された後、第
2の光検出器202で光電変換される。
The evanescent field formed on the surface of the medium 5 by the light emitted from the distance control light source 600 is
The light is picked up by the probe 1, guided to the lens 192, reflected by the dichroic mirror 12, and then photoelectrically converted by the second photodetector 202.

【0033】前記変換された電圧は、前記プローブ1と
媒体5との間の距離が最適となるように予め定められた
基準電圧と、比較器18にて比較される。そして前記比
較器18による差信号出力が制御回路11へと入力さ
れ、該制御回路11の制御信号によりプローブ1の近傍
に取り付けられたピエゾ素子14を駆動し、このピエゾ
素子14の圧電変位動作によって前記差信号出力の絶対
値が小さくなるようにプローブ1を上下に変位させる。
The converted voltage is compared by a comparator 18 with a reference voltage which is predetermined so that the distance between the probe 1 and the medium 5 is optimum. Then, the difference signal output from the comparator 18 is input to the control circuit 11, and the control signal of the control circuit 11 drives the piezo element 14 mounted in the vicinity of the probe 1, and the piezoelectric displacement operation of the piezo element 14 causes the piezo element 14 to move. The probe 1 is vertically displaced so that the absolute value of the difference signal output becomes small.

【0034】尚、媒体5に対する記録あるいは再生用の
光の走査は水平方向の駆動系15による媒体5の駆動に
より行われ、該光が媒体5の表面を全域に渡って走査可
能なようになされている。従ってどんな時でもプローブ
1〜媒体5間の距離を高い精度で一定値に保つことがで
き、安定に超高密度の記録・再生を実行できる。
The recording or reproducing light is scanned on the medium 5 by driving the medium 5 by the horizontal drive system 15 so that the light can be scanned over the entire surface of the medium 5. ing. Therefore, the distance between the probe 1 and the medium 5 can be maintained at a constant value with high accuracy at any time, and super-high density recording / reproducing can be stably performed.

【0035】[0035]

【発明の効果】以上の説明の如く、本発明によりP−S
TM型光メモリによる超高密度の記録再生を、高い精度
を保持しながら実現できる効果が期待できる。
As described above, according to the present invention, PS
It is expected that an ultra-high density recording / reproduction by the TM type optical memory can be realized while maintaining high accuracy.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法の原理を示すブロック図である。FIG. 1 is a block diagram showing the principle of the method of the present invention.

【図2】一般的なP−STM(顕微鏡)の原理を示すブ
ロック図である。
FIG. 2 is a block diagram showing the principle of a general P-STM (microscope).

【図3】従来のP−STM(メモリ)の原理を示すブロ
ック図である。
FIG. 3 is a block diagram showing the principle of a conventional P-STM (memory).

【図4】本発明装置の概略を示すブロック図である。FIG. 4 is a block diagram showing an outline of the device of the present invention.

【符号の説明】[Explanation of symbols]

10 記録再生用光源 600 距離制御用光源 201 第1検出器 202 第2検出器 1 プローブ 12 ダイクロイックミラー 5 媒体 193 コリメートレンズ 17 ミラー 3、301、302 エバネッセント場 9 再生信号 10 recording / reproducing light source 600 distance control light source 201 first detector 202 second detector 1 probe 12 dichroic mirror 5 medium 193 collimating lens 17 mirror 3, 301, 302 evanescent field 9 reproduction signal

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 先端部に微小開口部を有する透明体中を
導波する第1の光が該微小開口部に形成する第1のエバ
ネッセント場中に光記録媒体の記録層を設置し、前記第
1の光を用いて該光記録媒体へ情報を記録しあるいは記
録情報を再生するとともに、前記光記録媒体中に前記第
1の光とは異なる波長の第2の光を導波させてその導波
光が前記光記録媒体表面に形成する第2のエバネッセン
ト波を前記透明体により検出し、これを波長分離手段を
用いて前記第1の光による導波光と分離して第2の光の
強度を検出することにより前記透明体と前記光記録媒体
との距離を調節可能とした光記録媒体の記録再生方法。
1. A recording layer of an optical recording medium is installed in a first evanescent field formed in a minute opening by a first light guided in a transparent body having a minute opening at its tip. Information is recorded on or reproduced from the optical recording medium by using the first light, and second light having a wavelength different from the first light is guided in the optical recording medium, The second evanescent wave formed by the guided light on the surface of the optical recording medium is detected by the transparent body, and the second evanescent wave is separated from the guided light by the first light by using the wavelength separating means to obtain the intensity of the second light. A recording / reproducing method for an optical recording medium, wherein the distance between the transparent body and the optical recording medium can be adjusted by detecting the.
【請求項2】 光記録媒体に情報の記録再生を行うため
の第1の光を放射する第1の光源と、該第1光源からの
光を導波させその微小開口部にエバネッセント場を形成
する透明体と、前記光記録媒体に対し前記透明体と相対
向する位置に設けられ前記光記録媒体中を導波した第1
の光を検出する第1検出手段と、前記第1の光とは波長
の異なる第2の光を放射する第2の光源と、前記第2の
光源からの放射光を前記光記録媒体中および前記透明体
中に導波させるための手段と、前記第1光源と前記透明
体との間に設けられ前記第1および第2の光を分離する
波長分離手段と、該波長分離手段により得られた第2の
光を検出する第2検出手段と、該第2検出手段により得
られた信号により前記透明体と前記光記録媒体との間の
距離を制御するための制御手段とを有する光記録媒体の
記録再生装置。
2. A first light source that emits a first light for recording and reproducing information on an optical recording medium, and a light from the first light source is guided to form an evanescent field in the minute opening. And a transparent body which is provided at a position opposite to the transparent body with respect to the optical recording medium and which is guided in the optical recording medium.
Detecting means for detecting the light, a second light source for emitting a second light having a wavelength different from that of the first light, and a light emitted from the second light source in the optical recording medium and Means for guiding light in the transparent body, wavelength separating means for separating the first and second light provided between the first light source and the transparent body, and obtained by the wavelength separating means. Optical recording having second detecting means for detecting the second light, and control means for controlling the distance between the transparent body and the optical recording medium by the signal obtained by the second detecting means. Medium recording / reproducing apparatus.
JP16786793A 1993-07-07 1993-07-07 Method and device for recording and reproducing optical recording medium Pending JPH0721564A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16786793A JPH0721564A (en) 1993-07-07 1993-07-07 Method and device for recording and reproducing optical recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16786793A JPH0721564A (en) 1993-07-07 1993-07-07 Method and device for recording and reproducing optical recording medium

Publications (1)

Publication Number Publication Date
JPH0721564A true JPH0721564A (en) 1995-01-24

Family

ID=15857556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16786793A Pending JPH0721564A (en) 1993-07-07 1993-07-07 Method and device for recording and reproducing optical recording medium

Country Status (1)

Country Link
JP (1) JPH0721564A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08248641A (en) * 1995-03-13 1996-09-27 Olympus Optical Co Ltd Laser lithographic equipment
WO1999041741A1 (en) * 1998-02-10 1999-08-19 Seiko Instruments Inc. Information recording apparatus
US6665239B1 (en) 1998-12-10 2003-12-16 Ricoh Company, Ltd. Optical information recording and reproducing apparatus
KR100549445B1 (en) * 1999-07-30 2006-02-07 한국전자통신연구원 High density and high speed data storage device
EP1750258A2 (en) * 1998-03-20 2007-02-07 Seiko Instruments Inc. Distance control in optical near-field recording/reproducing apparatus

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08248641A (en) * 1995-03-13 1996-09-27 Olympus Optical Co Ltd Laser lithographic equipment
WO1999041741A1 (en) * 1998-02-10 1999-08-19 Seiko Instruments Inc. Information recording apparatus
EP1750258A2 (en) * 1998-03-20 2007-02-07 Seiko Instruments Inc. Distance control in optical near-field recording/reproducing apparatus
EP1750258A3 (en) * 1998-03-20 2007-05-02 Seiko Instruments Inc. Distance control in optical near-field recording/reproducing apparatus
US7301888B2 (en) 1998-03-20 2007-11-27 Seiko Instruments Inc. Recording apparatus
EP1939871A1 (en) 1998-03-20 2008-07-02 Seiko Instruments Inc. Recording apparatus
EP1942501A1 (en) * 1998-03-20 2008-07-09 Seiko Instruments Inc. Distance control in optical near-field recording/reproducing apparatus
US6665239B1 (en) 1998-12-10 2003-12-16 Ricoh Company, Ltd. Optical information recording and reproducing apparatus
KR100549445B1 (en) * 1999-07-30 2006-02-07 한국전자통신연구원 High density and high speed data storage device

Similar Documents

Publication Publication Date Title
Milster Near-field optics: a new tool for data storage
EP0688014B1 (en) Optical head using evanscent light and optical data recording/reproducing apparatus
JPH02246035A (en) Photo-magnetic storage regenerating method, and storage medium snitable for use of this method, and photo-magnetic regenerator
US6992968B2 (en) Optical head and disk unit
WO1999049459A1 (en) Recording apparatus
JPH0721564A (en) Method and device for recording and reproducing optical recording medium
JP4234013B2 (en) Optical information reproducing method, optical head device, and optical information processing device
US6584062B1 (en) Near-field optical recording apparatus assistively heating recording medium
US20070183291A1 (en) Apparatus and Method for Optical Data Storage and Retrieval
EP1115113B1 (en) Information recording medium, information reproducing device, and information recording/reproducing device
JP2000331375A (en) Near-field light recording/reproducing device
JPH0793797A (en) Optical head and disk device using the same
CN100399441C (en) Optical recording medium as well as optical recording and reproduction method
JP2000251282A (en) Near-field optical recording/reproducing apparatus
JP3834765B2 (en) Fiber probe
JPH09326130A (en) Optical waveguide element, its manufacture and optical information recording/reproducing device using it
JP2000207765A (en) Optical head, optical part and optical memory
JPH10269614A (en) Polarization proximity field light detecting head and optical information recording and reproducing device using the same
JP2758232B2 (en) Optical pickup device and optical information recording / reproducing device using the same
JP4381540B2 (en) Reproduction method of optical recording medium
JP4100397B2 (en) cartridge
JP2002074729A (en) Optical pickup device, information reproducing device, and information recording and reproducing device
JP4265941B2 (en) Optical head device and optical information recording / reproducing device
JPH0750028A (en) Optical disk device
JP2002008235A (en) Recording/reproducing device using plasmon and its manufacturing method