JP2000331375A - Near-field light recording/reproducing device - Google Patents

Near-field light recording/reproducing device

Info

Publication number
JP2000331375A
JP2000331375A JP2000113472A JP2000113472A JP2000331375A JP 2000331375 A JP2000331375 A JP 2000331375A JP 2000113472 A JP2000113472 A JP 2000113472A JP 2000113472 A JP2000113472 A JP 2000113472A JP 2000331375 A JP2000331375 A JP 2000331375A
Authority
JP
Japan
Prior art keywords
light
field
recording
optical recording
field light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000113472A
Other languages
Japanese (ja)
Inventor
Young Joo Yee
ヤン・ジョ・イ
Uku Bu John
ジョン・ウク・ブ
Cheol Park
チョル・パク
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Electronics Inc
Original Assignee
LG Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Electronics Inc filed Critical LG Electronics Inc
Publication of JP2000331375A publication Critical patent/JP2000331375A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/56Optics using evanescent waves, i.e. inhomogeneous waves
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/122Flying-type heads, e.g. analogous to Winchester type in magnetic recording
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1365Separate or integrated refractive elements, e.g. wave plates
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1387Means for guiding the beam from the source to the record carrier or from the record carrier to the detector using the near-field effect
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q80/00Applications, other than SPM, of scanning-probe techniques

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Optical Head (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Optical Recording Or Reproduction (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve recording density by irradiating a substrate changed from an opaque state to a transparent state with temperature by the light beam wherein light from a light source is focused with a focusing lens. SOLUTION: When a near-field light generating part 13 is irradiated with a laser beam, the distribution of temperature according to the distribution of beam intensity is produced on the surface. At this time, the light beam is transmitted only by the periphery around the center of the optical axis becoming transparent and becoming a critical temperature using the thin film of the near-field light generating part 13 as a substance whose transmitivity is changed by the beam temperature. That is, the light beam transmits a thermal aperture part 17 becoming the critical temperature or more and becoming transparent, and a small spot for the near-field light 18 is obtained as the gap (g) wherein the interval between the near-field light generating part 13 and a disk 2 is smaller than an incident light beam wavelength. And since a phase transition thin film 22 for recording formed on the surface of a disk substrate 21 is irradiated with the near-field light 18 of the small spot, high density recording for one bit information 23 is allowed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は光の回折限界を克服
して記録密度を画期的に増加させることのできる高密度
近接場(ニアフィールド)光記録/再生装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-density near-field (near-field) optical recording / reproducing apparatus capable of remarkably increasing the recording density by overcoming the diffraction limit of light.

【0002】一般に光情報を記録する技術はCD、DV
D技術を中心に画期的に発展してきた。特に、半導体青
色光レーザーの実現によって従来の赤色光レーザーに比
べ3〜4倍の記録密度とすることができ、大容量の光記
録技術が実現している。
[0002] Generally, the technology for recording optical information is CD, DV.
It has developed epoch-making mainly in D technology. In particular, the realization of the semiconductor blue light laser enables the recording density to be three to four times as high as that of the conventional red light laser, thereby realizing a large capacity optical recording technology.

【0003】しかし、最近、より鮮明な画像情報が要求
され、かつ個人情報端末器が発展するのに伴ってより小
型、かつ軽量化したさらに大容量の情報記録装置の要求
が高まっている。そのためには情報記録密度の飛躍的な
増加が必要である。
[0003] However, recently, clearer image information has been demanded, and with the development of personal information terminals, there has been an increasing demand for smaller and lighter, larger-capacity information recording devices. For that purpose, a dramatic increase in information recording density is required.

【0004】従来情報を記録する装置としての大容量の
ものといえば、コンピューターの補助記憶装置として用
いられるハードディスク等の磁気情報記録装置が知られ
ている。この装置は様々な技術向上により記録密度が向
上してきた。一方、磁気を用いない記録装置としてはレ
ーザ光を用いた光記録媒体が知られている。磁気を用い
た記録装置は、集束したレーザー光を用いる光記録媒体
に比べ記録密度の増加に限界があり、大容量を実現させ
るには現在のところ光記録媒体が有利である。
Conventionally, as a large-capacity information recording device, a magnetic information recording device such as a hard disk used as an auxiliary storage device of a computer is known. The recording density of this apparatus has been improved by various technical improvements. On the other hand, as a recording apparatus that does not use magnetism, an optical recording medium using laser light is known. A recording device using magnetism has a limit in increasing the recording density as compared with an optical recording medium using a focused laser beam, and an optical recording medium is currently advantageous for realizing a large capacity.

【0005】しかしながら、この光記録技術において
も、理論的に、記録密度は記録/再生用に用いられるレ
ーザー光源の波長に依存する限界を有する。
However, also in this optical recording technology, theoretically, the recording density has a limit depending on the wavelength of a laser light source used for recording / reproducing.

【0006】光記録技術においてデータマーク1ビット
の最小長さは次の式により決定される。 d=λ/(2NA) ここでλは光の波長であり、現在の半導体赤色光レーザ
ーは大略650nm、青色光レーザーは410nm程度
の値を有する。また、NAは開口数であり、一般的な光
学系レンズは0.5〜0.7程度である。したがって、
判別可能なデータトラック間の最小ピッチは大略光波長
の大きさ程度であり、その光波長の長さが記録密度を高
めるための限界となる。この限界は光が回折するという
性質に起因し、これを克服するための技術として最近脚
光を浴びているのが近接場(ニアフィールド)光記録技
術である。
In the optical recording technology, the minimum length of one bit of a data mark is determined by the following equation. d = [lambda] / (2NA) where [lambda] is the wavelength of light. The current semiconductor red light laser has a value of about 650 nm, and the blue light laser has a value of about 410 nm. NA is a numerical aperture, and a general optical lens is about 0.5 to 0.7. Therefore,
The minimum pitch between the identifiable data tracks is about the size of the light wavelength, and the length of the light wavelength is a limit for increasing the recording density. This limit is due to the property that light is diffracted, and a near-field (near-field) optical recording technique has recently been spotlighted as a technique for overcoming this.

【0007】近接場光記録技術は、光波長以内に光が透
過するプローブを接近させ、このプローブを介して光を
入出力させることで、光波長に制限された空間解像度限
界を超えるようにした方法である。
In the near-field optical recording technique, a probe that transmits light within a light wavelength is approached, and light is input and output through the probe so as to exceed a spatial resolution limit limited by the light wavelength. Is the way.

【0008】これを実現するための方法として現在最も
商品化に近づいている技術が米国テラスタ(terastor)
社によるソリッドイマージョンレンズ(SIL:solid
immersion lens)を用いた方式である。この方法は、S
ILを用いてNA値を高くして、記録/再生用として用
いられるレーザービームの焦点の大きさを縮小させ、光
の回折限界による空間解像度を改善したものである。
[0008] As a method for realizing this, the technology which is currently closest to commercialization is US Terastor.
Solid immersion lens (SIL: solid
immersion lens). This method uses S
The NA value is increased by using IL to reduce the focal point of a laser beam used for recording / reproducing, thereby improving the spatial resolution due to the diffraction limit of light.

【0009】この方式は、通常のレンズを使用した従来
の光記録/再生方式を用いることもできるので商品化に
有利である。しかし、SILを使用してもNA値が制限
されるため、記録密度を高めるには依然として限界があ
る。
This method is advantageous for commercialization because a conventional optical recording / reproducing method using a normal lens can be used. However, even when SIL is used, the NA value is limited, so that there is still a limit in increasing the recording density.

【0010】前記方式以外に、光ファイバープローブ
(optical fiber probe tip)を記録/再生用光波長以内
に近接させ用いる近接場プローブ方式の近接場走査顕微
鏡方式(NSOM:near-field scanning optical micr
oscopy)があるが、光ファイバープローブとディスク間
の間隔を一定に近接場の範囲で維持するのが難しく、低
いデータ記録/再生速度などの技術的な不具合のため、
情報記録装置には使用されていない。
In addition to the above-described method, a near-field scanning optical microscope (NSOM) using a near-field probe method in which an optical fiber probe (optical fiber probe tip) is brought close to within a recording / reproducing light wavelength.
oscopy), but it is difficult to maintain a constant distance between the optical fiber probe and the disk in the near-field range, and due to technical problems such as low data recording / reproduction speed,
It is not used in information recording devices.

【0011】[0011]

【発明が解決しようとする課題】上記問題を解決する本
発明は、近接場光記録技術を用いて記録密度をより向上
させることのできる近接場光記録/再生装置を提供する
ことが目的である。
SUMMARY OF THE INVENTION It is an object of the present invention to solve the above-mentioned problems by providing a near-field optical recording / reproducing apparatus capable of further improving the recording density by using a near-field optical recording technique. .

【0012】[0012]

【課題を解決するための手段】本発明による近接場光記
録/再生装置は、温度によって不透明状態から透明状態
へ変化する物質を用いたことを特徴とする。すなわち、
光源からの光を集束レンズで集束させて、その集束した
光をその物質に照射させ、集束した光の中心部が他の部
分より温度が高いのを利用して、その温度の高い光ビー
ムの中心部だけを透過させてディスクに照射するように
したことを特徴とする。
The near-field optical recording / reproducing apparatus according to the present invention is characterized by using a substance which changes from an opaque state to a transparent state depending on temperature. That is,
The light from the light source is focused by a focusing lens, the focused light is irradiated on the substance, and the high temperature of the focused light beam is utilized by utilizing the fact that the center of the focused light is higher in temperature than other parts. It is characterized in that the light is radiated to the disk only through the central part.

【0013】その温度により透過度が変化する物質とし
ては、VO2、Sb、AgOXのうち何れか一つより形成
することにある。
The substance whose transmittance changes depending on the temperature is to be formed from any one of VO 2 , Sb and AgO X.

【0014】本発明のまた他の特徴は光源から発生した
光をミラーで反射させて集束レンズに導くようにし、集
束レンズや前記物質をパッケージハウジングで保護し、
ミラー及びパッケージハウジングを支持体に支持させ、
その支持体をアクチュエータに連結された片持ち梁の先
端部に取り付けたことをも特徴とする。
Still another feature of the present invention is that the light generated from the light source is reflected by a mirror and guided to a focusing lens, and the focusing lens and the substance are protected by a package housing.
The mirror and the package housing are supported by a support,
It is also characterized in that the support is attached to the tip of a cantilever connected to the actuator.

【0015】本発明のまた他の特徴は光源とミラーの間
に光ファイバーまたはレンズを形成して、光源から発生
する光をミラーへ伝達させることにある。
Still another feature of the present invention is that an optical fiber or a lens is formed between the light source and the mirror to transmit light generated from the light source to the mirror.

【0016】[0016]

【発明の実施の形態】以下、上記のような特徴を有する
本発明に係る近接場光記録/再生装置を添付の図面を参
照にして説明する。まず、本発明は温度により透明度が
変わる物質からなる熱開口部を用いて近接場光を発生さ
せ、その近接場光を用いて入力レーザービームの波長以
下のデータマークの大きさを実現したものである。また
微細調節アクチュエータに連結された片持ち梁によって
データデータトラックピッチ間の位置を調整するように
している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A near-field optical recording / reproducing apparatus according to the present invention having the above features will be described below with reference to the accompanying drawings. First, the present invention generates near-field light using a thermal opening made of a substance whose transparency changes with temperature, and realizes the size of a data mark equal to or smaller than the wavelength of an input laser beam using the near-field light. is there. The position between the data track pitches is adjusted by a cantilever connected to the fine adjustment actuator.

【0017】図1は本発明の実施形態に係る熱開口部を
備えた近接場光記録/再生装置を示す図であり、図2は
図1の光情報信号ピックアップヘッドの断面図である。
本実施形態の構造は基本的に図1及び図2に示すよう
に、位置微細調整のためのアクチュエータに連結された
片持ち梁1と、片持ち梁1に一体化されたレーザーダイ
オドと、片持ち梁1に連結されたミラーマウント11
と、そして、ミラーマウント11に形成された45°ミ
ラー15と、集束レンズ12と、熱開口部17を発生さ
せる薄膜からなる近接場光発生部13と、その近接場光
発生部13を保護するためのパッケージハウジング16
とより構成されている。
FIG. 1 is a view showing a near-field optical recording / reproducing apparatus having a thermal opening according to an embodiment of the present invention, and FIG. 2 is a sectional view of the optical information signal pickup head of FIG.
The structure of the present embodiment basically includes a cantilever 1 connected to an actuator for fine position adjustment and a laser diode integrated with the cantilever 1, as shown in FIGS. Mirror mount 11 connected to cantilever 1
And a 45 ° mirror 15 formed on the mirror mount 11, a converging lens 12, a near-field light generator 13 made of a thin film for generating a thermal aperture 17, and protecting the near-field light generator 13. Housing 16 for
It is composed of

【0018】レーザーダイオドと45°ミラー15との
間には、レーザーダイオドから発生したレーザービーム
を45°ミラー15へ伝達する光ファイバー14または
レンズ(図示せず)が配置されている。すなわち、図示
しない光源からの光を光ファイバー14でミラー15に
導き、集束レンズ12で集束させる光路で近接場光発生
部13へ導いている。
An optical fiber 14 or a lens (not shown) for transmitting a laser beam generated from the laser diode to the 45 ° mirror 15 is disposed between the laser diode and the 45 ° mirror 15. That is, light from a light source (not shown) is guided to the mirror 15 by the optical fiber 14, and is guided to the near-field light generating unit 13 by an optical path focused by the focusing lens 12.

【0019】レーザーダイオドから発生したレーザービ
ームは光ファイバー14またはレンズを介して45°ミ
ラー15へ到達した後、45°ミラー15によりほぼ9
0゜向きを変えて反射し、集束レンズ12により集束さ
れ、近接場光発生部13を透過する。近接場光発生部1
3を透過したレーザービームは光ディスク2に到達し
て、情報の記録/再生が行われる。ここで、近接場光発
生部13は温度によって不透明から透明へ変わる特性を
有する物質からなっている。
The laser beam generated from the laser diode reaches the 45 ° mirror 15 via the optical fiber 14 or the lens, and then is almost 9 ° by the 45 ° mirror 15.
The light is reflected at an angle of 0 °, is focused by the focusing lens 12, and passes through the near-field light generating unit 13. Near-field light generator 1
The laser beam transmitted through the optical disk 3 reaches the optical disk 2 to record / reproduce information. Here, the near-field light generating unit 13 is made of a material having a characteristic of changing from opaque to transparent depending on the temperature.

【0020】この種の物質としてVO2薄膜、Sb薄
膜、AgOXなどが使用できる。VO2薄膜は、約60〜
70℃の間で金属−絶縁体転移を起こし、その温度以下
では光を透過せず、その温度以上では光を透過させる特
性を有する(Hiroyuki Abe etal, Jpn. J. Appl. Phys.
vol. 36, pp. 165-169, 1997)。また、Sb薄膜は約2
00℃程度にて光透過度が増加する特性を有している
(J. Tominaga et al, Applied Physics Letters, vol.
73, no. 15, p2078)。
As this kind of substance, a VO 2 thin film, a Sb thin film, AgO X or the like can be used. VO 2 thin film is about 60 ~
It has a property of causing a metal-insulator transition between 70 ° C. and not transmitting light below that temperature and transmitting light above that temperature (Hiroyuki Abe et al., Jpn. J. Appl. Phys.
vol. 36, pp. 165-169, 1997). The Sb thin film is about 2
It has the property that light transmittance increases at about 00 ° C. (J. Tominaga et al, Applied Physics Letters, vol.
73, no. 15, p2078).

【0021】このような物質の光学的性質を用いた近接
場光発生部13の熱開口部17の生成原理を図3に基づ
いて説明する。
The principle of generating the thermal aperture 17 of the near-field light generator 13 using the optical properties of such a substance will be described with reference to FIG.

【0022】図3に示すように、レーザービームを近接
場光発生部13に照射すると、レーザービームの光強度
分布により、レーザービームが照射された物質の表面に
はそのレーザービームの強度分布に対応じた温度分布が
生成される。このとき、近接場光発生部13の薄膜は温
度によって光透過度が変わるので、レーザービームの温
度に依存して部分的に光透過度が違ってくる。すなわ
ち、透明になる温度、すなわち臨界温度TC以上の温度
を有する光軸中心周囲の一部分(図3ではd分の半径)
のみ光を透過させる。要するに、透明となった一部だけ
が光を透過させる。この透明な部分によって透過したレ
ーザービームは、一般光学系にて実現可能な光スポット
の大きさの限界点(図にDで示す)以下に減らすことが
できる。
As shown in FIG. 3, when the near-field light generating unit 13 is irradiated with a laser beam, the surface of the material irradiated with the laser beam corresponds to the intensity distribution of the laser beam due to the light intensity distribution of the laser beam. A temperature distribution is generated. At this time, since the light transmittance of the thin film of the near-field light generating unit 13 changes depending on the temperature, the light transmittance partially changes depending on the temperature of the laser beam. That is, a portion around the center of the optical axis having a temperature at which it becomes transparent, that is, a temperature equal to or higher than the critical temperature T C (a radius of d in FIG. 3).
Only transmit light. In short, only the transparent part transmits light. The laser beam transmitted by the transparent portion can be reduced to below the limit (shown by D in the figure) of the size of the light spot that can be realized by the general optical system.

【0023】このように、近接場光発生部13の熱開口
部17により縮小したレーザービームは、図4に示すよ
うに、近接場光18となってディスク基板21の表面の
記録用の薄膜22に照射され、1ビット情報23を記録
または再生する。近接場光18は近接場光発生部13と
ディスク2の表面との間隔が入射光の波長より小さい間
隙gを維持しているからこそ発生する。したがって、本
実施形態では入射するレーザービームの波長より小さく
間隙gを維持するために、空気力学的浮上方法(aerody
namically levitation)を用いている。そのため、片持
ち梁の先端部に集束レンズ12や近接場発生部13を配
置している。
The laser beam reduced by the thermal aperture 17 of the near-field light generating section 13 becomes a near-field light 18 as shown in FIG. And the 1-bit information 23 is recorded or reproduced. The near-field light 18 is generated because the distance between the near-field light generating unit 13 and the surface of the disk 2 maintains a gap g smaller than the wavelength of the incident light. Therefore, in this embodiment, in order to maintain the gap g smaller than the wavelength of the incident laser beam, the aerodynamic levitation method (aerody
namically levitation). Therefore, the focusing lens 12 and the near-field generating unit 13 are arranged at the tip of the cantilever.

【0024】上記のような特性を有する本実施形態に係
る近接場光記録/再生装置の情報記録及び再生方法につ
いて以下に説明する。まず、図1に示すように、ディス
ク2の所望の位置に情報を記録するために、アクチュエ
ータに連結された片持ち梁1を用いて、図2に示す光ピ
ックアップヘッドを移動させる。
An information recording and reproducing method of the near-field optical recording / reproducing apparatus according to the present embodiment having the above characteristics will be described below. First, as shown in FIG. 1, in order to record information at a desired position on the disk 2, the optical pickup head shown in FIG. 2 is moved using the cantilever 1 connected to the actuator.

【0025】次いで、所望の位置に光ピックアップヘッ
ドが到達すると、レーザーダイオドから記録用レーザー
ビームが発生し、このレーザービームは、光ファイバー
14またはレンズを介して45°ミラー15に到達す
る。レーザービームは45°ミラー15により反射さ
れ、集束レンズ12によって近接場光発生部13に集束
する。
Next, when the optical pickup head reaches a desired position, a recording laser beam is generated from the laser diode, and this laser beam reaches the 45 ° mirror 15 via the optical fiber 14 or the lens. The laser beam is reflected by the 45 ° mirror 15 and is focused by the focusing lens 12 on the near-field light generator 13.

【0026】近接場光発生部13に到達したレーザービ
ームは、図3に示すように、臨界温度TC以上の温度を
有する部分のみが近接場光発生部13の熱開口部17を
透過し、近接場光18となる。この近接場光18は、前
述のように収束させた光ビームのさらに一部だけを透過
させた光であるので、ごく小さなスポットとなる。その
小さなスポットとされた近接場光がディスク基板21の
表面に形成されている記録用薄膜に照射されるので、1
ビットの情報23を高密度で記録することができる。
As shown in FIG. 3, only a portion of the laser beam having reached the near-field light generating section 13 having a temperature equal to or higher than the critical temperature T C passes through the thermal opening 17 of the near-field light generating section 13. It becomes the near-field light 18. Since the near-field light 18 is light that transmits only a part of the converged light beam as described above, it becomes a very small spot. The near-field light formed as the small spot is irradiated on the recording thin film formed on the surface of the disk substrate 21.
Bit information 23 can be recorded at high density.

【0027】次いで、アクチュエータを微細に調節して
ピックアップヘッドを所望の位置に移動させて連続的に
情報を記録する。
Next, the actuator is finely adjusted and the pickup head is moved to a desired position to continuously record information.

【0028】ここで、本実施形態における弁別可能な最
小解像度は位置微細調整アクチュエータの最小移動距離
に依存するが、その最小移動距離は約0.1μm以内に
制御可能である。
Here, the minimum resolution that can be distinguished in the present embodiment depends on the minimum movement distance of the position fine adjustment actuator, and the minimum movement distance can be controlled within about 0.1 μm.

【0029】なお、記録した情報を再生する方法は記録
方法と特に変わらないので、その説明は省略する。
Since the method of reproducing the recorded information is not particularly different from the recording method, the description is omitted.

【0030】[0030]

【実施形態の効果】以上説明したように、本発明の近接
場光記録/再生装置によれば、記録/再生のために照射
される光ビーム自体の熱を利用して熱開口部を形成さ
せ、その開口部を通る近接場光を発生させ、その近接場
光を用いて記録/再生させているので、入力レーザービ
ームの波長以下のデータマークの大きさを実現すること
ができる。したがって、光の回折限界を克服して記録密
度を画期的に増加させることができる。さらに、微細調
節アクチュエータに連結された片持ち梁によるデータト
ラックピッチ間の位置を調整しているので、より記録密
度を向上させることができる。
As described above, according to the near-field optical recording / reproducing apparatus of the present invention, the thermal aperture is formed by utilizing the heat of the light beam itself irradiated for recording / reproducing. Since near-field light passing through the opening is generated and recording / reproducing is performed using the near-field light, the size of a data mark smaller than the wavelength of the input laser beam can be realized. Therefore, the recording density can be remarkably increased by overcoming the diffraction limit of light. Further, since the position between data track pitches is adjusted by the cantilever connected to the fine adjustment actuator, the recording density can be further improved.

【0031】以上の内容は、本発明の技術思想を離脱せ
ず限り、多様な変更及び修訂が可能であるということは
当業者にとっては自明なことであろう。それゆえ、本発
明の技術的範囲は実施形態に記載の内容に限らず、特許
請求の範囲によってのみ限定されるべきものである。
It will be obvious to those skilled in the art that various changes and modifications can be made without departing from the technical spirit of the present invention. Therefore, the technical scope of the present invention should not be limited to the contents described in the embodiments, but should be limited only by the appended claims.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明実施形態による熱開口部を有する近接
場光記録/再生装置を概略的に示す図。
FIG. 1 is a diagram schematically illustrating a near-field optical recording / reproducing apparatus having a thermal opening according to an embodiment of the present invention.

【図2】 図1の光ピックアップヘッドを示す構造断面
図。
FIG. 2 is a structural sectional view showing the optical pickup head of FIG. 1;

【図3】 図2の近接場光発生部の熱開口部生成原理を
示す図。
FIG. 3 is a diagram illustrating a principle of generating a thermal aperture of the near-field light generating unit in FIG. 2;

【図4】 熱開口部による近接場光生成及び情報記録/
再生原理を示す図。
FIG. 4 Generation of near-field light and information recording /
The figure which shows a reproduction | regeneration principle.

【符号の説明】[Explanation of symbols]

1:片持ち梁 2:ディスク 11:ミラーマウント 12:集束レンズ 13:近接場光発生部 14:光ファイバー 15:45°ミラー 16:パッケージハウジング 17:熱開口部 18:近接場光 21:ディスク基板 22:相遷移薄膜 23:1ビット情報 1: cantilever 2: disk 11: mirror mount 12: focusing lens 13: near-field light generator 14: optical fiber 15: 45 ° mirror 16: package housing 17: thermal aperture 18: near-field light 21: disk substrate 22 : Phase transition thin film 23: 1 bit information

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G11B 7/09 G11B 7/09 D (72)発明者 ジョン・ウク・ブ 大韓民国・キョンギ−ド・ソンナム−シ・ プンダン−ク・チョンジャ−ドン・(番地 なし)・ハンソル ジュゴン アパートメ ント・510−1501 (72)発明者 チョル・パク 大韓民国・キョンギ−ド・ヨンギン−シ・ キハン−アプ・シンガル−リ・14−4・シ ンミジョ アパートメント・102−1403──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification FI FI Theme Court ゛ (Reference) G11B 7/09 G11B 7/09 D (72) Inventor John Wook Boo Republic of Korea Shi Pundang-Chong Chongja-Dong (No address) Hansol Dugong Apartment 510-1501 (72) Inventor Chor Park South Korea 14-4 ・ Shimmijo Apartment ・ 102-1403

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 光を発生する光源と、 前記光源から発生した光を集束する集束レンズと、 温度により光透過度が変わる物質からなる近接場発生部
と、 前記光源から集束レンズを通して光を前記近接場発生部
に導く光路とを有することを特徴とする近接場光記録/
再生装置。
A light source for generating light; a converging lens for converging light generated from the light source; a near-field generating unit made of a substance whose light transmittance changes according to temperature; And an optical path for guiding to a near-field generator.
Playback device.
【請求項2】 前記光源はレーザーダイオドであること
を特徴とする請求項1に記載の近接場光記録/再生装
置。
2. The near-field optical recording / reproducing apparatus according to claim 1, wherein the light source is a laser diode.
【請求項3】 前記光源から発生した光を前記集束レン
ズに反射させるミラーと、 前記集束レンズ及び近接場発生部を保護するパッケージ
ハウジングと、 前記ミラー及びパッケージハウジングを支持する支持体
と、をさらに含むことを特徴とする請求項1に記載の近
接場光記録/再生装置。
3. A mirror for reflecting the light generated from the light source to the focusing lens, a package housing for protecting the focusing lens and the near-field generating unit, and a support for supporting the mirror and the package housing. 2. The near-field optical recording / reproducing apparatus according to claim 1, further comprising:
【請求項4】 前記支持体に連結され、前記支持体を移
動させる片持ち梁をさらに含むことを特徴とする請求項
3に記載の近接場光記録/再生装置。
4. The near-field optical recording / reproducing apparatus according to claim 3, further comprising a cantilever connected to the support and moving the support.
【請求項5】 前記片持ち梁はアクチュエータに連結さ
れ、微細に位置が調節されることを特徴とする請求項4
に記載の近接場光記録/再生装置。
5. The apparatus according to claim 4, wherein the cantilever is connected to an actuator and is finely adjusted in position.
3. The near-field optical recording / reproducing apparatus according to claim 1.
【請求項6】 前記片持ち梁に前記光源が位置すること
を特徴とする請求項4に記載の近接場光記録/再生装
置。
6. The near-field optical recording / reproducing apparatus according to claim 4, wherein the light source is located on the cantilever.
【請求項7】 前記ミラーは45°ミラーであることを
特徴とする請求項3に記載の近接場光記録/再生装置。
7. The near-field optical recording / reproducing apparatus according to claim 3, wherein the mirror is a 45 ° mirror.
【請求項8】 前記光源とミラーの間には光源から発生
する光がミラーに伝達されるよう光ファイバー、レンズ
のうち何れか一つが形成されることを特徴とする請求項
3に記載の近接場光記録/再生装置。
8. The near field according to claim 3, wherein one of an optical fiber and a lens is formed between the light source and the mirror so that light generated from the light source is transmitted to the mirror. Optical recording / reproducing device.
【請求項9】 前記近接場発生部はVO2、Sb、Ag
Xのうち何れか一つからなることを特徴とする請求項
1に記載の近接場光記録/再生装置。
9. The near-field generator includes VO 2 , Sb, Ag.
O near field optical recording / reproducing apparatus according to claim 1, characterized in that it consists of one of X.
JP2000113472A 1999-04-15 2000-04-14 Near-field light recording/reproducing device Pending JP2000331375A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR13374/1999 1999-04-15
KR1019990013374A KR100317283B1 (en) 1999-04-15 1999-04-15 apparatus for optical recording/reading using near field

Publications (1)

Publication Number Publication Date
JP2000331375A true JP2000331375A (en) 2000-11-30

Family

ID=19580239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000113472A Pending JP2000331375A (en) 1999-04-15 2000-04-14 Near-field light recording/reproducing device

Country Status (5)

Country Link
US (1) US6535474B1 (en)
EP (1) EP1045380B1 (en)
JP (1) JP2000331375A (en)
KR (1) KR100317283B1 (en)
DE (1) DE60017966T2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100399052B1 (en) * 2000-12-22 2003-09-26 한국전자통신연구원 Apparatus for recording and reproducing high-density information using multi-functional probe

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4145985B2 (en) * 1998-02-10 2008-09-03 セイコーインスツル株式会社 Information recording device
JP2002005810A (en) * 2000-06-16 2002-01-09 Canon Inc Probe and its manufacturing method, surface-observing device, exposing device, and information-processing device
US20030067860A1 (en) * 2001-10-10 2003-04-10 Industrial Technology Research Institute Near-field optical flying head
KR100451156B1 (en) * 2001-11-30 2004-10-02 엘지전자 주식회사 Apparatus for near field optical recorder
US7483229B2 (en) * 2004-12-08 2009-01-27 Seagate Technology Llc Optical coupling to data recording transducer
KR100735110B1 (en) * 2006-01-09 2007-07-06 엘지전자 주식회사 Lens assembly constructing metohd for near field recording
CN102426269B (en) * 2011-08-31 2013-05-08 北京大学 Low-temperature scanning near field optical microscope

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05234117A (en) * 1991-12-24 1993-09-10 Internatl Business Mach Corp <Ibm> Optical head device and optical disk storage device
US6044056A (en) * 1996-07-30 2000-03-28 Seagate Technology, Inc. Flying optical head with dynamic mirror
KR19990045450A (en) * 1997-11-25 1999-06-25 가나이 쓰도무 Optical recording or reproducing method of information and optical recording or reproducing apparatus
US6154438A (en) * 1998-02-06 2000-11-28 Seagate Technology, Inc. Storage disk having surface variations that vary minimally in height relative to a datum
JP3773681B2 (en) * 1999-01-08 2006-05-10 富士通株式会社 Optical head, optical component, and optical storage device
US6359852B1 (en) * 1999-01-08 2002-03-19 Fuji Xerox Co., Ltd. Optical head and optical disk apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100399052B1 (en) * 2000-12-22 2003-09-26 한국전자통신연구원 Apparatus for recording and reproducing high-density information using multi-functional probe

Also Published As

Publication number Publication date
EP1045380A2 (en) 2000-10-18
DE60017966T2 (en) 2006-01-19
US6535474B1 (en) 2003-03-18
EP1045380A3 (en) 2002-01-09
KR20000066349A (en) 2000-11-15
KR100317283B1 (en) 2001-12-22
DE60017966D1 (en) 2005-03-17
EP1045380B1 (en) 2005-02-09

Similar Documents

Publication Publication Date Title
Milster Near-field optics: a new tool for data storage
JP2011210363A (en) Apparatus for storing data
US7738207B2 (en) Optical storage system using an antenna for recording information data to a phase-change type medium
JP4230087B2 (en) Optical reproduction recording method and optical apparatus
EP1063641B1 (en) Information recording apparatus
JP2000331375A (en) Near-field light recording/reproducing device
US7651793B2 (en) High density recording medium with super-resolution near-field structure manufactured using high-melting point metal oxide or silicon oxide mask layer
JP3492934B2 (en) Information recording / reproducing device
JP2000113485A (en) Optical head as well as optical information recorder and optical information reproducing device using the same
JP2002109769A (en) High function and high density optical head equipped with semiconductor laser
JP2003296963A (en) Optical recording/reproducing device
JP4381540B2 (en) Reproduction method of optical recording medium
JPH0721564A (en) Method and device for recording and reproducing optical recording medium
JP4257888B2 (en) Near-field optical recording device
JP3834765B2 (en) Fiber probe
JPH1139738A (en) Magneto-optical disk and memory device using the same
KR100438582B1 (en) Slider head apparatus of magneto-optic recording/reproducing system
JP3359787B2 (en) Magneto-optical recording / reproducing device
JP2000090483A (en) Recording medium having opening array and its production as well as recording and reproduction device utilizing proximate field by the same and their method
JP2002157741A (en) Optical information recording and reproducing method
JP2002074744A (en) Optical information recording medium and optical information recording method
KR20010104018A (en) optical pick-up head and method for fabricating the same and apparatus for record/playback of optical information using those
JP2002074729A (en) Optical pickup device, information reproducing device, and information recording and reproducing device
JP2001067668A (en) Optical recording and reproducing method and optical device using the same
JP2001110090A (en) Recording medium and method of manufacturing the same, as well as optical information recording and reproducing device

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030527

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031203

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040130

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20040227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040716