JP2002074744A - Optical information recording medium and optical information recording method - Google Patents

Optical information recording medium and optical information recording method

Info

Publication number
JP2002074744A
JP2002074744A JP2000267293A JP2000267293A JP2002074744A JP 2002074744 A JP2002074744 A JP 2002074744A JP 2000267293 A JP2000267293 A JP 2000267293A JP 2000267293 A JP2000267293 A JP 2000267293A JP 2002074744 A JP2002074744 A JP 2002074744A
Authority
JP
Japan
Prior art keywords
layer
optical information
information recording
light
field light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000267293A
Other languages
Japanese (ja)
Inventor
Takao Saito
隆雄 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP2000267293A priority Critical patent/JP2002074744A/en
Publication of JP2002074744A publication Critical patent/JP2002074744A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an optical information recording medium for enabling high density recording and reproduction using near-field light in a practical-level optical information recording medium and to provide an optical information recording method using the medium. SOLUTION: A refraction adjusting layer 2 having a refractive index nr which satisfies the relation of NA<nr to the numerical aperture NA of an optical system which projects laser light is formed on a light transmissive substrate 1 and a dielectric layer 3 for converting near-field light to propagative light, a recording layer 4 and a protective layer 5 are further formed in succession to obtain the objective optical information recording medium. The refraction adjusting layer 2 is irradiated with light from the substrate 1 to emit evanescent light and this evanescent light is converted to propagative light through the dielectric layer 3 to form a pit in the recording layer 4.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、光情報記録再生
方法に関し、特に、近接場光を用いて高密度の記録を可
能とした光情報記録方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical information recording / reproducing method, and more particularly to an optical information recording method capable of performing high-density recording using near-field light.

【0002】[0002]

【従来の技術】近年、光情報記録媒体において、さらな
る記憶容量の増大が要求され、これに伴って光情報記録
媒体の高密度化が検討されている。
2. Description of the Related Art In recent years, an optical information recording medium has been required to have a further increased storage capacity, and accordingly, an increase in the density of the optical information recording medium has been studied.

【0003】光情報記録媒体の記録密度の向上には、記
録ピットのサイズの縮小が不可欠であり、この記録ピッ
トのサイズは、基本的に、使用するレーザビームの波長
と対物レンズの開口数(NA)とによって決定する。
In order to improve the recording density of an optical information recording medium, it is essential to reduce the size of a recording pit. The size of the recording pit basically depends on the wavelength of a laser beam to be used and the numerical aperture of an objective lens. NA).

【0004】したがって、従来は、高密度化の方向とし
て、 (1) レーザの波長を短波長化する (2) 対物レンズの開口数(NA)を大きくする の2点に重点が置かれてきた。
[0004] Therefore, conventionally, the two directions of increasing the density have been focused on (1) shortening the wavelength of the laser and (2) increasing the numerical aperture (NA) of the objective lens. .

【0005】しかし、これらの手法による光情報記録媒
体の高密度化には限界があり、更なる大容量化を進めて
いくためには新たな手法が必要となる。
[0005] However, there is a limit in increasing the density of an optical information recording medium by these methods, and a new method is required to further increase the capacity.

【0006】そこで、最近になって注目されているの
が、近接場光を用いた光記録技術である。
Therefore, an optical recording technique using near-field light has recently attracted attention.

【0007】一般に、近接場光は、通常の光のように伝
搬せず、媒質表面のごく近傍にまとわりつくように局在
する。したがって、その空間分布は媒質の形状や寸法に
沿うので、微細形状の媒質を用いることにより、波長に
よる制約を越えた微細な空間分布の近接場光スポットを
形成することが可能になる。
In general, near-field light does not propagate like ordinary light, but is localized so as to cling to the vicinity of the medium surface. Therefore, the spatial distribution follows the shape and dimensions of the medium. Therefore, by using a medium having a fine shape, it becomes possible to form a near-field light spot having a fine spatial distribution that exceeds the restrictions imposed by the wavelength.

【0008】この原理に基づき、近接場光発生素子とし
て細針状プローブを使用し、光の回折限界以下の解像度
を得ることを目指した走査近接場光学顕微鏡(SNO
M:Scanning Near-Field Optical Microscope)の
開発が数年前から行なわれている。
Based on this principle, a scanning near-field optical microscope (SNO) which uses a fine needle probe as a near-field light generating element and aims at obtaining a resolution lower than the diffraction limit of light.
M: Scanning Near-Field Optical Microscope) has been developed for several years.

【0009】そして、最近、このSNOMの技術を応用
した光記録の原理実験がなされ、プローブの先端開口の
幾何学的な大きさに相当するナノメータオーダの非常に
小さなピットの記録が可能であり、現行の光記録技術の
限界を大幅に上回る超高密度記録が可能となることが示
された。
Recently, a principle experiment of optical recording using the SNOM technique has been performed, and it is possible to record a very small pit of nanometer order corresponding to the geometric size of the tip opening of the probe. It has been shown that ultra-high-density recording, which greatly exceeds the limits of current optical recording technology, is possible.

【0010】[0010]

【発明が解決しようとする課題】しかし、近接場光の分
布は50nm程度と非常に短いため、高速で回転する光
情報記録媒体とプローブ先端部との距離を一定(〜数十
nm)に保つ制御が困難で、プローブと光情報記録媒体
との接触が発生して記録データが破壊されてしまう等の
問題を生じるため、光ディスク等の実用レベルの光情報
記録媒体にこの技術を応用するのは困難であった。
However, since the distribution of the near-field light is as short as about 50 nm, the distance between the optical information recording medium rotating at a high speed and the tip of the probe is kept constant (up to several tens nm). This technique is difficult to control and causes problems such as the contact between the probe and the optical information recording medium and the destruction of the recorded data, which makes it difficult to apply this technology to practical optical information recording media such as optical disks. It was difficult.

【0011】また、プローブ先端を数十nmオーダで加
工する過程が煩雑で、大量生産に不適切であるという不
都合も生じていた。
In addition, the process of processing the tip of the probe on the order of several tens of nanometers is complicated and unsuitable for mass production.

【0012】そこで、この発明は、近接場光を用いた高
密度記録再生を実用レベルの光情報記録媒体において可
能とするための光情報記録媒体および光情報記録方法を
提供することを目的とする。
It is an object of the present invention to provide an optical information recording medium and an optical information recording method for enabling high-density recording and reproduction using near-field light on a practical level optical information recording medium. .

【0013】[0013]

【課題を解決するための手段】上述した目的を達成する
ため、この発明は、レーザ光の照射により近接場光を発
生する近接場光発生層と、前記近接場光発生層で発生さ
れた近接場光により記録が行われる記録層とを具備し、
前記近接場光発生層は、前記レーザ光を射出する光学系
の開口数NAに対して、 n<NA を満たす屈折率nを有する材料で形成されることを特徴
とする。
To achieve the above object, the present invention provides a near-field light generating layer for generating near-field light by irradiating a laser beam, and a near-field light generating layer generated by the near-field light generating layer. A recording layer on which recording is performed by field light,
The near-field light generating layer is formed of a material having a refractive index n satisfying n <NA with respect to a numerical aperture NA of the optical system that emits the laser light.

【0014】さらに、前記近接場光発生層と前記記録層
との間に該近接場光発生層で発生した近接場光を伝搬光
に変換する誘電体層を具備させると好ましい。
Further, it is preferable that a dielectric layer for converting near-field light generated in the near-field light generating layer into propagation light is provided between the near-field light generating layer and the recording layer.

【0015】なお、この近接場光を伝搬するための誘電
体層は、例えば、近接場光発生層が有機色素で形成され
る場合には必ずしも必要ではなく、誘電体層を形成する
か否かは近接場光発生層を形成する素材によって決めれ
ばよい。
The dielectric layer for propagating the near-field light is not always necessary, for example, when the near-field light generating layer is formed of an organic dye. May be determined according to the material forming the near-field light generating layer.

【0016】また、前記近接場光発生層は、少なくとも
前記レーザ光の波長以下にその膜厚が制御される。
The thickness of the near-field light generating layer is controlled to at least the wavelength of the laser light.

【0017】また、前記記録層は、前記近接場光により
その光学特性を可逆的、若しくは非可逆的に変化させて
前記レーザ光に対応する情報の記録を行う。
The recording layer records information corresponding to the laser light by changing its optical characteristics reversibly or irreversibly by the near-field light.

【0018】さらに、前記近接場光発生層と前記記録層
との間、もしくは、前記誘電体層と前記記録層との間に
緩衝層を形成すると、前記記録層のオーバーライト耐性
が向上する。
Further, when a buffer layer is formed between the near-field light generating layer and the recording layer or between the dielectric layer and the recording layer, the recording layer has improved overwrite resistance.

【0019】また、この発明は、レーザ光を射出する光
学系の開口数NAに対し n<NA を満たす屈折率nを有する材料で形成される光情報記録
媒体の近接場光発生層に前記レーザ光を照射することに
より、該近接場光発生層から近接場光を発生させ、前記
近接場光により前記記録層の光学的特性を変化させて情
報の記録を行うことを特徴とする。
The present invention also relates to a near-field light generating layer of an optical information recording medium formed of a material having a refractive index n satisfying n <NA with respect to a numerical aperture NA of an optical system for emitting laser light. By irradiating light, near-field light is generated from the near-field light generating layer, and information is recorded by changing optical characteristics of the recording layer with the near-field light.

【0020】さらに、この発明は、レーザ光を射出する
光学系の開口数NAに対し n<NA を満たす屈折率nを有する材料で形成される光情報記録
媒体の近接場光発生層に前記レーザ光を照射することに
より、該近接場光発生層から近接場光を発生させ、該近
接場光発生層から発生した近接場光を誘電体層で記録層
側に伝播する伝播光に変換し、前記誘電体層で変換され
た伝播光により前記記録層の光学的特性を変化させて情
報の記録を行うことを特徴とする。
Further, the present invention provides a near-field light generating layer of an optical information recording medium formed of a material having a refractive index n satisfying n <NA with respect to a numerical aperture NA of an optical system for emitting laser light. By irradiating light, a near-field light is generated from the near-field light generating layer, and the near-field light generated from the near-field light generating layer is converted into a propagating light that propagates to the recording layer side by the dielectric layer. Information is recorded by changing the optical characteristics of the recording layer with the propagating light converted by the dielectric layer.

【0021】[0021]

【発明の実施の形態】以下、この発明に係わる光情報記
録媒体および光情報記録方法の実施の形態を添付図面を
参照して詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of an optical information recording medium and an optical information recording method according to the present invention will be described below in detail with reference to the accompanying drawings.

【0022】通常、高屈折率媒質から低屈折率媒質に臨
界角以上で光が入射すると、媒質の境界面で入射光は全
反射し、このとき、境界面の低屈折率媒質側にはエバネ
ッセント光と呼ばれる近接場光が発生する。
Normally, when light is incident from a high refractive index medium to a low refractive index medium at a critical angle or more, the incident light is totally reflected at the boundary surface of the medium. At this time, the evanescent light is applied to the low refractive index medium side of the boundary surface. Near-field light called light is generated.

【0023】ここで、高屈折率媒質の屈折率をnH、低
屈折率媒質の屈折率をnL、光の入射角をθi、屈折角
をθrとすると、全反射は sinθr=(nH/nL)sinθi>1 ・・・ (1) を満たすときに起こる。
Here, assuming that the refractive index of the high refractive index medium is nH, the refractive index of the low refractive index medium is nL, the incident angle of light is θi, and the refractive angle is θr, the total reflection is sin θr = (nH / nL) sin θi> 1 (1) It occurs when:

【0024】したがって、高屈折率媒質および低屈折率
媒質が決まり屈折率nHおよびnLが決定すると、媒質
界面において全反射が起きるか否かは、光の入射角θi
のみに依存する。
Therefore, when the high refractive index medium and the low refractive index medium are determined and the refractive indices nH and nL are determined, whether or not total reflection occurs at the interface of the medium is determined by the incident angle θi of the light.
Only depends on.

【0025】なお、 (nH/nL)sinθc=1 を満たす入射角θcを臨界角と呼ぶ。The incident angle θc satisfying (nH / nL) sin θc = 1 is called a critical angle.

【0026】ところで、レンズの開口数NAは、レンズ
の最外周部が物点を見込む角度をθ、物点とレンズとの
間の空間を満たす媒質の屈折率をnとすると NA=nsinθ ・・・ (2) と表される。
By the way, the numerical aperture NA of the lens is as follows: θ is the angle at which the outermost periphery of the lens looks at the object point, and n is the refractive index of the medium filling the space between the object point and the lens.・ It is expressed as (2).

【0027】したがって、レンズと物点との間を満たす
媒質の屈折率nが(1)式におけるnHであるとき、レ
ンズの最外周部が物点を見込む角度θ<θcであれば、
このレンズにより低屈折率媒質に集光されるレーザ光は
媒質界面で全反射されずに全て低屈折率媒質に吸収され
る(図4(a)に示す)。
Therefore, when the refractive index n of the medium that fills the space between the lens and the object point is nH in the equation (1), if the angle θ <θc at which the outermost peripheral portion of the lens looks at the object point,
The laser light condensed on the low-refractive-index medium by this lens is not totally reflected at the interface of the medium but is entirely absorbed by the low-refractive-index medium (shown in FIG. 4A).

【0028】しかし、θ>θcであるレンズによってレ
ーザ光が集光されると、このレーザ光の低屈折率媒質へ
の入射角がθcより大きくなる部分(図4(b)の光路
Crと光路bとの間の部分:以下、全反射領域という)
は、媒質界面において全反射される。
However, when the laser beam is condensed by a lens in which θ> θc, the incident angle of the laser beam on the low refractive index medium becomes larger than θc (the optical path Cr and the optical path in FIG. 4B). b): hereinafter referred to as total reflection area
Is totally reflected at the medium interface.

【0029】したがって、レンズの最外周部が物点を見
込む角度θ>θcとなるように光学系を設計すれば、こ
の光学系が射出するレーザ光の一部は媒質界面において
図4(b)に示すように全反射されるので、媒質界面の
低屈折率媒質側にエバネッセント光を発生させることが
できる。
Therefore, if the optical system is designed such that the outermost portion of the lens has an angle θ> θc at which the object point can be seen, a part of the laser light emitted from this optical system will be at the interface of the medium as shown in FIG. As shown in (1), evanescent light can be generated on the low refractive index medium side of the medium interface.

【0030】そして、このθの値が大きいほど、つま
り、(2)式より、光学系の開口数NAの値が大きいほ
ど、媒質界面に集光されるレーザ光の全反射領域が広く
なり、エバネッセント光が発生しやすくなる。
The larger the value of θ, that is, from equation (2), the larger the value of the numerical aperture NA of the optical system, the larger the total reflection area of the laser light focused on the interface of the medium, Evanescent light is easily generated.

【0031】ところが、NAの値が大きくなるとレンズ
の焦点距離が短くなる(図4においてL1>L2)た
め、レンズと媒体との距離を一定に保つ制御が難しくな
る。また、NAは、焦点深度等の光学系の安定性を決定
する重要な要素であり、一般に、開口数NAが小さいほ
ど光学系としては安定であるので、あまりNAを大きく
設定することは好ましくない。
However, as the value of NA increases, the focal length of the lens becomes shorter (L1> L2 in FIG. 4), so that it is difficult to control to keep the distance between the lens and the medium constant. Further, NA is an important factor that determines the stability of the optical system such as the depth of focus, and generally, the smaller the numerical aperture NA, the more stable the optical system, and therefore, it is not preferable to set the NA too large. .

【0032】そこで、低NAのレンズでもエバネッセン
ト光を発生させるのに十分な全反射を起こすことのでき
る光情報記録媒体について、以下に説明する。
Therefore, an optical information recording medium capable of causing total reflection sufficient to generate evanescent light even with a low NA lens will be described below.

【0033】図1は、この発明に係る光情報記録媒体の
断面図である。
FIG. 1 is a sectional view of an optical information recording medium according to the present invention.

【0034】図1において、光情報記録媒体は、透光性
基盤1、屈折調整層2、誘電体層3、記録層4、保護層
5から構成される。
In FIG. 1, the optical information recording medium comprises a light-transmitting substrate 1, a refraction adjusting layer 2, a dielectric layer 3, a recording layer 4, and a protective layer 5.

【0035】透光性基盤1は、透明度が高く、耐熱性、
耐湿性、衝撃性に優れた材料を用いて形成される。具体
的には、ポリカーボネート、アクリル等を用いることが
できるが、これらに限られるものではない。
The translucent substrate 1 has high transparency, heat resistance,
It is formed using a material having excellent moisture resistance and impact resistance. Specifically, polycarbonate, acrylic, or the like can be used, but is not limited thereto.

【0036】透光性基盤1には、必要に応じて、レーザ
ヘッドの位置を制御するためのプリグルーブが、適切な
深さおよび幅で形成される。
A pre-groove for controlling the position of the laser head is formed on the translucent substrate 1 at an appropriate depth and width as needed.

【0037】このような透光性基盤1の表面に、屈折調
整層2が形成される。
The refraction adjusting layer 2 is formed on the surface of the light transmitting substrate 1.

【0038】屈折調整層2は、透光性基盤1よりも低い
屈折率の材料で形成され、透光性基盤1との界面におい
てエバネッセント光を発生させるものである。
The refraction adjusting layer 2 is formed of a material having a lower refractive index than the translucent substrate 1, and generates evanescent light at the interface with the translucent substrate 1.

【0039】ここで、議論を簡単にするために、透光性
基盤1の屈折率を空気と同じnaとして、屈折調整層2
の屈折率をnrとしたとき、(1)式、(2)式は次の
ようになる。
Here, in order to simplify the discussion, the refractive index of the translucent substrate 1 is set to the same na as that of air, and
(1) and (2) are as follows, where nr is the refractive index of

【0040】 (na/nr)sinθ>1 ・・・ (1)’ NA=(na)sinθ ・・・ (2)’ そして、(2)’式を(1)’式に代入すると、 (1/nr)NA>1 NA>nr ・・・ (3) の関係が導かれる。(Na / nr) sin θ> 1 (1) ′ NA = (na) sin θ (2) ′ Then, when the expression (2) ′ is substituted into the expression (1) ′, the following expression is obtained. / Nr) NA> 1 NA> nr (3) is derived.

【0041】したがって、使用する光学系の開口数NA
に対して(3)式を満足する屈折率nrを有する材料で
屈折調整層2を形成すれば、低NAのレンズで集光され
るレーザ光でも、その一部を屈折調整層2と透光性基盤
1との界面で全反射させることができる。
Therefore, the numerical aperture NA of the optical system used
In contrast, if the refraction adjusting layer 2 is formed of a material having a refractive index nr that satisfies the expression (3), even a part of the laser light condensed by the low NA lens is transmitted to the refraction adjusting layer 2. Total reflection at the interface with the conductive substrate 1.

【0042】例えば、波長650nmのレーザ光に対し
てはAuがnr=0.16を示し、波長400nmのレ
ーザ光に対してはAlがnr=0.49を示すので、こ
れらの材料で屈折調整層2を形成することによって、光
ディスク装置にごく一般的に使用されているNA=0.
60の光学系でもエバネッセント光を発生させることが
できる。
For example, Au shows nr = 0.16 for a laser beam having a wavelength of 650 nm, and Al shows nr = 0.49 for a laser beam having a wavelength of 400 nm. By forming the layer 2, NA = 0.
Evanescent light can also be generated by the 60 optical systems.

【0043】なお、屈折調整層2の透光性基盤1との界
面で発生したエバネッセント光を誘電体層3で伝搬光に
変換するために、屈折調整層2の膜厚はエバネッセント
光の伝搬距離以下に制御する必要がある。
In order to convert the evanescent light generated at the interface between the refraction adjustment layer 2 and the translucent substrate 1 into propagation light at the dielectric layer 3, the thickness of the refraction adjustment layer 2 is set to be equal to the propagation distance of the evanescent light. It is necessary to control the following.

【0044】通常の近接場光の分布は数十nmと非常に
短いが、エバネッセント光は使用レーザ光の波長程度に
は伝搬するので、屈折調整層2の膜厚は、少なくとも使
用レーザ光の波長以下(〜数百nm)に制御すればよ
い。
The normal distribution of near-field light is very short, several tens of nanometers. However, since the evanescent light propagates to the wavelength of the used laser light, the thickness of the refraction adjusting layer 2 should be at least the wavelength of the used laser light. What is necessary is just to control to below (to several hundred nm).

【0045】誘電体層3は、例えば、ZnS‐SiO
2、Si3N4等によって形成され、屈折調整層2で発
生した近接場光を伝搬光に変換する機能を持つ。
The dielectric layer 3 is made of, for example, ZnS-SiO
2, formed of Si3N4 or the like, and has a function of converting near-field light generated in the refraction adjusting layer 2 into propagation light.

【0046】記録層4には、光または熱に応答して光学
的な特性が変化する材料が用いられる。具体的には、例
えば、可逆的に光学的特性が変化する相変化材料である
GeSbTe合金、AgInSbTe合金等が用いら
れ、これらを合金化させたターゲットを用いて成膜する
か、幾つかのユニットに分離して成膜することにより製
造することができる。
The recording layer 4 is made of a material whose optical characteristics change in response to light or heat. Specifically, for example, a GeSbTe alloy, an AgInSbTe alloy, or the like, which is a phase change material whose optical characteristics change reversibly, is used. A film is formed using a target obtained by alloying these, or several units are formed. It can be manufactured by forming a film separately.

【0047】さらに、記録層としてこれらの合金を用い
るためには、成膜直後のいわゆるアスデポ状態のものを
そのまま用いても良いが、記録を行なう前に、透光性基
盤1上に成膜とした後に、一旦、光または熱によりラン
ダム状態の大きいアズデポ状態から結晶状態とすること
により、相として安定化させた後、再びレーザ光または
過熱により膜の融点以上まで昇温し、これを超高速で冷
却することにより、非結晶状態としたものを用いること
が有効である。
Further, in order to use these alloys as the recording layer, a so-called as-deposited state immediately after the film formation may be used as it is, but before the recording, the film is formed on the translucent substrate 1. After that, once the phase is stabilized by changing the as-deposited state from a large random state to a crystalline state by light or heat, the temperature is raised again to the melting point or higher of the film by laser light or overheating, and this is performed at an ultra-high speed. It is effective to use a material that has been brought into an amorphous state by cooling at a low temperature.

【0048】このような記録層4の表面に保護層5が形
成され、この保護層5には、例えば透光性基盤1と同様
の材料が用いられる。
A protective layer 5 is formed on the surface of the recording layer 4, and the protective layer 5 is made of, for example, the same material as the light-transmitting substrate 1.

【0049】図2は、図1の光情報記録媒体の透光性基
盤1と屈折調整層2との間に中間層6を設けた場合の光
情報記録媒体の断面図である。
FIG. 2 is a cross-sectional view of the optical information recording medium of the optical information recording medium of FIG. 1 when an intermediate layer 6 is provided between the translucent substrate 1 and the refraction adjusting layer 2.

【0050】ここでも図1と同様に、光の入射角をθ
i、透光性基盤1の屈折率を空気と同じna、屈折調整
層2の屈折率をnrおよび屈折角をθrとし、中間層6
の屈折率をnm、屈折角をθmとすると、屈折角の法則
より、 (na)sinθi=(nm)sinθm=(nr)sinθr ・・・ (4) の関係が成り立ち、したがって結局は (na)sinθi=(nr)sinθr sinθi=(na/nr)sinθr>1 ・・・ (1)’ の関係が導かれるので、図1の光情報記録媒体と同様に
(3)式の条件を満たす開口数NAの光学系を用いるこ
とによって、中間層6と屈折調整層2との界面にエバネ
ッセント光を発生させることができる。
Here, similarly to FIG. 1, the incident angle of light is θ
i, the refractive index of the translucent substrate 1 is na, which is the same as that of air, the refractive index of the refraction adjusting layer 2 is nr, and the refraction angle is θr.
If the refractive index is nm and the refraction angle is θm, the relationship of (na) sin θi = (nm) sin θm = (nr) sin θr is established from the law of refraction angle, and therefore (na) sin θi = (nr) sin θr sin θi = (na / nr) sin θr> 1 (1) ′ Since the relationship of (1) ′ is derived, the numerical aperture that satisfies the condition of expression (3) is the same as in the optical information recording medium of FIG. By using the NA optical system, evanescent light can be generated at the interface between the intermediate layer 6 and the refraction adjusting layer 2.

【0051】つまり、透光性基盤1と屈折調整層2との
間に他の層が何層か形成された光情報記録媒体において
も、(3)式の条件を満たすNAの光学系を用いること
によって屈折調整層2でエバネッセント光を発生させる
ことができ、図1の光情報記録媒体と同様の機能を発現
させることができる。
That is, even in an optical information recording medium in which some other layers are formed between the light-transmitting substrate 1 and the refraction adjusting layer 2, an NA optical system satisfying the condition of the expression (3) is used. Thereby, evanescent light can be generated in the refraction adjusting layer 2, and the same function as the optical information recording medium in FIG. 1 can be realized.

【0052】また、図3(a)は、上記のような構成の
光情報記録媒体において、誘電体層3と記録層4との間
に緩衝層7aを設けた場合の図であり、図3(b)は、
記録層4と保護層5との間に緩衝層7bを設けた場合の
図である。さらに、図3(c)は、記録層4の両面に緩
衝層7aおよび7bを設けた場合の図であり、これらの
図に示すように、記録層4の表面に緩衝層を設けること
によって、光情報記録媒体のオーバーライト特性が向上
する。
FIG. 3A is a diagram showing a case where a buffer layer 7a is provided between the dielectric layer 3 and the recording layer 4 in the optical information recording medium having the above-described configuration. (B)
FIG. 4 is a diagram when a buffer layer 7b is provided between a recording layer 4 and a protective layer 5. Further, FIG. 3C is a diagram in the case where the buffer layers 7a and 7b are provided on both surfaces of the recording layer 4. As shown in these figures, by providing the buffer layer on the surface of the recording layer 4, The overwrite characteristics of the optical information recording medium are improved.

【0053】なお、緩衝層7a、7bには、GeN等が
材料として用いられる。
The buffer layers 7a and 7b are made of GeN or the like.

【0054】上記のように構成された光情報記録媒体に
対して、図1に示すように、レーザ光を透光性基盤1側
から照射すと、界面Sで照射レーザ光の全反射領域部分
が全反射され、この全反射によって界面Sの屈折調整層
2側にエバネッセント光が発生する。
As shown in FIG. 1, when the optical information recording medium having the above-described structure is irradiated with laser light from the light-transmitting substrate 1 side, the interface S forms a part of the total reflection area of the irradiated laser light. Is totally reflected, and evanescent light is generated on the refraction adjusting layer 2 side of the interface S by the total reflection.

【0055】発生したエバネッセント光は、誘電体層3
で伝搬光に変換され、この伝搬光に変換されたエバネッ
セント光によって、記録層4への記録がなされる。
The evanescent light generated is transmitted to the dielectric layer 3
Is converted into propagation light, and recording on the recording layer 4 is performed by the evanescent light converted into the propagation light.

【0056】なお、レーザ光を射出する光学系は、通常
のDVD−RAM等で用いられているものと同様の光学
ヘッドを用いることができ、かつ、光学ヘッドと光情報
記録媒体との距離も通常のDVD−RAM等と同程度に
制御すれば良いので、従来の光情報記録装置の光学系や
光情報記録媒体の構造を大幅に変更する必要なく極めて
実用性の高い近接場光による高密度記録を実現すること
ができる。
As an optical system for emitting a laser beam, an optical head similar to that used in an ordinary DVD-RAM or the like can be used, and the distance between the optical head and the optical information recording medium can be increased. Since it is only necessary to control the optical system to the same level as a normal DVD-RAM or the like, it is not necessary to significantly change the structure of the optical system or optical information recording medium of the conventional optical information recording device, and it is possible to achieve high density using near-field light that is extremely practical. Recording can be realized.

【0057】[0057]

【発明の効果】以上説明したように、この発明によれ
ば、SNOMにおけるプローブと同様の機能を光情報記
録媒体の構成膜が自己形成的に発現させるため、プロー
ブを用いる必要がなくなり、また、従来の光情報記録装
置の光学系や光情報記録媒体の構造を大幅に変更する必
要なく近接場光による記録が可能であるため、近接場光
を用いた高密度記録が実用レベルの光情報記録媒体にお
いて可能となるという効果を奏する。
As described above, according to the present invention, since the constituent film of the optical information recording medium exhibits the same function as the probe in the SNOM in a self-forming manner, it is not necessary to use a probe. High-density recording using near-field light enables practical-level optical information recording because near-field recording is possible without the need to significantly change the optical system and optical information recording medium structure of conventional optical information recording devices. This has the effect of being made possible with a medium.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明に係る光情報記録媒体の構成の一例お
よび光情報記録方法の一例を示す図である。
FIG. 1 is a diagram showing an example of the configuration of an optical information recording medium and an example of an optical information recording method according to the present invention.

【図2】この発明に係る光情報記録媒体の構成の一例を
示す図である。
FIG. 2 is a diagram showing an example of a configuration of an optical information recording medium according to the present invention.

【図3】この発明に係る光情報記録媒体の構成の一例を
示す図である。
FIG. 3 is a diagram showing an example of a configuration of an optical information recording medium according to the present invention.

【図4】この発明の概念を説明する図である。FIG. 4 is a diagram illustrating the concept of the present invention.

【符号の説明】[Explanation of symbols]

1 透光性基盤 2 屈折調整層 3 誘電体層 4 記録層 5 保護層 6 中間層 7a、7b、7a 緩衝層 DESCRIPTION OF SYMBOLS 1 Transparent board | substrate 2 Refraction adjustment layer 3 Dielectric layer 4 Recording layer 5 Protective layer 6 Intermediate layer 7a, 7b, 7a Buffer layer

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 レーザ光の照射により近接場光を発生す
る近接場光発生層と、 前記近接場光発生層で発生された近接場光により記録が
行われる記録層とを具備し、 前記近接場光発生層は、前記レーザ光を射出する光学系
の開口数NAに対して、 n<NA を満たす屈折率nを有する材料で形成されることを特徴
とする光情報記録媒体。
A near-field light generating layer that generates near-field light by irradiating a laser beam; and a recording layer on which recording is performed by the near-field light generated by the near-field light generating layer. The optical information recording medium, wherein the field light generating layer is formed of a material having a refractive index n that satisfies n <NA with respect to the numerical aperture NA of the optical system that emits the laser light.
【請求項2】 前記近接場光発生層と前記記録層との間
に形成され、前記近接場光発生層で発生された近接場光
を伝搬光に変換する誘電体層をさらに具備することを特
徴とする請求項1記載の光情報記録媒体。
2. The method according to claim 1, further comprising a dielectric layer formed between the near-field light generating layer and the recording layer, the dielectric layer converting near-field light generated by the near-field light generating layer into propagation light. The optical information recording medium according to claim 1, wherein:
【請求項3】 前記近接場光発生層は、 少なくとも前記レーザ光の波長以下にその膜厚が制御さ
れることを特徴とする請求項1記載の光情報記録媒体。
3. The optical information recording medium according to claim 1, wherein the thickness of the near-field light generating layer is controlled to at least the wavelength of the laser light.
【請求項4】 前記記録層は、 前記近接場光によりその光学特性を非可逆的に変化させ
て前記レーザ光に対応する情報の記録を行うことを特徴
とする請求項1記載の光情報記録媒体。
4. The optical information recording according to claim 1, wherein the recording layer records information corresponding to the laser light by irreversibly changing its optical characteristics by the near-field light. Medium.
【請求項5】 前記記録層は、 前記近接場光によりその光学特性を可逆的に変化させて
前記レーザ光に対応する情報の記録を行うことを特徴と
する請求項1記載の光情報記録媒体。
5. The optical information recording medium according to claim 1, wherein the recording layer records information corresponding to the laser light by reversibly changing its optical characteristics by the near-field light. .
【請求項6】 前記近接場光発生層と前記記録層との間
に緩衝層を形成したことを特徴とする請求項1記載の光
情報記録媒体。
6. The optical information recording medium according to claim 1, wherein a buffer layer is formed between the near-field light generating layer and the recording layer.
【請求項7】 前記誘電体層と前記記録層との間に緩衝
層を形成したことを特徴とする請求項2記載の光情報記
録媒体。
7. The optical information recording medium according to claim 2, wherein a buffer layer is formed between said dielectric layer and said recording layer.
【請求項8】 レーザ光を射出する光学系の開口数NA
に対し n<NA を満たす屈折率nを有する材料で形成される光情報記録
媒体の近接場光発生層に前記レーザ光を照射することに
より、該近接場光発生層から近接場光を発生させ、 前記近接場光により前記記録層の光学的特性を変化させ
て情報の記録を行うことを特徴とする光情報記録方法。
8. A numerical aperture NA of an optical system for emitting laser light.
By irradiating the laser light to the near-field light generating layer of an optical information recording medium formed of a material having a refractive index n satisfying n <NA, near-field light is generated from the near-field light generating layer. An optical information recording method, wherein information is recorded by changing optical characteristics of the recording layer by the near-field light.
【請求項9】 レーザ光を射出する光学系の開口数NA
に対し n<NA を満たす屈折率nを有する材料で形成される光情報記録
媒体の近接場光発生層に前記レーザ光を照射することに
より、該近接場光発生層から近接場光を発生させ、 該近接場光発生層から発生した近接場光を誘電体層で記
録層側に伝播する伝播光に変換し、 前記誘電体層で変換された伝播光により前記記録層の光
学的特性を変化させて情報の記録を行うことを特徴とす
る光情報記録方法。
9. A numerical aperture NA of an optical system for emitting laser light.
By irradiating the laser light to the near-field light generating layer of an optical information recording medium formed of a material having a refractive index n satisfying n <NA, near-field light is generated from the near-field light generating layer. Converting near-field light generated from the near-field light generating layer into propagation light propagating to the recording layer side by the dielectric layer, and changing the optical characteristics of the recording layer by the propagation light converted by the dielectric layer. An optical information recording method, wherein information is recorded by causing the optical information to be recorded.
JP2000267293A 2000-09-04 2000-09-04 Optical information recording medium and optical information recording method Pending JP2002074744A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000267293A JP2002074744A (en) 2000-09-04 2000-09-04 Optical information recording medium and optical information recording method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000267293A JP2002074744A (en) 2000-09-04 2000-09-04 Optical information recording medium and optical information recording method

Publications (1)

Publication Number Publication Date
JP2002074744A true JP2002074744A (en) 2002-03-15

Family

ID=18754244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000267293A Pending JP2002074744A (en) 2000-09-04 2000-09-04 Optical information recording medium and optical information recording method

Country Status (1)

Country Link
JP (1) JP2002074744A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003073420A1 (en) * 2002-02-27 2003-09-04 Fujitsu Limited Optical recording medium, its recording/reproducing apparatus, its storage apparatus, and its recording/reproducing method
CN100399441C (en) * 2005-05-12 2008-07-02 索尼株式会社 Optical recording medium as well as optical recording and reproduction method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003073420A1 (en) * 2002-02-27 2003-09-04 Fujitsu Limited Optical recording medium, its recording/reproducing apparatus, its storage apparatus, and its recording/reproducing method
US7406005B2 (en) 2002-02-27 2008-07-29 Fujitsu Limited Optical recording medium, memory apparatus, and recording/reproduction method
CN100399441C (en) * 2005-05-12 2008-07-02 索尼株式会社 Optical recording medium as well as optical recording and reproduction method

Similar Documents

Publication Publication Date Title
JP5411206B2 (en) Equipment for data storage
WO2011010447A1 (en) Information recording medium, optical information recording and playback apparatus, optical information recording and playback method and manufacturing method of information recording medium
US6987721B2 (en) Optical record medium, optical information processing apparatus, and optical recording/reproducing method
US9053714B2 (en) Information recording medium including a first resonance enhancing film and recording layer, information device, and method for producing information recording medium
JPH0896412A (en) Information recording medium
JP2000223767A (en) Proximity field light generating element and optical head
JP4186526B2 (en) Information recording and / or reproducing apparatus and optical head
US7312445B2 (en) Pyramid-shaped near field probe using surface plasmon wave
EP1045380B1 (en) Near field optical recording/reproducing device
JP2002074744A (en) Optical information recording medium and optical information recording method
JPWO2003052756A1 (en) Optical information reproducing method, optical head device, and optical information processing device
JP2002063722A (en) Method for recording optical information and optical information recording medium
JP2002133717A (en) Optical information recording medium
JP2002157741A (en) Optical information recording and reproducing method
JPH0793797A (en) Optical head and disk device using the same
JP4381540B2 (en) Reproduction method of optical recording medium
JP2002063735A (en) Optical information recording medium and method of recording optical information
JP4265941B2 (en) Optical head device and optical information recording / reproducing device
JP2000099979A (en) Beam condensing optical device
JP2001189031A (en) Optical head and optical disk unit
JP2000357339A (en) Proximity field light generating device
JP4404812B2 (en) Magneto-optical disk unit
JP2000231006A (en) Processing method of near-field light emitting device
JPH11250501A (en) Medium and method for information recording
KR100604027B1 (en) Writing/Reading apparatus and method for phase change disk

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081202

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090331