JPH07214232A - Production of high-purity copper ingot - Google Patents

Production of high-purity copper ingot

Info

Publication number
JPH07214232A
JPH07214232A JP3183794A JP3183794A JPH07214232A JP H07214232 A JPH07214232 A JP H07214232A JP 3183794 A JP3183794 A JP 3183794A JP 3183794 A JP3183794 A JP 3183794A JP H07214232 A JPH07214232 A JP H07214232A
Authority
JP
Japan
Prior art keywords
carbon
purity copper
purity
nozzle
crucible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3183794A
Other languages
Japanese (ja)
Other versions
JP3111792B2 (en
Inventor
Yoshiharu Mae
義治 前
Kenji Yajima
健児 矢島
Tokukazu Ishida
徳和 石田
Hideyuki Ikenotani
秀行 池ノ谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP06031837A priority Critical patent/JP3111792B2/en
Publication of JPH07214232A publication Critical patent/JPH07214232A/en
Application granted granted Critical
Publication of JP3111792B2 publication Critical patent/JP3111792B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To produce a high-purity copper ingot contg. Fe and Si at extremely low ratios by using a carbon crucible, nozzle and casting mold. CONSTITUTION:This method comprises producing the high-purity copper ingot by melting a high-purity copper raw material, such as electric copper, by using the carbon crucible and passing the resulted high-purity copper melt through the carbon nozzle into the carbon casting mold, thereby casting the ingot. The carbon crucible, the carbon nozzle and the carbon casting mold are previously heat treated under a condition of holding at 800 to 1120 deg.C in a non-oxidizing atmosphere before the high-purity copper raw material is melted and cast. The high-purity copper ingot is produced by using the heat treated carbon crucible, the carbon nozzle and the carbon casting mold.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、オーディオ用電線、
半導体装置のボンディングワイヤ、超電導安定化材など
の高純度銅線材を製造するための高純度銅インゴットの
製造法に関するものである。
BACKGROUND OF THE INVENTION The present invention relates to an audio wire,
The present invention relates to a method for producing a high-purity copper ingot for producing a high-purity copper wire rod such as a bonding wire of a semiconductor device or a superconducting stabilizer.

【0002】[0002]

【従来の技術】一般に、オーディオ用電線、半導体装置
のボンディングワイヤ、超電導安定化材には、99.9
999重量%(以下、6Nという)以上の高純度銅ワイ
ヤが使用されている。
2. Description of the Related Art Generally, 99.9 is used for audio wires, bonding wires for semiconductor devices, and superconducting stabilizers.
A high-purity copper wire of 999% by weight (hereinafter referred to as 6N) or more is used.

【0003】これら6N以上の高純度銅ワイヤは、先ず
6N以上の高純度銅インゴットを製造し、この高純度銅
インゴットを圧延し、伸線と焼鈍を繰り返し、最終的に
伸線により所定の細径を有する高純度銅ワイヤを製造し
ていた。
These high purity copper wires of 6N or more are manufactured by first producing high purity copper ingots of 6N or more, rolling the high purity copper ingot, repeating wire drawing and annealing, and finally drawing a predetermined fine wire by drawing. Produced a high purity copper wire having a diameter.

【0004】従来、6N以上の高純度銅インゴットは、
6N以上の高純度電気銅を高純度アルミナ製ルツボにて
真空または不活性ガス雰囲気溶解し、得られた溶湯を高
純度アルミナ製ノズルを通して高純度アルミナ製鋳型に
鋳造することにより製造されている。
Conventionally, high purity copper ingots of 6N or more are
It is manufactured by melting 6 N or more high-purity electrolytic copper in a high-purity alumina crucible in a vacuum or in an inert gas atmosphere, and casting the resulting melt in a high-purity alumina mold through a high-purity alumina nozzle.

【0005】しかし、高純度アルミナ製ルツボ、高純度
アルミナ製ノズルおよび高純度アルミナ製鋳型を使用し
て製造した高純度銅インゴットは電気銅とほぼ同じ程度
の純度を保つことができるが、高純度アルミナ製のルツ
ボ、ノズルおよび鋳型などは割れ易く、鋳付きしやす
く、その上高価であるために得られる高純度銅ワイヤの
価格も高価なものとなっていた。
However, although a high-purity copper ingot manufactured by using a high-purity alumina crucible, a high-purity alumina nozzle and a high-purity alumina mold can maintain a purity substantially equal to that of electrolytic copper, Alumina crucibles, nozzles, molds and the like are easily cracked, easily cast, and expensive, so that the price of the high-purity copper wire obtained is also high.

【0006】そのため、通常は市販の高純度カーボン製
ルツボを使用して高純度電気銅を溶解し、得られた溶湯
を市販の高純度カーボン製ノズルおよびカーボン製鋳型
を使用して高純度銅インゴットを製造していた。
Therefore, a commercially available high-purity carbon crucible is usually used to melt high-purity electrolytic copper, and the resulting molten metal is used as a high-purity copper ingot using a commercially available high-purity carbon nozzle and carbon mold. Was being manufactured.

【0007】[0007]

【発明が解決しようとする課題】しかし、市販の高純度
と言われるカーボン製ルツボ、カーボン製ノズルおよび
カーボン製鋳型(以下、これらをカーボン製炉材と総称
する)を用い、高純度の電気銅を溶解鋳造して高純度イ
ンゴットを製造すると、カーボン製炉材に含まれるFe
およびSiが溶出して溶銅中に溶け込み、得られた高純
度インゴットにはFeおよびSiがそれぞれ0.5ppm
程度含まれることは避けることができなかった。
However, using a commercially available high-purity carbon crucible, a carbon nozzle, and a carbon mold (these are collectively referred to as carbon furnace materials), high-purity electrolytic copper is used. When a high-purity ingot is manufactured by melting and casting, Fe contained in the carbon furnace material is
And Si elute and dissolve in molten copper, and the obtained high-purity ingot contains 0.5 ppm of Fe and Si, respectively.
Inclusion to some extent was unavoidable.

【0008】これは、FeおよびSiが質量分析器では
検出することができないほどの高純度電気銅を原料とし
て溶解しても、得られた高純度銅インゴットに含まれる
FeおよびSiの含有量はそれぞれ0.5ppm 以上含ま
れていることからも確認されている。
This is because even if Fe and Si are dissolved using high-purity electrolytic copper as a raw material that cannot be detected by a mass spectrometer, the contents of Fe and Si contained in the obtained high-purity copper ingot are high. It has been confirmed that the content of each is 0.5 ppm or more.

【0009】高純度銅線材にFeおよびSiがそれぞれ
0.5ppm 以上含まれていると、残留抵抗比(室温にお
ける電気抵抗ρ298Kと液体ヘリウム温度における電気抵
抗ρ4.2Kの比ρ298K/ρ4.2Kで定義され、以下、RRR
と記す)を低下させ、かかるRRRの低い高純度線材を
オーディオ用電線に使用するとノイズの発生が激増し、
超電導安定化材として使用しても極低温下の電気抵抗が
大となって所望の効果が得られず、半導体装置のボンデ
ィングワイヤとして使用しても接着性が悪くなる。
If the high-purity copper wire contains 0.5 ppm or more of Fe and Si, respectively, the residual resistance ratio (ratio of electric resistance ρ 298 K at room temperature to electric resistance ρ 4.2 K at liquid helium temperature ρ 298 K / ρ 4.2). Defined by K , hereafter RRR
, And the use of such a high-purity wire with a low RRR for an audio wire significantly increases noise generation.
Even if it is used as a superconducting stabilizer, the electric resistance under cryogenic temperature becomes large and the desired effect cannot be obtained, and even when it is used as a bonding wire of a semiconductor device, the adhesiveness becomes poor.

【0010】したがって、オーディオ用電線、超電導安
定化材、ボンディングワイヤ等として使用することので
きる線材はRRRが10,000以上あることが必要で
あり、RRRが10,000以上とするためには6N以
上でありかつFeおよびSiの含有量がそれぞれ0.1
ppm 以下であることが必要であるところから、Feおよ
びSiの含有量がそれぞれ0.1ppm 以下の高純銅イン
ゴットをカーボン製炉材を用いて安価に製造することの
できる技術開発が求められていた。
Therefore, a wire material that can be used as an audio wire, a superconducting stabilizing material, a bonding wire, etc., must have an RRR of 10,000 or more, and 6N is required to obtain an RRR of 10,000 or more. And above, and the contents of Fe and Si are each 0.1
Since it is necessary to be less than or equal to ppm, there has been a demand for technological development capable of inexpensively producing a high-purity copper ingot with Fe and Si contents of less than or equal to 0.1 ppm using a carbon furnace material. .

【0011】[0011]

【課題を解決するための手段】そこで、本発明者等は、
カーボン製炉材を用いてFeおよびSiの含有量がそれ
ぞれ0.1ppm 以下の高純度銅インゴットを製造するべ
く研究を行った結果、(a) 高純度電気銅を予め非酸
化性雰囲気中、温度:800〜1120℃(好ましく
は、900〜1050℃)でカーボン製炉材を熱処理
し、この熱処理したカーボン製炉材を用いてインゴット
を製造すると、カーボン製炉材に含まれるFeおよびS
i不純物が溶銅中に溶け込むことがなく、FeおよびS
i不純物の含有量がそれぞれ0.1ppm 以下の高純度銅
インゴットが得られる、(b) 上記カーボン製炉材の
一部を市販のアルミナ製ノズルおよび/またはアルミナ
製鋳型で置換してもよい、などの研究結果が得られたの
である。
Therefore, the present inventors have
As a result of conducting research to manufacture high-purity copper ingots each containing Fe and Si of 0.1 ppm or less by using a carbon furnace material, (a) high-purity electrolytic copper was preheated in a non-oxidizing atmosphere at a temperature : When a carbon furnace material is heat-treated at 800 to 1120 ° C. (preferably 900 to 1050 ° C.) and an ingot is manufactured using this heat-treated carbon furnace material, Fe and S contained in the carbon furnace material
i and impurities do not dissolve in molten copper, and Fe and S
A high-purity copper ingot each having an i impurity content of 0.1 ppm or less is obtained. (b) A part of the carbon furnace material may be replaced with a commercially available alumina nozzle and / or an alumina mold, The results of such research were obtained.

【0012】この発明は、かかる研究結果に基づいてな
されたものであって、(1) 高純度銅原料をカーボン
製炉材を用いて溶解鋳造し、高純度銅インゴットを製造
する方法において、高純度銅原料を溶解鋳造する前に、
予めカーボン製炉材を非酸化性雰囲気中、温度:800
〜1120℃(好ましくは、900〜1050℃)に保
持の条件で熱処理し、この熱処理したカーボン製炉材を
使用して高純度銅インゴットを製造するカーボン製炉材
による高純度銅インゴットの製造法、(2) 上記
(1)の熱処理したカーボン製炉材の一部をアルミナ製
ノズルおよび/またはアルミナ製鋳型で置換して高純度
銅インゴットを製造するカーボン製炉材による高純度銅
インゴットの製造法、に特徴を有するものである。
The present invention has been made on the basis of the above research results. (1) In a method for producing a high-purity copper ingot by melting and casting a high-purity copper raw material using a carbon furnace material, Before melting and casting the pure copper raw material,
Carbon furnace material in advance in a non-oxidizing atmosphere, temperature: 800
˜1120 ° C. (preferably 900 to 1050 ° C.), and a high-purity copper ingot is produced by using the heat-treated carbon furnace material to produce a high-purity copper ingot. (2) A high purity copper ingot is manufactured by replacing a part of the heat-treated carbon furnace material of (1) with an alumina nozzle and / or an alumina mold to manufacture a high purity copper ingot. It is characterized by the law.

【0013】[0013]

【実施例】【Example】

実施例1〜7、比較例1〜2および従来例、 高純度電気銅を用意し、この高純度電気銅をGD−MS
(質量分析器)で分析した結果、表1に示されるような
分析結果が得られた。
Examples 1 to 7, Comparative Examples 1 and 2 and Conventional Example, high-purity electrolytic copper was prepared, and this high-purity electrolytic copper was GD-MS.
As a result of analysis by (mass spectrometer), the analysis results as shown in Table 1 were obtained.

【0014】[0014]

【表1】 [Table 1]

【0015】一方、市販の高純度黒鉛製ルツボ、高純度
黒鉛製ノズル、高純度黒鉛製鋳型を用意し、これらを表
2に示される条件で熱処理し、かかる熱処理した高純度
黒鉛製ルツボを用い、1150℃、真空雰囲気中で溶解
し、この溶湯を上記熱処理した高純度黒鉛製ノズルおよ
び鋳型を使用して鋳造し、高純度銅インゴットを製造す
ることにより実施例1〜7および比較例1〜2を実施し
た。
On the other hand, a commercially available high-purity graphite crucible, a high-purity graphite nozzle and a high-purity graphite mold were prepared and heat-treated under the conditions shown in Table 2, and the heat-treated high-purity graphite crucible was used. Examples 1 to 7 and Comparative Examples 1 to 1 by melting at 1150 ° C. in a vacuum atmosphere and casting the molten metal using the heat-treated high-purity graphite nozzle and mold to produce a high-purity copper ingot. 2 was carried out.

【0016】さらに、比較のために、上記市販の高純度
黒鉛製ルツボ、高純度黒鉛製ノズルおよび高純度黒鉛製
鋳型を熱処理することなく使用して上記高純度電気銅を
溶解鋳造し高純度銅インゴットを製造することにより従
来例を実施した。
Further, for comparison, the above-mentioned commercially available high-purity graphite crucible, high-purity graphite nozzle and high-purity graphite mold are used without heat treatment to melt-cast the high-purity electrolytic copper to obtain high-purity copper. A conventional example was carried out by manufacturing an ingot.

【0017】上記実施例1〜7、比較例1〜2および従
来例で得られた高純度銅インゴットをGD−MS(質量
分析器)で分析し、その分析結果を表2に示した。
The high-purity copper ingots obtained in Examples 1 to 7, Comparative Examples 1 and 2 and Conventional Example were analyzed by GD-MS (mass spectrometer), and the analysis results are shown in Table 2.

【0018】[0018]

【表2】 [Table 2]

【0019】表2に示される高純度銅インゴットの分析
結果から、温度:800〜1120℃、非酸化性雰囲気
中で熱処理した高純度黒鉛製ルツボ、ノズルおよび鋳型
を使用して製造した実施例1〜7の高純度銅インゴット
は、熱処理しない高純度黒鉛製ルツボ、ノズルおよび鋳
型を使用して製造した従来例の高純度銅インゴットに比
べてFeおよびSiの含有量が少ないことがわかる。ま
た比較例1および2に示されるように高純度黒鉛製ルツ
ボ、ノズルおよび鋳型を800〜1120℃の範囲から
外れた温度で熱処理しても十分な効果が得られないこと
がわかる。
From the analysis results of the high-purity copper ingots shown in Table 2, Example 1 manufactured using a high-purity graphite crucible, a nozzle and a mold which were heat-treated in a non-oxidizing atmosphere at a temperature of 800 to 1120 ° C. It can be seen that the high-purity copper ingots of Nos. 7 to 7 contain less Fe and Si than the conventional high-purity copper ingots manufactured using the high-purity graphite crucible, the nozzle, and the mold that are not heat-treated. Further, as shown in Comparative Examples 1 and 2, it is understood that even if the high-purity graphite crucible, the nozzle and the mold are heat-treated at a temperature outside the range of 800 to 1120 ° C, a sufficient effect cannot be obtained.

【0020】実施例8〜10 表2の実施例4の条件で熱処理した高純度黒鉛製ルツ
ボ、ノズルおよび鋳型の他に、市販の高純度アルミナ製
ノズルおよび鋳型を用意し、これらルツボ、ノズルおよ
び鋳型を使用して表1の高純度電気銅から高純度銅イン
ゴットを製造することにより表3に示される実施例8〜
10を実施し、得られた高純度銅インゴットをGD−M
S(質量分析器)で分析し、その分析結果を表3に示し
た。
Examples 8 to 10 In addition to a high-purity graphite crucible, a nozzle and a mold heat-treated under the conditions of Example 4 in Table 2, a commercially available high-purity alumina nozzle and mold were prepared, and these crucible, nozzle and Examples 8 to 10 shown in Table 3 by producing high purity copper ingots from the high purity electrolytic copper of Table 1 using a mold
10 is carried out, and the obtained high-purity copper ingot is subjected to GD-M.
It analyzed by S (mass spectrometer), and the analysis result was shown in Table 3.

【0021】[0021]

【表3】 [Table 3]

【0022】表3の実施例8〜10から、少なくとも熱
処理した黒鉛製ルツボを使用して溶解し、その他は市販
の高純度アルミナ製ノズルおよび/または鋳型を使用し
ても、表2の熱処理しない高純度黒鉛製ルツボ、ノズル
および鋳型を使用する従来例に比べて、FeおよびSi
含有量の少ない高純度銅インゴットが得られることがわ
かる。
From Examples 8 to 10 in Table 3, at least a heat-treated graphite crucible was used for melting, and a commercially available high-purity alumina nozzle and / or a mold were used, but the heat treatment in Table 2 was not performed. Fe and Si compared to the conventional example using a high-purity graphite crucible, nozzle and mold
It can be seen that a high-purity copper ingot with a low content can be obtained.

【0023】[0023]

【発明の効果】上述のように、従来はFeおよびSiを
ほとんど検出することができない程度の高純度電気銅を
使用しても、通常のカーボン製炉材を使用して製造した
高純度銅インゴットにはFeおよびSiが増加して含ま
れ、このインゴットを圧延し伸線して得られた線材にも
FeおよびSiが多量に含まれて種々なる電気的トラブ
ルの原因となっていたが、カーボン製炉材を溶解鋳造す
る前に熱処理する本発明法によると、FeおよびSi含
有量の極めて少ない高純度銅インゴットを製造すること
ができ、RRRが10,000以上の線材を安価に提供
することができるので産業上すぐれた効果をもたらすも
のである。
As described above, even if high-purity electrolytic copper, which has hardly detected Fe and Si, is used, a high-purity copper ingot produced by using a normal carbon furnace material is used. Fe and Si are contained in an increased amount, and a wire obtained by rolling and drawing this ingot also contained a large amount of Fe and Si, which caused various electrical troubles. According to the method of the present invention in which a furnace material is heat-treated before being melt-cast, a high-purity copper ingot with an extremely low Fe and Si content can be produced, and a wire rod having an RRR of 10,000 or more can be provided at low cost. It is possible to bring about excellent effects in industry.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 池ノ谷 秀行 埼玉県大宮市北袋町1−297 三菱マテリ アル株式会社中央研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hideyuki Ikenoya 1-297 Kitabukuro-cho, Omiya-shi, Saitama Central Research Laboratory, Mitsubishi Materiality Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 高純度銅原料をカーボン製ルツボを用い
て溶解し、得られた高純度銅溶湯をカーボン製ノズルを
通してカーボン製鋳型に鋳造し、高純度銅インゴットを
製造する方法において、 上記高純度銅原料を溶解し鋳造する前に、上記カーボン
製ルツボ、カーボン製ノズルおよびカーボン製鋳型を予
め非酸化性雰囲気中、温度:800〜1120℃に保持
の条件の熱処理を施し、この熱処理したカーボン製ルツ
ボ、カーボン製ノズルおよびカーボン製鋳型を使用して
高純度銅インゴットを製造することを特徴とする高純度
銅インゴットの製造法。
1. A method for producing a high-purity copper ingot by melting a high-purity copper raw material using a carbon crucible, casting the obtained high-purity copper melt in a carbon mold through a carbon nozzle, Before melting and casting the pure copper raw material, the carbon crucible, the carbon nozzle, and the carbon mold are heat-treated in advance in a non-oxidizing atmosphere at a temperature of 800 to 1120 ° C. A method for producing a high-purity copper ingot, which comprises producing a high-purity copper ingot using a crucible made of carbon, a nozzle made of carbon, and a mold made of carbon.
【請求項2】 高純度銅原料をカーボン製ルツボを用い
て溶解し、得られた高純度銅溶湯を高純度アルミナ製ノ
ズルを通して高純度アルミナ製鋳型に鋳造し、高純度銅
インゴットを製造する方法において、 上記高純度銅原料を溶解する前に、上記カーボン製ルツ
ボに予め非酸化性雰囲気中、温度:800〜1120℃
に保持の条件の熱処理を施し、この熱処理したカーボン
製ルツボを用いて上記高純度銅原料を溶解することを特
徴とする高純度銅インゴットの製造法。
2. A method for producing a high-purity copper ingot by melting a high-purity copper raw material using a carbon crucible and casting the obtained high-purity copper melt into a high-purity alumina mold through a high-purity alumina nozzle. In the above, before melting the high-purity copper raw material, the carbon crucible was previously heated in a non-oxidizing atmosphere at a temperature of 800 to 1120 ° C.
A method for producing a high-purity copper ingot, characterized in that the high-purity copper raw material is melted using the heat-treated carbon crucible.
【請求項3】 高純度銅原料をカーボン製ルツボを用い
て溶解し、得られた高純度銅溶湯をカーボン製ノズルを
通して高純度アルミナ製鋳型に鋳造し、高純度銅インゴ
ットを製造する方法において、 上記高純度銅原料を溶解し鋳造する前に、上記カーボン
製ルツボおよびカーボン製ノズルを予め非酸化性雰囲気
中、温度:800〜1120℃に保持の条件の熱処理を
施し、この熱処理したカーボン製ルツボおよびカーボン
製ノズルを用いて溶解鋳造することを特徴とする高純度
銅インゴットの製造法。
3. A method for producing a high-purity copper ingot by melting a high-purity copper raw material using a carbon crucible, casting the obtained high-purity copper melt into a high-purity alumina mold through a carbon nozzle, Before the high-purity copper raw material is melted and cast, the carbon crucible and the carbon nozzle are heat-treated in advance in a non-oxidizing atmosphere at a temperature of 800 to 1120 ° C., and the heat-treated carbon crucible is heated. And a method for producing a high-purity copper ingot, which comprises melting and casting using a carbon nozzle.
【請求項4】 高純度銅原料をカーボン製ルツボを用い
て溶解し、得られた高純度銅溶湯を高純度アルミナ製ノ
ズルを通して高純度カーボン製鋳型に鋳造し、高純度銅
インゴットを製造する方法において、 上記高純度銅原料を溶解し鋳造する前に、上記カーボン
製ルツボおよびカーボン製鋳型を予め非酸化性雰囲気
中、温度:800〜1120℃に保持の条件の熱処理を
施し、この熱処理したカーボン製ルツボおよびカーボン
製鋳型を用いて溶解鋳造することを特徴とする高純度銅
インゴットの製造法。
4. A method for producing a high-purity copper ingot by melting a high-purity copper raw material using a carbon crucible and casting the obtained high-purity copper molten metal into a high-purity carbon mold through a high-purity alumina nozzle. In the above, before melting and casting the high-purity copper raw material, the carbon crucible and the carbon mold are preliminarily heat-treated in a non-oxidizing atmosphere at a temperature of 800 to 1120 ° C. A method for producing a high-purity copper ingot, which comprises melting and casting using a crucible made of carbon and a mold made of carbon.
【請求項5】 上記カーボン製ルツボ、カーボン製ノズ
ルおよびカーボン製鋳型の熱処理温度は、900〜10
50℃の範囲内にあることを特徴とする請求項1,2,
3または4記載の高純度銅インゴットの製造法。
5. The heat treatment temperature of the carbon crucible, the carbon nozzle and the carbon mold is 900 to 10.
The temperature is in the range of 50 ° C., and
3. The method for producing a high purity copper ingot according to 3 or 4.
JP06031837A 1994-02-03 1994-02-03 Manufacturing method of high purity copper ingot Expired - Lifetime JP3111792B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06031837A JP3111792B2 (en) 1994-02-03 1994-02-03 Manufacturing method of high purity copper ingot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06031837A JP3111792B2 (en) 1994-02-03 1994-02-03 Manufacturing method of high purity copper ingot

Publications (2)

Publication Number Publication Date
JPH07214232A true JPH07214232A (en) 1995-08-15
JP3111792B2 JP3111792B2 (en) 2000-11-27

Family

ID=12342180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06031837A Expired - Lifetime JP3111792B2 (en) 1994-02-03 1994-02-03 Manufacturing method of high purity copper ingot

Country Status (1)

Country Link
JP (1) JP3111792B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011236484A (en) * 2010-05-12 2011-11-24 Mitsubishi Materials Corp Copper material for particle accelerator, copper tube for particle accelerator, and method of manufacturing copper tube for particle accelerator, and particle accelerator
CN110184477A (en) * 2019-07-12 2019-08-30 安徽楚江高新电材有限公司 A kind of high processing method for leading copper bar of automotive wire bundle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011236484A (en) * 2010-05-12 2011-11-24 Mitsubishi Materials Corp Copper material for particle accelerator, copper tube for particle accelerator, and method of manufacturing copper tube for particle accelerator, and particle accelerator
CN110184477A (en) * 2019-07-12 2019-08-30 安徽楚江高新电材有限公司 A kind of high processing method for leading copper bar of automotive wire bundle

Also Published As

Publication number Publication date
JP3111792B2 (en) 2000-11-27

Similar Documents

Publication Publication Date Title
CN100422364C (en) Superfine copper alloy wire and method for manufacturing same
CN106282651B (en) A kind of copper silver rare-earth alloy superfine wire and its production method
JPH07214232A (en) Production of high-purity copper ingot
JPH0790430A (en) Copper wire for extra fine wire and its production
KR20010025086A (en) Tantalum-Silicon Alloys And Products Containing The Same And Processes Of Making The Same
WO2012124840A1 (en) Method for manufacturing titanium powder for manufacturing oxide-dispersion strengthening-type titanium material
CN111020257B (en) Method for improving purity of nickel cupronickel material
JPS6241303B2 (en)
US3194657A (en) Process for making workable ruthenium and product thereof
JPH05287402A (en) Production of extra-low oxygen copper and extra-low oxygen copper obtained by this production
KR101321945B1 (en) A method for manufacturing powders of platinum-gold alloy of oxide dispersion reinforcement type using dry method
JP2646430B2 (en) High conductivity and high heat resistant copper alloy and method for producing the same
JPH04272147A (en) Production of titanium
CN111979445A (en) Rare earth microalloyed copper alloy and preparation method thereof
US3676114A (en) Improvement in the process relating to alloys containing platinum group metals
CN114657421B (en) Ce-Zn alloy, production method thereof and application of smelting vessel
KR102445225B1 (en) Cu-Ag alloy with improved strength and conductivity and manufacturing method for the same
KR101359719B1 (en) Method of manufacturing a powder of platinum-ruthenium alloys
JP2002060886A (en) Method for manufacturing high purity bearing steel
JPH01283333A (en) High electric conductive metallic material
JPH0559462A (en) Production of high purity copper for high vacuum device
JP3274920B2 (en) Manufacturing method of fine metal wire
JPH02175826A (en) Manufacture of high purity copper
JPS62164802A (en) Manufacture of ti-ni alloy wire
JPS6240342A (en) Hyperfine wire of high purity iron

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000822

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080922

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080922

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 13

EXPY Cancellation because of completion of term