JPH07213081A - Multilayer piezoelectric element and vibration-wave drive device - Google Patents

Multilayer piezoelectric element and vibration-wave drive device

Info

Publication number
JPH07213081A
JPH07213081A JP6002656A JP265694A JPH07213081A JP H07213081 A JPH07213081 A JP H07213081A JP 6002656 A JP6002656 A JP 6002656A JP 265694 A JP265694 A JP 265694A JP H07213081 A JPH07213081 A JP H07213081A
Authority
JP
Japan
Prior art keywords
piezoelectric element
electrode
laminated
electrodes
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6002656A
Other languages
Japanese (ja)
Other versions
JP3059038B2 (en
Inventor
Yutaka Maruyama
裕 丸山
Nobuyuki Kojima
信行 小島
Ichiro Okumura
一郎 奥村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP6002656A priority Critical patent/JP3059038B2/en
Priority to DE69416989T priority patent/DE69416989T2/en
Priority to EP94309561A priority patent/EP0661764B1/en
Priority to KR1019940037087A priority patent/KR0176729B1/en
Priority to CN94119220A priority patent/CN1035930C/en
Publication of JPH07213081A publication Critical patent/JPH07213081A/en
Priority to US08/925,083 priority patent/US6051911A/en
Application granted granted Critical
Publication of JP3059038B2 publication Critical patent/JP3059038B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To form traveling waves whose wave number is one or more in the circumferential direction by a method wherein a plurality of first piezoelectric-element sheets which are arranged in the circumferential direction at intervals of an odd multiple of a 1/4 wavelength and second piezoelectric-element sheets in which electrode parts have been formed on the whole of one side of a piezoelectric ceramic are disposed alternately. CONSTITUTION:A GND electrode 14G with a length of a 1/4 wavelength is formed in the circumferential direction on a piezoelectric-element sheet (PE) 4 at the outermost layer. Power-supply electrodes 14A, 14B for an A-phase and a B-phase are formed on both sides of the GND electrode 14G. In a PE sheet 2 as a second sheet from the upper part, a PE 2 as a fourth sheet and a PE 3 in the lowermost layer, first electrodeless parts 15-1 in which an electrode with a length of a 3/4 wavelength is not formed are formed so as to be identical to the center in the circumferential direction of the GND electrode 14G of the PE 4. In addition, second electrodeless parts 15-1 in which an electrode with a length of a 1/4 wavelength is not formed are formed in symmetric positions of the first electrodeless parts 15-1. Then, positive and negative electrodes 12A, 13A, 12B, 13B for an A-phase and a B-phase which has a length of a 1/2 wavelength are formed on both sides between both electrodeless parts.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、積層圧電素子およびこ
の積層圧電素子を用いた曲げ進行波を利用する超音波モ
ータに代表される振動波駆動装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laminated piezoelectric element and a vibration wave driving device represented by an ultrasonic motor using bending traveling waves using the laminated piezoelectric element.

【0002】[0002]

【従来の技術】従来、円環又は円板状の超音波モータ
は、例えば特公平1−17354号公報等に開示されて
いるように、金属等の振動減衰性の低い弾性体に電歪素
子あるいは圧電素子を固定した振動子を有し、該弾性体
の表面に動体(接触体)を加圧接触させ、並列する電歪
素子あるいは圧電素子の電極群に時間的に位相の異なる
高周波電圧を印加し、該動体(接触体)を(相対)駆動
する。
2. Description of the Related Art Conventionally, an annular or disk-shaped ultrasonic motor has been disclosed in, for example, Japanese Patent Publication No. 1-17354, in which an electrostrictive element is formed on an elastic body having a low vibration damping property such as metal. Alternatively, a piezoelectric element is fixed to a vibrator, a moving body (contact body) is brought into pressure contact with the surface of the elastic body, and high-frequency voltages having different phases in time are applied to parallel electrode groups of the electrostrictive element or the piezoelectric element. By applying the voltage, the moving body (contact body) is (relatively) driven.

【0003】この振動子に用いられる圧電素子には、多
数に分割された電極が片面側に配置されると共に、該弾
性体と接合される反対面側には全面電極が設けられてい
て、該片面側の複数の電極は、駆動に供するA、B2相
の複数の電極群からなり、これら2相の電極群は互いに
位置的に4分の1波長、或は4分の1波長の奇数倍の間
隔を有して配置され、互いに異なる方向に分極処理が施
された各群の複数の圧電素子は2分の1波長の間隔を有
していて、この分極方向の異なる同群の圧電素子に同時
に高周波電圧を印加すると、1波長分の振動が励起さ
れ、これを複数組用意すれば、その数に見合った波数の
定在波が形成され、結果として1又は複数の波数の進行
波が励起される。
In the piezoelectric element used in this vibrator, a large number of divided electrodes are arranged on one surface side, and a full surface electrode is provided on the opposite surface side to be joined to the elastic body. The plurality of electrodes on one side are composed of a plurality of A-phase and B-phase electrode groups used for driving, and these two-phase electrode groups are positioned relative to each other by a quarter wavelength or an odd multiple of a quarter wavelength. The plurality of piezoelectric elements of each group, which are arranged with a spacing of λ and are polarized in different directions, have a spacing of ½ wavelength, and the piezoelectric elements of the same group having different polarization directions. When a high-frequency voltage is simultaneously applied to the two, vibration of one wavelength is excited, and if a plurality of sets of this are prepared, standing waves with a wave number corresponding to the number are formed, and as a result, traveling waves of one or a plurality of wave numbers are generated. Be excited.

【0004】[0004]

【発明が解決しようとする課題】しかし、上記した従来
の電歪又は圧電素子は、一層構造であることから、この
圧電素子を用いた超音波モータを実用的な出力で駆動す
るには数十ボルトの高周波電圧を印加する必要があり、
カメラ等の携帯用の機器の電源である電池の電圧では足
りず、昇圧回路を用意する必要があった。
However, since the above-mentioned conventional electrostrictive or piezoelectric element has a single layer structure, it is necessary to drive an ultrasonic motor using this piezoelectric element with a practical output of several tens. It is necessary to apply a high frequency voltage of Volt,
The voltage of the battery, which is the power source for portable devices such as cameras, was not sufficient, and it was necessary to prepare a booster circuit.

【0005】ここで、圧電素子板を積層化した圧電素子
を用いた積層型セラミックアクチュエータ[内野研二
著:圧電/電歪アクチュエータ;共立出版]が知られて
いるが、これは分極方向が単純な圧電素子を単に積層し
ただけであり、多数の電極に分割され、分極極性が交互
に替わるような複雑な構造の圧電素子板を積層しようと
すると、分極処理や駆動のための配線が複雑化し、実現
化できなかった。
Here, there is known a laminated ceramic actuator [Kenji Uchino: Piezoelectric / electrostrictive actuator; Kyoritsu Shuppan] using a piezoelectric element in which piezoelectric element plates are laminated, but this has a simple polarization direction. If you try to stack a piezoelectric element plate that has a complicated structure in which the piezoelectric elements are simply stacked and divided into a number of electrodes and the polarization polarities alternate, the wiring for polarization processing and driving becomes complicated, It could not be realized.

【0006】[0006]

【課題を解決するための手段および作用】本発明の目的
を実現する構成は、圧電セラミックスの片面側に電極を
形成した圧電素子板を厚み方向に複数枚積層した積層圧
電素子において、厚み方向の伸縮で周方向に波長(λ)
で1又は複数の波数の定在波を励起する2群の複数の電
極部が該圧電セラミックスの片面側に厚み方向に同位相
で形成されると共に周方向においては4分の1の奇数倍
の間隔を有して配置された複数の第1の圧電素子板と、
圧電セラミックスの片面側に前面にわたって電極部が形
成され、該第1の圧電素子板と交互に積層配置される第
2の圧電素子板とを有することを特徴とするものであ
り、面外(厚み)方向における伸縮を複数層にわたって
同時に形成することが可能となり、励起される2つの定
在波の合成で、周方向に1又は複数の波数の進行波を形
成することができる従来の圧電素子に比べて、周波印加
電圧をより低電圧で同じ振幅を得ることができ、昇圧回
路を不要とする。
The structure for achieving the object of the present invention is to provide a laminated piezoelectric element in which a plurality of piezoelectric element plates each having an electrode formed on one side of a piezoelectric ceramic are laminated in the thickness direction. Wavelength (λ) in the circumferential direction due to expansion and contraction
, Two groups of a plurality of electrode portions that excite standing waves of one or a plurality of wave numbers are formed in the same phase in the thickness direction on one surface side of the piezoelectric ceramic, and in the circumferential direction an odd multiple of 1/4 A plurality of first piezoelectric element plates arranged at intervals,
An electrode portion is formed on one surface side of the piezoelectric ceramics over the front surface, and the piezoelectric ceramics has second piezoelectric element plates alternately laminated with the first piezoelectric element plates. ) Direction expansion and contraction in a plurality of layers can be simultaneously formed, and a conventional piezoelectric element capable of forming a traveling wave of one or a plurality of wave numbers in the circumferential direction by combining two standing waves to be excited. Compared with this, it is possible to obtain the same amplitude with a lower frequency applied voltage, and a booster circuit is unnecessary.

【0007】また、第2の圧電素子板を該第1の圧電素
子板の電極部と対応して電極部を形成し、そこに中間の
電圧を印加するようにすれば、2倍の電界を与えること
が可能となり、さらなる低電圧での駆動が可能となる。
If an electrode portion is formed on the second piezoelectric element plate corresponding to the electrode portion of the first piezoelectric element plate and an intermediate voltage is applied to the electrode portion, a double electric field is generated. It is possible to supply the voltage, and it is possible to drive at a lower voltage.

【0008】一方、第1の圧電素子板の片面側には電極
部が形成されていない電極無形成部を有することによ
り、電極膜の形成を容易とすることもできるが、4分の
1波長の間隔で電極部が全面にわたり形成することによ
り、伸縮エネルギをより大きく取り出すことができる。
On the other hand, it is possible to facilitate the formation of the electrode film by having an electrode-free portion in which no electrode portion is formed on one surface side of the first piezoelectric element plate, but it is possible to form a quarter wavelength. By forming the electrode portions over the entire surface at intervals of, the expansion and contraction energy can be taken out more.

【0009】他方、積層される圧電素子板の電極は、一
層おきに厚み方向で対応する電極部とスルーホールで電
気的に接続したり、積層される最上層の圧電素子板に、
下層の電極部とスルーホールを介して電気的に接続され
る電極部を複数形成することにより、分極時の配線数や
駆動回路からの給電配線数等を削減でき、さらには最上
層の圧電素子板に形成された電極のみを利用して、分極
処理や駆動のための周波電圧の印加が行える。
On the other hand, the electrodes of the piezoelectric element plates to be laminated are electrically connected to corresponding electrode portions in the thickness direction every other layer by through holes, or to the uppermost piezoelectric element plate to be laminated,
By forming a plurality of electrode parts that are electrically connected to the lower layer electrode parts through through holes, the number of wiring lines during polarization and the number of power supply wiring lines from the drive circuit can be reduced, and furthermore, the uppermost piezoelectric element By using only the electrodes formed on the plate, it is possible to apply a frequency voltage for polarization processing and driving.

【0010】そして、最上層の圧電素子板に形成される
複数の電極部の一端側を略一か所に集めることにより、
給電のために接続されるフレキシブルプリント基板の接
続部を小さくすることができ、コストの削減化、基板樹
脂による振動減衰を小さく抑えることができ、この圧電
素子を用いた振動波モータ等の振動波駆動装置の駆動効
率を向上させることができる。
Then, by gathering one end sides of the plurality of electrode portions formed on the uppermost piezoelectric element plate at substantially one place,
The connection part of the flexible printed circuit board connected for power supply can be made smaller, the cost can be reduced and the vibration damping due to the board resin can be suppressed to a small level. The drive efficiency of the drive device can be improved.

【0011】勿論、この積層圧電素子にもセンサー相を
設けることができるので、振動波駆動装置の駆動制御を
高精度に行える。
Of course, since a sensor phase can be provided also in this laminated piezoelectric element, the drive control of the vibration wave drive device can be performed with high accuracy.

【0012】[0012]

【実施例】図1は本発明による積層圧電素子の第1の実
施例を示す分解斜視図、図2は図1の積層圧電素子を構
成する圧電セラミックスの片面側に形成される電極の平
面図を示す。
1 is an exploded perspective view showing a first embodiment of a laminated piezoelectric element according to the present invention, and FIG. 2 is a plan view of electrodes formed on one side of piezoelectric ceramics constituting the laminated piezoelectric element of FIG. Indicates.

【0013】本実施例の積層圧電素子は、図2の(a)
〜(f)に示す円環形状の6枚の圧電セラミックスから
なる圧電素子板を積層したもので、これらの圧電セラミ
ックスの片面側に形成される電極パターンにより3種類
の素子に分けられている。
The laminated piezoelectric element of this embodiment is shown in FIG.
(F) is a laminated piezoelectric element plate made of six annular piezoelectric ceramics, and is divided into three types of elements by an electrode pattern formed on one side of these piezoelectric ceramics.

【0014】第1の電極パターンを有する最上層の圧電
素子板4は、周方向に4分の1波長(λ)の長さでグラ
ンド(GND)用のGND電極14Gが形成され、この
GND電極14Gの両側に、A相用給電電極14A(1
4A(+)、14A(−))と、B相用給電電極14B
(14B(+)、14B(−))とが形成され、内周側
の給電電極14A(−)、14B(−)を外周側の給電
電極14A(+)、14B(+)よりも短くしているの
は、以下に述べるA相、B相の(+)方向に分極処理さ
れた部分が(−)方向に分極処理された部分よりも該G
ND電極14Gより離れた位置に設けられていることに
よる。また、これらの各給電電極の一端側はGND電極
14Gに隣接して設けられているので、図6に示すよう
に、不図示の駆動回路と接続するフレキシブルプリント
基板30によりコンパクトに接続される。
On the uppermost piezoelectric element plate 4 having the first electrode pattern, the GND electrode 14G for the ground (GND) is formed with a length of a quarter wavelength (λ) in the circumferential direction. On both sides of 14G, the A-phase power supply electrode 14A (1
4A (+), 14A (-), and B-phase power supply electrode 14B
(14B (+), 14B (-)) are formed, and the inner circumference side feeding electrodes 14A (-), 14B (-) are made shorter than the outer circumference side feeding electrodes 14A (+), 14B (+). That is, the portion of the A phase and the B phase, which are polarized in the (+) direction, is more G than the portion that is polarized in the (−) direction.
This is because it is provided at a position apart from the ND electrode 14G. Further, since one end side of each of these power supply electrodes is provided adjacent to the GND electrode 14G, as shown in FIG. 6, they are connected compactly by the flexible printed circuit board 30 connected to a drive circuit (not shown).

【0015】第2の電極パターンを有する圧電素子板
は、図2の(b)、(d)、(f)に示す上から第2番
目の圧電素子板2、4番目の圧電素子板2、6番目(最
下層)の圧電素子板3で、最上層の圧電素子板4のGN
D電極14Gを基準とすると、このGND電極14Gの
周方向中心と中心を同じにして4分の3波長(λ)の長
さの電極の形成されていない第1無電極部15−1が設
けられ、この第1無電極部15−1と対称の位置に4分
の1波長(λ)の長さの電極の形成されていない第2無
電極部15−2が設けられている。そして、これら両無
電極部の間に2分の1波長の長さでA相用の正負の電極
12(13)A(+)、12(13)A(−)とB相用
の正負の電極12(13)B(+)、12(13)B
(−)が両側に形成されている。
The piezoelectric element plate having the second electrode pattern is the second piezoelectric element plate 2 from the top, the fourth piezoelectric element plate 2 from the top as shown in FIGS. 2 (b), (d) and (f). The sixth (lowermost layer) piezoelectric element plate 3 and the GN of the uppermost piezoelectric element plate 4
When the D electrode 14G is used as a reference, the first electrodeless portion 15-1 in which no electrode having a length of 3/4 wavelength (λ) is provided with the center of the GND electrode 14G being the same as the circumferential center. Then, a second electrodeless portion 15-2 in which no electrode having a length of ¼ wavelength (λ) is formed is provided at a position symmetrical to the first electrodeless portion 15-1. The positive and negative electrodes 12 (13) A (+) and 12 (13) A (-) for the A phase and the positive and negative electrodes for the B phase with a length of a half wavelength between the two electrodeless portions. Electrodes 12 (13) B (+), 12 (13) B
(-) Is formed on both sides.

【0016】第2番目と4番目の圧電素子板2と、6番
目(最下層)の圧電素子板3との相違は、第1層の最上
層の圧電素子板4から最下層の圧電素子板3間に配置さ
れる第2層と第4層の圧電素子板には、各電極と導電線
42〜45が接触して貫通する導通穴50と、第1無電
極部に導電用の導電線41が貫通する導通穴50aが形
成されているだけで、他の点については同一の構造を有
している。
The difference between the second and fourth piezoelectric element plates 2 and the sixth (lowermost layer) piezoelectric element plate 3 is that the piezoelectric element plate 4 from the uppermost layer of the first layer to the piezoelectric element plate of the lowermost layer. Conductive holes 50 through which the electrodes and the conductive wires 42 to 45 come into contact with each other in the piezoelectric element plates of the second layer and the fourth layer arranged between 3 and conductive wires for conducting the first electrodeless portion. Only the conduction hole 50a through which 41 passes is formed, and other points have the same structure.

【0017】第3の電極パターンを有する圧電素子板
は、図2の(c)、(e)に示す上から第3番目と第5
番目の圧電素子板1で、GND電極11Gが全面に形成
されていて、GND電極11Gと非接触状態に形成され
て導電線42〜45が貫通する貫通穴51と、導電線4
1が接触するように貫通する導電穴52とが形成されて
いる。
The piezoelectric element plate having the third electrode pattern is the third and fifth from the top shown in FIGS. 2 (c) and 2 (e).
In the th piezoelectric element plate 1, the GND electrode 11G is formed on the entire surface, the through hole 51 is formed in a non-contact state with the GND electrode 11G, and the conductive wires 42 to 45 penetrate therethrough, and the conductive wire 4
And a conductive hole 52 penetrating through so as to make contact with each other.

【0018】このように構成された6枚の圧電素子板
1、2、3、4は、図2に示す配置の位相で積層され
る。導電線41は、第1層のGND電極14Gと、第3
および第5層の圧電素子板1のGND電極11Gと導通
し、導電線42は第2、第4および第6層の圧電素子板
2、3の電極14B(−)、12B(−)、13B
(−)に導通し、導電線43は同じく電極14B
(+)、12B(+)、13B(+)に導通し、導電線
44は同じく電極14A(−)、12A(−)、13A
(−)に導通し、導電線45は同じく電極14B
(+)、12B(+)、13B(+)に導通する。
The six piezoelectric element plates 1, 2, 3 and 4 having the above-described structure are laminated in the phase of the arrangement shown in FIG. The conductive line 41 includes the first-layer GND electrode 14G and the third layer GND electrode 14G.
And the conductive wire 42 is electrically connected to the GND electrode 11G of the piezoelectric element plate 1 of the fifth layer, and the conductive wire 42 is the electrode 14B (−), 12B (−), 13B of the piezoelectric element plates 2 and 3 of the second, fourth and sixth layers.
Conductive (-), the conductive wire 43 is also the electrode 14B
(+), 12B (+), and 13B (+) are electrically connected, and the conductive line 44 has electrodes 14A (-), 12A (-), and 13A.
Conductive line (-), the conductive wire 45 is also the electrode 14B
It conducts to (+), 12B (+), and 13B (+).

【0019】なお、理解を容易とするために導電線41
〜45により積層される圧電素子板間の各電極の導通を
行うとしているが、実際にはスルーホールにより行って
いるもので、これにより一層おきに導線を接続するとい
った作業を不要とし、あるいは外縁部に導電塗料を塗布
して突起を出してしまうようなことがない。
In order to facilitate understanding, the conductive wire 41
It is supposed that the electrodes are electrically connected between the laminated piezoelectric element plates by .about.45, but this is actually done by through holes, which eliminates the work of connecting conductors every other layer, or the outer edge. The conductive paint is not applied to the parts to cause protrusions.

【0020】図3は図1に示す積層化された圧電セラミ
ックスの分極処理方法を示す概略図である。
FIG. 3 is a schematic diagram showing a polarization treatment method for the laminated piezoelectric ceramics shown in FIG.

【0021】分極処理のためのコンタクトピンはすべて
最上層の圧電素子板4の電極に接触され、GND電極1
4Gに対して、A、B相の正の電極14A(+)、B
(+)に正の電圧、A、B相の負の電極14A(−)、
B(−)に負の電圧を印加するようにしている。ここ
で、第3、第5層の圧電素子板1の全面電極11Gには
最上層の圧電素子4のGND電極14Gに導通するスル
ーホール(図1では導線41で示す)を介して分極用の
電圧が印加され、またこれら第3、第5層の圧電素子板
1を挟むように配置される第2、第4および第6の圧電
素子板2、3の正の電極12(13)A、B(+)には
最上層の圧電素子板4の電極14A(+)、B(+)に
導通するスルーホール(図1では導線43、45で示
す)を介し、負の電極12(13)A、B(−)には最
上層の圧電素子板4の電極14A(−)、B(−)に導
通するスルーホール(図1では導線42、44で示す)
を介して上記した分極処理用の電圧が印加される。
All the contact pins for the polarization treatment are brought into contact with the electrodes of the uppermost piezoelectric element plate 4, and the GND electrode 1
For 4G, positive electrodes 14A (+), B for A and B phases
(+) Is a positive voltage, A and B phase negative electrodes 14A (-),
A negative voltage is applied to B (-). Here, the whole surface electrode 11G of the piezoelectric element plate 1 of the third and fifth layers is polarized through a through hole (indicated by a lead wire 41 in FIG. 1) that is electrically connected to the GND electrode 14G of the piezoelectric element 4 of the uppermost layer. A voltage is applied, and the positive electrodes 12 (13) A of the second, fourth and sixth piezoelectric element plates 2 and 3 arranged so as to sandwich the piezoelectric element plates 1 of the third and fifth layers, B (+) is provided with a negative electrode 12 (13) through a through hole (indicated by conducting wires 43, 45 in FIG. 1) that is electrically connected to the electrodes 14A (+) and B (+) of the uppermost piezoelectric element plate 4. A and B (-) have through-holes (shown by conductors 42 and 44 in FIG. 1) that are electrically connected to the electrodes 14A (-) and B (-) of the uppermost piezoelectric element plate 4.
The above voltage for polarization processing is applied via.

【0022】図4は図3による分極処理された積層圧電
素子10の分極状態を示す展開図(電極14Gの中心で
展開している)で、矢印は分極方向を示す。
FIG. 4 is a development view (developed at the center of the electrode 14G) showing the polarization state of the laminated piezoelectric element 10 subjected to the polarization treatment shown in FIG. 3, and the arrow indicates the polarization direction.

【0023】ここで、分極処理される圧電セラミックス
は、第2、第3、第4および第5層の圧電セラミックス
で、GND電極11Gに対して電位の高い電圧が印加さ
れる正の電極12(13)A、B(+)の間では、GN
D電極11Gに向かって分極処理が施され、負の電極1
2(13)A、B(−)の間ではGND電極11Gから
負の電極12(13)A、B(−)に向かって分極処理
が施される。
Here, the piezoelectric ceramics to be polarized are the piezoelectric ceramics of the second, third, fourth and fifth layers, and the positive electrode 12 (where a high potential voltage is applied to the GND electrode 11G). 13) Between A and B (+), GN
Negative electrode 1 that is polarized toward D electrode 11G
Between 2 (13) A and B (-), the polarization process is performed from the GND electrode 11G toward the negative electrodes 12 (13) A and B (-).

【0024】したがって、このように分極処理された積
層圧電素子10の最上層の圧電素子板4の正の給電電極
14A、B(+)とGND電極14Gとの間に正の電圧
を印加すれば、中間層の圧電セラミックスの正の電極1
2(13)A、B(+)に対応する部分が厚み方向に縮
み、負の給電電極14A、B(−)とGND電極14G
との間に負の電圧を印加すれば、中間層の圧電セラミッ
クスの正の電極12(13)A、B(−)に対応する部
分が厚み方向に伸び、したがってこれら給電電極に交流
電圧を印加すると、伸縮が繰り返されて振動が励起され
る。
Therefore, if a positive voltage is applied between the positive power supply electrodes 14A, B (+) and the GND electrode 14G of the uppermost piezoelectric element plate 4 of the laminated piezoelectric element 10 polarized in this way, , Positive electrode 1 of the intermediate layer of piezoelectric ceramics
2 (13) A and B (+) are contracted in the thickness direction, so that the negative power supply electrodes 14A and B (−) and the GND electrode 14G.
If a negative voltage is applied between the positive electrode 12 and the positive electrode 12 (13) A, B (-) of the piezoelectric ceramic of the intermediate layer extends in the thickness direction, an AC voltage is applied to these feeding electrodes. Then, expansion and contraction are repeated and vibration is excited.

【0025】図6はこの積層圧電素子10を円環形状の
振動弾性体20の裏面側に接着剤を介して固定し、第1
層の圧電素子板4の給電電極に接続用のフレキシブル基
板30が接着される。このフレキシブル基板30は、不
図示の駆動回路と接続されていて、A相用の給電電極1
4A(+)、(−)にはA相給電パターン31Aが接続
され、B相用の給電電極14B(+)、(−)にはB相
給電パターン31Bが接続され、GND電極14Gには
GND給電パターン31Gが接続される。
In FIG. 6, the laminated piezoelectric element 10 is fixed to the back surface side of the ring-shaped vibrating elastic body 20 with an adhesive agent.
The flexible substrate 30 for connection is adhered to the power supply electrode of the piezoelectric element plate 4 of the layer. This flexible substrate 30 is connected to a drive circuit (not shown), and the A-phase power supply electrode 1
4A (+) and (-) are connected to the A-phase power supply pattern 31A, B-phase power supply electrodes 14B (+) and (-) are connected to the B-phase power supply pattern 31B, and GND electrode 14G is connected to the GND. The power feeding pattern 31G is connected.

【0026】A相給電パターン31Aの他端側の端子部
32Aと、B相給電パターン31Bの他端側の端子部3
2Bには位相がずれた交流電圧が不図示の駆動回路より
入力されると、A相とB相が4分の1の位置的位相を有
するため、両相の定在波の合成により進行波が形成さ
れ、振動弾性体20の駆動面の表面粒子にだ円運動が形
成される。したがって、この積層圧電素子10と振動弾
性体20とで構成される振動子をステータとし、振動弾
性体20の駆動面にロータ(不図示)を加圧接触させれ
ば該ロータを回転させる超音波モータとして利用でき、
また紙などのシード部材を加圧接触させればシート送り
装置として利用でき、さらには積層圧電素子と振動弾性
体20とを長だ円形状に形成し、その片側の直線部を直
線に延びるレール状の固定子(不図示)に加圧接触させ
ればリニア駆動装置に利用することができるといった種
々の態様の振動波駆動装置に適用することができる。
A terminal portion 32A on the other end side of the A-phase power feed pattern 31A and a terminal portion 3 on the other end side of the B-phase power feed pattern 31B.
When an AC voltage having a phase shift is input to the 2B from a drive circuit (not shown), the A phase and the B phase have a positional phase of 1/4, so that a traveling wave is generated by combining the standing waves of both phases. Are formed, and an elliptical motion is formed on the surface particles of the driving surface of the vibrating elastic body 20. Therefore, when the vibrator constituted by the laminated piezoelectric element 10 and the vibrating elastic body 20 is used as a stator, and a rotor (not shown) is brought into pressure contact with the driving surface of the vibrating elastic body 20, the ultrasonic wave for rotating the rotor is generated. It can be used as a motor,
Further, if a seed member such as paper is brought into pressure contact, it can be used as a sheet feeding device, and further, the laminated piezoelectric element and the vibrating elastic body 20 are formed into an elliptical shape, and a linear portion on one side thereof extends linearly. The present invention can be applied to various types of vibration wave drive devices in which a linear drive device can be utilized by making pressure contact with a stator (not shown).

【0027】なお、上記した図3に示す分極処理方法で
は、A、B相の正の電極と負の電極には別々のコンタク
トピンをそれぞれ接触させて同電位の電圧を印加するよ
うにしているが、図5に示すように、最上層の圧電素子
板4の正の給電電極14A(+)と14B(+)とを接
続し、負の給電電極14A(−)と14B(−)とをそ
れぞれ予め接続しておけば上記したコンタクトピンの接
続本数を削減できることになる。そして、分極処理後、
該接続部14C、14Dを切除することで、図1に示す
積層圧電素子と同じものが得られる。
In the polarization treatment method shown in FIG. 3 described above, separate contact pins are respectively brought into contact with the positive and negative electrodes of the A and B phases to apply the same potential voltage. However, as shown in FIG. 5, the positive power supply electrodes 14A (+) and 14B (+) of the uppermost piezoelectric element plate 4 are connected, and the negative power supply electrodes 14A (−) and 14B (−) are connected. If they are connected in advance, the number of contact pins can be reduced. And after the polarization process,
By cutting off the connecting portions 14C and 14D, the same laminated piezoelectric element as shown in FIG. 1 can be obtained.

【0028】また、図1に示す積層圧電素子10には、
振動状態を検出するためのセンサー相を設けていない
が、図7の(b)に示すように、第2層の圧電素子板2
の第1無電極部15−1に4分の1波長幅のセンサー電
極12Sを導通穴50aと非接触に設け、一方最上層の
圧電素子板4にはスルーホールなどによりセンサー電極
12Sと導通する電極14Sが形成されている。
The laminated piezoelectric element 10 shown in FIG.
Although the sensor phase for detecting the vibration state is not provided, as shown in FIG. 7B, the piezoelectric element plate 2 of the second layer is provided.
The sensor electrode 12S having a quarter wavelength width is provided in the first electrodeless portion 15-1 without contact with the conduction hole 50a, while the uppermost piezoelectric element plate 4 is electrically conducted with the sensor electrode 12S by a through hole or the like. The electrode 14S is formed.

【0029】したがって、分極処理時に電極14Sに正
または負の電圧を印加すれば、第3層の圧電素子板1の
電極11Gとの間でセンサー用の分極処理が行われる。
なお、他の給電電極と仮に、例えば給電電極14A
(+)と外周部で接続しておけば分極処理のために特に
センサー用の配線を用意することはない。
Therefore, if a positive or negative voltage is applied to the electrode 14S during the polarization process, the polarization process for the sensor is performed with the electrode 11G of the piezoelectric element plate 1 of the third layer.
Note that, for example, if the power feeding electrode 14A
If it is connected to the (+) at the outer peripheral portion, no wiring for the sensor is particularly prepared for the polarization treatment.

【0030】また、駆動のために駆動回路と接続される
フレキシブルプリント基板30は、図8に示すように、
S相給電パターン31SがGND給電パターン31Gと
接触しないように設けられている。
The flexible printed circuit board 30 connected to a driving circuit for driving is, as shown in FIG.
The S-phase power feed pattern 31S is provided so as not to contact the GND power feed pattern 31G.

【0031】図9は本発明の第2の実施例を示す。FIG. 9 shows a second embodiment of the present invention.

【0032】本実施例の積層圧電素子は、図2に示す場
合と同様に、6枚の圧電セラミックスから構成し、異な
る所は、図9の(b)、(d)、(f)に示す、第2、
第4及び第6層の圧電素子板の片面に4分の1波長の間
隔で全周に電極を形成したもので、A相の正極12(1
3)A(+)と負極12(13)A(−)、B相の正極
12(13)B(+)と負極12(13)B(−)とを
一極おきに配置することで、A相とB相とは全体的に4
分の1波長の間隔が得られる。
Similar to the case shown in FIG. 2, the laminated piezoelectric element of this embodiment is composed of six piezoelectric ceramics, and the different points are shown in FIGS. 9 (b), 9 (d) and 9 (f). , Second,
Electrodes are formed on the entire circumference of the piezoelectric element plates of the fourth and sixth layers at intervals of a quarter wavelength, and the positive electrode of phase A 12 (1
3) By arranging A (+) and the negative electrode 12 (13) A (−), and the B-phase positive electrode 12 (13) B (+) and the negative electrode 12 (13) B (−) at every other pole, Phase A and Phase B are 4 overall
One-half wavelength spacing is obtained.

【0033】したがって、圧電セラミックスを全周にわ
たり利用することができるので、上記した第1の実施例
に比べてより低電圧で同じ出力を得ることができる。
Therefore, since the piezoelectric ceramics can be used over the entire circumference, the same output can be obtained at a lower voltage as compared with the first embodiment described above.

【0034】なお、本実施例では、上記した第2、第4
及び第6の圧電素子板2、3の全周にA相とB相の電極
を互い違いに配置しているので、分極処理および給電の
ために最上層に配置される第1層の圧電素子板4に形成
される給電電極は内外周方向で4周にわたり配置され、
第1の実施例と同様に第2層以下の圧電素子板の各スル
ーホールと夫々接続できるようにしている。
In the present embodiment, the above-mentioned second and fourth
Also, since the A-phase and B-phase electrodes are arranged alternately around the entire circumference of the sixth piezoelectric element plates 2 and 3, the piezoelectric element plate of the first layer arranged in the uppermost layer for polarization processing and power feeding. The power supply electrodes formed in 4 are arranged in four inner and outer circumferential directions,
Similar to the first embodiment, each of the through holes of the piezoelectric element plates of the second and lower layers can be connected.

【0035】また、これらの給電電極14A(+)、
(−)、14B(+)、(−)の一端側は、GND電極
14Gに近接して配置され、第1の実施例と同様にフレ
キシブルプリント基板との一括接続を容易としている。
In addition, these power supply electrodes 14A (+),
One ends of (−), 14B (+), and (−) are arranged close to the GND electrode 14G to facilitate collective connection with the flexible printed circuit board as in the first embodiment.

【0036】なお、図7に示すように振動状態を検出す
る電極を第2層の圧電素子板の一部に設けるようにして
も良い。
As shown in FIG. 7, an electrode for detecting the vibration state may be provided on a part of the second layer piezoelectric element plate.

【0037】図10は本発明の第3の実施例を示す。FIG. 10 shows a third embodiment of the present invention.

【0038】本実施例は、図10の(b)、(d)、
(f)に示すように、第2、第4及び第6層の圧電素子
板2、3に4分の1波長の間隔で全周に電極を形成する
点は図9に示す第2の実施例と同様であるが、図10の
(c)、(e)に示す第3および第5層の圧電素子板6
には、その上下に配置される圧電素子板2、3のA相お
よびB相の各電極と位置的に同位相でGND電極16A
と16Bが交互に4分の1波長の間隔で形成されてい
る。また、最上層の第1層の圧電素子板4には、同心的
に6周にわたり分極及び給電用の電極が形成され、内周
側の2本の給電電極14AGと14BGは、上述した各
実施例と同様にスルーホールにより、第3および第5層
の圧電素子板6の電極、詳しくは給電電極14AGはA
相用のGND電極16Aと、給電電極14BGはB相用
のGND電極16Bと接続されるようになっている。ま
た、給電電極14A(+)、(−)、14B(+)、
(−)は第2、第4及び第6層の圧電素子板2、3の同
相同極性の電極12(13)A(+)、(−)、12
(13)B(+)、(−)に同様スルーホールにより接
続されるようになっている。
In this embodiment, (b), (d) of FIG.
As shown in (f), the second embodiment shown in FIG. 9 is that electrodes are formed on the entire circumference of the piezoelectric element plates 2 and 3 of the second, fourth and sixth layers at intervals of a quarter wavelength. Similar to the example, but with the third and fifth layer piezoelectric element plates 6 shown in (c) and (e) of FIG.
The GND electrode 16A in the same phase as the A-phase and B-phase electrodes of the piezoelectric element plates 2 and 3 arranged above and below.
And 16B are alternately formed at quarter wavelength intervals. Further, electrodes for polarization and power feeding are concentrically formed on the piezoelectric element plate 4 of the uppermost first layer for six rounds, and the two power feeding electrodes 14AG and 14BG on the inner circumferential side are provided in each of the above-described embodiments. As in the example, the through holes allow the electrodes of the piezoelectric element plates 6 of the third and fifth layers, specifically, the feeding electrode 14AG to be A.
The phase GND electrode 16A and the power supply electrode 14BG are connected to the B phase GND electrode 16B. In addition, the power supply electrodes 14A (+), (-), 14B (+),
(−) Indicates the electrodes 12 (13) A (+), (−), 12 of the same phase and the same polarity of the piezoelectric element plates 2 and 3 of the second, fourth and sixth layers.
(13) B (+) and (-) are similarly connected by through holes.

【0039】このように構成した積層圧電素子の分極処
理方法は、上記した第1の実施例の場合と略同様で、異
なる所はGND用の給電電極が14AGと14BGの2
つに分かれていることであり、これらの両GND用の給
電電極14AGと14BGとに中間の電位を給電するこ
とにより、第3層及び第5層の圧電素子板6の各GND
電極16A、16Bに該中間の電位が印加される。
The polarization treatment method for the laminated piezoelectric element having the above-described structure is substantially the same as that of the first embodiment described above, except that the power supply electrodes for GND are 14AG and 14BG.
It is divided into two, and by supplying an intermediate potential to the power supply electrodes 14AG and 14BG for both GNDs, each GND of the piezoelectric element plates 6 of the third and fifth layers is supplied.
The intermediate potential is applied to the electrodes 16A and 16B.

【0040】そして、給電電極14A(+)、14B
(+)に正の電圧を、また給電電極14A(−)、14
B(−)に負の電圧を夫々不図示の駆動回路より給電す
ると、第2、第4および第6の圧電素子板2、3の正負
の各電極に夫々正負の電圧が印加され、この分極状態を
図11に示す。
The power supply electrodes 14A (+), 14B
A positive voltage is applied to (+) and the power supply electrodes 14A (-), 14
When a negative voltage is supplied to B (-) from a drive circuit (not shown), positive and negative voltages are applied to the positive and negative electrodes of the second, fourth and sixth piezoelectric element plates 2 and 3, respectively, and this polarization is applied. The state is shown in FIG.

【0041】この積層圧電素子の給電電極に接続される
フレキシブル基板30は、図12に示すように、給電パ
ターン31A1 がGND電極14AGに接続され、また
給電パターン31B1 がGND電極14BGに接続され
るようになっていて、これら両給電パターン31A1
31B1 には夫々端子部32A1 、32B1 を介して不
図示の駆動回路より以下のように駆動電圧が給電され
る。
As shown in FIG. 12, in the flexible substrate 30 connected to the power supply electrode of this laminated piezoelectric element, the power supply pattern 31A 1 is connected to the GND electrode 14AG, and the power supply pattern 31B 1 is connected to the GND electrode 14BG. And both of these feeding patterns 31A 1 ,
A drive voltage is supplied to 31B 1 from a drive circuit (not shown) via terminal portions 32A 1 and 32B 1 as follows.

【0042】すなわち、給電電極14A(+)、(−)
に導通する端子部32Aと、給電電極14B(+)、
(−)に導通する端子部32Bに給電される駆動周波電
圧の位相差は、+90degあるいは−90degであ
るが、端子部32Aと32A1、および端子部32Bと
32B1 間に夫々給電される駆動周波電圧の位相差は1
80degとなる。このため、GND電極16A、Bと
電極12(13)A、B(+)、(−)間に挟まれた第
2、第3、第4および第5層の圧電セラミックスには、
上記した第1および第2の実施例の場合に比べて2倍の
電圧がかかることになる。したがって、さらに低電圧駆
動が可能となる。
That is, the feeding electrodes 14A (+), (-)
Terminal portion 32A electrically connected to the power supply electrode 14B (+),
The phase difference of the drive frequency voltage supplied to the terminal portion 32B that conducts to (-) is +90 deg or -90 deg, but the drive is supplied between the terminal portions 32A and 32A 1 and between the terminal portions 32B and 32B 1 , respectively. Frequency voltage phase difference is 1
It becomes 80 deg. Therefore, the second, third, fourth and fifth layers of the piezoelectric ceramics sandwiched between the GND electrodes 16A, B and the electrodes 12 (13) A, B (+), (-) are
The voltage is twice as high as that in the above-described first and second embodiments. Therefore, even lower voltage driving is possible.

【0043】なお分極処理時の配線数を削減するため
に、第1の実施例や第2の実施例のように、第1層の圧
電素子板4に対して不使用箇所で14A(+)と14B
(+)、14A(−)と14B(−)、14AGと14
BGを接続し、分極処理後にこれらの接続部を切断又は
切除ようにしても良い。また、第2の実施例と同様に振
動状態検出用の電極を第1層と第2層に設けるようにし
ても良い。
In order to reduce the number of wiring lines during polarization processing, as in the first and second embodiments, 14A (+) is not used for the piezoelectric element plate 4 of the first layer at an unused portion. And 14B
(+), 14A (-) and 14B (-), 14AG and 14
It is also possible to connect BG and cut or cut off these connection parts after polarization processing. Further, similarly to the second embodiment, electrodes for detecting a vibration state may be provided in the first layer and the second layer.

【0044】図13は上記の各実施例における積層圧電
素子を利用した超音波モータを駆動源とするレンズ鏡筒
を示す。
FIG. 13 shows a lens barrel having an ultrasonic motor using the laminated piezoelectric element in each of the above embodiments as a drive source.

【0045】100は、例えば図6に示す弾性体20に
積層圧電素子10を接合した構成の振動子で、加圧バネ
101を介してストッパ部材102に当接し、駆動面側
には円環形状のロータである出力部材103が摩擦部材
104を介して加圧接触している。105はフォーカス
キー106に連結されるコロで、光軸回りに回転するこ
とによりフォーカスレンズLを光軸方向に移動させる。
このコロ105は、超音波モータからの出力部材103
と、光軸方向に移動してマニュアルフォーカスとオート
フォーカスとの切換を行うマニュアルフォーカスリング
107との連結によって光軸回りに回転するマニュアル
出力リング108と摩擦接触し、マニュアルフォーカス
リング107がマニュアル出力リング108と非結合の
オートフォーカス状態の場合、出力部材103の回転に
より差動回転してフォーカスキー106が回転駆動し、
フォーカスレンズLを超音波モータにより合焦のために
駆動する。またマニュアルフォーカスリング107がマ
ニュアル出力リング108と結合している場合には、マ
ニュアルフォーカスリング107を回転すると、コロ1
05の差動回転により同様にフォーカスレンズLがフォ
ーカスキー106によりフォーカスレンズLが移動し、
マニュアルフォーカスが行われる。
Reference numeral 100 denotes a vibrator in which the laminated piezoelectric element 10 is bonded to the elastic body 20 shown in FIG. 6, for example, which abuts the stopper member 102 via the pressure spring 101 and has an annular shape on the drive surface side. The output member 103, which is a rotor, is in pressure contact with the friction member 104. Reference numeral 105 denotes a roller connected to the focus key 106, which moves the focus lens L in the optical axis direction by rotating around the optical axis.
This roller 105 is an output member 103 from the ultrasonic motor.
And the manual focus ring 107 that moves in the direction of the optical axis to switch between manual focus and auto focus, is in frictional contact with the manual output ring 108 that rotates around the optical axis, and the manual focus ring 107 has the manual output ring. In the case of a non-coupled autofocus state with 108, the rotation of the output member 103 causes differential rotation to drive the focus key 106 to rotate,
The focus lens L is driven by the ultrasonic motor for focusing. When the manual focus ring 107 is connected to the manual output ring 108, rotating the manual focus ring 107 causes the roller 1 to rotate.
Similarly, the focus lens L is moved by the focus key 106 by the differential rotation of 05,
Manual focus is performed.

【0046】なお、上記した各実施例において、積層圧
電素子は圧電セラミックスを6枚積層しているが、これ
に限定されるものではなく、また中間層に配置される圧
電素子板に形成される電極の数も必要とする進行波の波
数に合わせて設けるようにしてもよい。
In each of the above-mentioned embodiments, the laminated piezoelectric element is formed by laminating six piezoelectric ceramics, but the invention is not limited to this, and the laminated piezoelectric element is formed on the piezoelectric element plate arranged in the intermediate layer. The number of electrodes may be set according to the required number of traveling waves.

【0047】[0047]

【発明の効果】以上説明したように本発明の積層圧電素
子は、1又は複数の波数の定在波の合成により進行波を
形成することができ、しかも分極処理や駆動のための給
電に要する配線を少なくすることが可能となる。
As described above, the laminated piezoelectric element of the present invention can form a traveling wave by combining standing waves of one or a plurality of wave numbers, and is required for polarization processing and power supply for driving. Wiring can be reduced.

【0048】また、各層間の電極の接続はスルーホール
により行っているもので、これにより一層おきに導線を
接続するといった作業を不要とし、あるいは外縁部に導
電塗料を塗布して突起を出してしまうようなことがな
い。
Further, the electrodes are connected between the respective layers by through holes, which eliminates the need for the work of connecting the conductive wires for every other layer, or the conductive coating is applied to the outer edges to form the protrusions. There is no such thing.

【0049】さらに、最上層の圧電素子板に設けた電極
のみで分極処理や駆動のための給電が行えるので、分極
処理のための配線や、駆動のための給電の配線を減らす
ことが可能となる。
Furthermore, since power supply for polarization processing and driving can be performed only by the electrodes provided on the uppermost piezoelectric element plate, it is possible to reduce wiring for polarization processing and power supply wiring for driving. Become.

【0050】一方、駆動回路との接続は、給電用の電極
が一か所に集中しているので、例えば接続用のフレキシ
ブル基板の接続部の面積を小さくすることができ、コス
トの削減化、基板樹脂による振動減衰を小さく抑えるこ
とができ、この圧電素子を用いた振動波モータ等の振動
波駆動装置の駆動効率を向上させることができる。
On the other hand, in connection with the drive circuit, since the electrodes for power supply are concentrated in one place, the area of the connection portion of the flexible board for connection can be reduced, and the cost can be reduced. Vibration damping due to the substrate resin can be suppressed to a small level, and the driving efficiency of a vibration wave driving device such as a vibration wave motor using this piezoelectric element can be improved.

【0051】勿論、この積層圧電素子にもセンサー相を
設けることができるので、振動波駆動装置の駆動制御を
高精度に行える。
Of course, since the sensor phase can be provided also in this laminated piezoelectric element, the drive control of the vibration wave drive device can be performed with high accuracy.

【0052】また、積層圧電素子の最下層の外面には電
極を有しないので、例えば積層圧電素子を振動弾性体に
接合する際に、この最下層の圧電素子板を接着剤で該弾
性体に接着させるだけでよく、従来のように接合面側に
設けられた全面電極を駆動回路のGND側と接続容易と
するために、圧電セラミックスの側面に導電塗料を塗布
する必要がなくなる。
Further, since no electrode is provided on the outer surface of the lowermost layer of the laminated piezoelectric element, when the laminated piezoelectric element is bonded to the vibrating elastic body, for example, the piezoelectric element plate of the lowermost layer is bonded to the elastic body with an adhesive. It is only necessary to adhere them, and it is not necessary to apply a conductive paint to the side surface of the piezoelectric ceramic in order to easily connect the whole surface electrode provided on the joint surface side to the GND side of the drive circuit as in the conventional case.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例を示す積層圧電素子の分
解斜視図。
FIG. 1 is an exploded perspective view of a laminated piezoelectric element showing a first embodiment of the present invention.

【図2】図1の積層圧電素子を構成する各圧電素子板の
電極を示す平面図。
FIG. 2 is a plan view showing electrodes of each piezoelectric element plate constituting the laminated piezoelectric element of FIG.

【図3】図1の積層圧電素子の分極処理方法を示す斜視
図。
FIG. 3 is a perspective view showing a polarization treatment method for the laminated piezoelectric element shown in FIG.

【図4】図1の積層圧電素子の分極方向を示す展開図。FIG. 4 is a development view showing polarization directions of the laminated piezoelectric element of FIG.

【図5】図1の実施例の変形例を示す最上層の圧電素子
板の電極の平面図。
5 is a plan view of the electrodes of the uppermost piezoelectric element plate showing a modification of the embodiment of FIG.

【図6】図1の積層圧電素子を用いた超音波モータの振
動子の分解斜視図。
6 is an exploded perspective view of a vibrator of an ultrasonic motor using the laminated piezoelectric element shown in FIG.

【図7】図2に示す実施例の変形例である各圧電素子板
の電極を示す平面図。
FIG. 7 is a plan view showing electrodes of each piezoelectric element plate, which is a modification of the embodiment shown in FIG.

【図8】図7の積層圧電素子に用いられる接続用のフレ
キシブル基板の平面図。
8 is a plan view of a flexible substrate for connection used in the laminated piezoelectric element of FIG.

【図9】第2の実施例の積層圧電素子を構成する各圧電
素子板の電極を示す平面図。
FIG. 9 is a plan view showing electrodes of each piezoelectric element plate constituting the laminated piezoelectric element of the second embodiment.

【図10】第3の実施例の積層圧電素子を構成する各圧
電素子板の電極を示す平面図。
FIG. 10 is a plan view showing electrodes of each piezoelectric element plate that constitutes the laminated piezoelectric element of the third embodiment.

【図11】図10の積層圧電素子の分極方向を示す展開
図。
11 is a development view showing polarization directions of the laminated piezoelectric element of FIG.

【図12】図10の積層圧電素子に用いられる接続用の
フレキシブル基板の平面図。
12 is a plan view of a flexible board for connection used in the laminated piezoelectric element of FIG.

【図13】第1の実施例乃至第3の実施例の積層圧電素
子を用いた超音波モータを駆動源とするレンズ鏡筒の断
面図。
FIG. 13 is a cross-sectional view of a lens barrel that uses an ultrasonic motor that uses the laminated piezoelectric element according to any of the first to third embodiments as a drive source.

【符号の説明】[Explanation of symbols]

1、2、3、4 圧電素子板 10 積層圧電素子 20 振動弾性体 30 フレキシブル基板 1, 2, 3, 4 Piezoelectric element plate 10 Laminated piezoelectric element 20 Vibration elastic body 30 Flexible substrate

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 圧電セラミックスの片面側に電極を形成
した圧電素子板を厚み方向に複数枚積層した積層圧電素
子において、 厚み方向の伸縮で周方向に波長(λ)で1又は複数の波
数の定在波を励起する2群の複数の電極部が該圧電セラ
ミックスの片面側に厚み方向に同位相で形成されると共
に周方向においては4分の1波長の奇数倍の間隔を有し
て配置された複数の第1の圧電素子板と、圧電セラミッ
クスの片面側に全面にわたって電極部が形成され、該第
1の圧電素子板と交互に積層配置される第2の圧電素子
板とを有することを特徴とする積層圧電素子。
1. A laminated piezoelectric element in which a plurality of piezoelectric element plates each having an electrode formed on one surface side of a piezoelectric ceramic are laminated in the thickness direction, wherein expansion or contraction in the thickness direction results in one or a plurality of wave numbers at a wavelength (λ) in the circumferential direction. A plurality of two groups of electrode portions for exciting standing waves are formed on one side of the piezoelectric ceramic in the same phase in the thickness direction and arranged at intervals of an odd multiple of a quarter wavelength in the circumferential direction. A plurality of first piezoelectric element plates, and a second piezoelectric element plate in which an electrode portion is formed over the entire surface on one side of the piezoelectric ceramics and which is alternately laminated with the first piezoelectric element plates. A laminated piezoelectric element characterized by:
【請求項2】 圧電セラミックスの片面側に電極を形成
した圧電素子板を厚み方向に複数枚積層した積層圧電素
子において、 厚み方向の伸縮で周方向に波長(λ)で1又は複数の波
数の定在波を励起する2群の複数の電極部が該圧電セラ
ミックスの片面側に厚み方向に同位相で形成されると共
に周方向においては4分の1波長の奇数倍の間隔を有し
て配置された複数の第1の圧電素子板と、圧電セラミッ
クスの片面側に該第1の圧電素子板の電極部と対応して
電極部が形成され、該第1の圧電素子板と交互に積層配
置される第2の圧電素子板とを有することを特徴とする
積層圧電素子。
2. A laminated piezoelectric element in which a plurality of piezoelectric element plates each having an electrode formed on one side of a piezoelectric ceramic are laminated in the thickness direction, wherein expansion or contraction in the thickness direction results in one or more wavenumbers at a wavelength (λ) in the circumferential direction. A plurality of two groups of electrode portions for exciting standing waves are formed on one side of the piezoelectric ceramic in the same phase in the thickness direction and arranged at intervals of an odd multiple of a quarter wavelength in the circumferential direction. A plurality of first piezoelectric element plates, and electrode portions are formed on one side of the piezoelectric ceramics so as to correspond to the electrode portions of the first piezoelectric element plate, and the first piezoelectric element plates are alternately laminated and arranged. A laminated piezoelectric element.
【請求項3】 請求項1において、第1の圧電素子板の
片面側には電極部が形成されていない電極無形成部を有
することを特徴とする積層圧電素子。
3. The laminated piezoelectric element according to claim 1, wherein the first piezoelectric element plate has an electrode-free portion in which an electrode portion is not formed, on one surface side thereof.
【請求項4】 請求項1又は2において、第1の圧電素
子板の片面側には4分の1波長の間隔で電極部が全面に
わたり形成されていることを特徴とする積層圧電素子。
4. The laminated piezoelectric element according to claim 1, wherein electrode portions are formed on the entire surface of one surface of the first piezoelectric element plate at intervals of a quarter wavelength.
【請求項5】 請求項1、2、3又は4において、積層
される圧電素子板の電極は、一層おきに厚み方向で対応
する電極部とスルーホールで電気的に接続されているこ
とを特徴とする積層圧電素子。
5. The electrode according to claim 1, 2, 3, or 4, wherein the electrodes of the laminated piezoelectric element plates are electrically connected to corresponding electrode portions in the thickness direction by through holes. And a laminated piezoelectric element.
【請求項6】 請求項1、2、3、4又は5において、
積層される最上層の圧電素子板には、下層の電極部とス
ルーホールを介して電気的に接続される電極部が複数形
成されていることを特徴とする積層圧電素子。
6. The method according to claim 1, 2, 3, 4 or 5.
A laminated piezoelectric element characterized in that a plurality of electrode portions electrically connected to the lower layer electrode portions through through holes are formed on the laminated uppermost piezoelectric element plate.
【請求項7】 請求項6において、最上層の圧電素子板
に形成される複数の電極部の一端側は略一か所に集めら
れるように設けられていることを特徴とする積層圧電素
子。
7. The laminated piezoelectric element according to claim 6, wherein one end sides of the plurality of electrode portions formed on the piezoelectric element plate of the uppermost layer are provided so as to be gathered at substantially one place.
【請求項8】 請求項1ないし7のいずれかにおいて、
いずれかの圧電セラミック層の一部をセンサー相として
用い、最上層の圧電素子板に該センサー相の信号取り出
し用の電極を設けたことを特徴とする積層圧電素子。
8. The method according to claim 1, wherein
A laminated piezoelectric element characterized in that a part of one of the piezoelectric ceramic layers is used as a sensor phase, and an electrode for extracting a signal of the sensor phase is provided on the uppermost piezoelectric element plate.
【請求項9】 請求項1ないし8のいずれかに記載の積
層圧電素子を振動弾性体に接合し、積層される2群の電
極部に位相の異なる交流電圧を印加し、該弾性振動体に
形成された2つの定在波の合成により、該振動弾性体の
表面粒子に楕円運動を励起させることを特徴とする振動
波駆動装置。
9. The laminated piezoelectric element according to any one of claims 1 to 8 is bonded to a vibrating elastic body, and alternating voltages having different phases are applied to the laminated two groups of electrode portions, and the elastic vibrating body is applied to the vibrating elastic body. An oscillating wave driving device, characterized in that surface particles of the oscillating elastic body are excited by an elliptic motion by synthesizing two formed standing waves.
【請求項10】 請求項10に記載の振動波駆動装置を
駆動源とすることを特徴とする装置。
10. An apparatus using the vibration wave drive apparatus according to claim 10 as a drive source.
JP6002656A 1993-12-27 1994-01-14 Laminated piezoelectric element, vibration wave driving device, and device equipped with vibration wave driving device Expired - Fee Related JP3059038B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP6002656A JP3059038B2 (en) 1994-01-14 1994-01-14 Laminated piezoelectric element, vibration wave driving device, and device equipped with vibration wave driving device
DE69416989T DE69416989T2 (en) 1993-12-27 1994-12-20 Vibration shaft drive
EP94309561A EP0661764B1 (en) 1993-12-27 1994-12-20 Vibration wave actuator
KR1019940037087A KR0176729B1 (en) 1993-12-27 1994-12-27 Vibration wave actuator
CN94119220A CN1035930C (en) 1993-12-27 1994-12-27 Mibration wave actuator
US08/925,083 US6051911A (en) 1993-12-27 1997-09-08 Vibration wave actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6002656A JP3059038B2 (en) 1994-01-14 1994-01-14 Laminated piezoelectric element, vibration wave driving device, and device equipped with vibration wave driving device

Publications (2)

Publication Number Publication Date
JPH07213081A true JPH07213081A (en) 1995-08-11
JP3059038B2 JP3059038B2 (en) 2000-07-04

Family

ID=11535393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6002656A Expired - Fee Related JP3059038B2 (en) 1993-12-27 1994-01-14 Laminated piezoelectric element, vibration wave driving device, and device equipped with vibration wave driving device

Country Status (1)

Country Link
JP (1) JP3059038B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007185049A (en) * 2006-01-06 2007-07-19 Canon Inc Vibrator and vibration wave drive unit
JP2013034366A (en) * 2011-06-27 2013-02-14 Canon Inc Piezoelectric elements, stators for oscillatory wave motors, oscillatory wave motors, driving control systems, optical apparatus, and method of manufacturing stators for oscillatory wave motors

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2899243B1 (en) 2006-03-30 2008-05-16 Saint Gobain Vetrotex METHOD AND DEVICE FOR MANUFACTURING A COMPOSITE WIRE

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007185049A (en) * 2006-01-06 2007-07-19 Canon Inc Vibrator and vibration wave drive unit
JP2013034366A (en) * 2011-06-27 2013-02-14 Canon Inc Piezoelectric elements, stators for oscillatory wave motors, oscillatory wave motors, driving control systems, optical apparatus, and method of manufacturing stators for oscillatory wave motors

Also Published As

Publication number Publication date
JP3059038B2 (en) 2000-07-04

Similar Documents

Publication Publication Date Title
EP0661764B1 (en) Vibration wave actuator
US7592738B2 (en) Ultrasonic motor
US6208065B1 (en) Piezoelectric transducer and actuator using said piezoelectric transducer
US5814919A (en) Electro-mechanical energy conversion element and a vibration wave actuator using the electro-mechanical energy conversion element
JP2004297951A (en) Ultrasonic vibrator and ultrasonic motor
US7061159B2 (en) Ultrasonic transducer and ultrasonic motor
JP5298999B2 (en) Multilayer piezoelectric element
JP4871593B2 (en) Vibrator and vibration wave drive device
JPH07213081A (en) Multilayer piezoelectric element and vibration-wave drive device
JPH05146171A (en) Ultrasonic oscillator
JP3311034B2 (en) Laminated piezoelectric element, method for manufacturing laminated piezoelectric element, vibration wave driving device, and apparatus equipped with vibration wave driving device
JPH11187677A (en) Oscillating device, oscillating type drive device and device therewith
JPH08308268A (en) Laminated type piezoelectric element and its polarization treatment method, oscillatory wave motor, and driver
JP2008061344A (en) Ultrasonic motor element
JP3432056B2 (en) Laminated piezoelectric element, method of manufacturing laminated piezoelectric element, vibration device using laminated piezoelectric element, and driving device using the same
JP4818853B2 (en) Ultrasonic motor element
JPH06120580A (en) Laminated piezoelectric element, its manufacture and polarization treatment, and ultrasonic motor
JPH0650949B2 (en) Method for manufacturing piezoelectric actuator
JP4818858B2 (en) Ultrasonic motor element
JP4388273B2 (en) Ultrasonic motor and electronic device with ultrasonic motor
JP5062927B2 (en) Vibration wave drive
JP2004274898A (en) Ultrasonic motor
JP2002017094A (en) Ultrasonic motor drive
JPH01117672A (en) Driving method for ultrasonic motor
JP2002300791A (en) Laminated current-mechanical energy-conversion element

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090421

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090421

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100421

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110421

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130421

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees