JPH0721221A - Optimum thickness design method for gutter - Google Patents

Optimum thickness design method for gutter

Info

Publication number
JPH0721221A
JPH0721221A JP5147626A JP14762693A JPH0721221A JP H0721221 A JPH0721221 A JP H0721221A JP 5147626 A JP5147626 A JP 5147626A JP 14762693 A JP14762693 A JP 14762693A JP H0721221 A JPH0721221 A JP H0721221A
Authority
JP
Japan
Prior art keywords
wall thickness
gutter
deformation
optimum
reference value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5147626A
Other languages
Japanese (ja)
Inventor
Hidetaka Sakai
秀隆 酒井
Masahiko Kitagawa
雅彦 北川
Yoichi Shiina
陽一 椎名
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP5147626A priority Critical patent/JPH0721221A/en
Publication of JPH0721221A publication Critical patent/JPH0721221A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide an established optimum thickness design method for a twist, the extension of a diameter and bending owing to the full of water. CONSTITUTION:A method is to design the optimum thickness of a gutter by dividing a molded goods shape model being a continuous product in a deformed section shape in an analyzing shape moded of fine element and deformation- analyzing the gutter in various shapes by using a limited element method. When a maximum value in the allowable range of the deformation of the gutter is set to be a deformation reference value, the plural kinds of thicknesses are set, the arbitrary place of the molded goods shape model is fixed and a prescribed load is given. Thus, displaced amounts at that time are obtained for the respective thicknesses, an approximate curve (shown by a solid line) is generated based on the displaced amounts for the obtained thicknesses and a crossing point P1 between the approximated curve and a horizontal line (shown by a broken line) passing a deformation reference value is decided as the optimum thickness.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、異型断面形状の連続製
品である成形品形状モデルを微少要素の解析形状モデル
に分割し、有限要素法を用いて各種形状の雨樋の変形解
析を行うことにより、雨樋の最適な肉厚を設計する方法
に関する。
BACKGROUND OF THE INVENTION The present invention divides a molded product shape model, which is a continuous product of atypical cross-sectional shape, into analysis shape models of minute elements, and performs deformation analysis of rain gutters of various shapes using the finite element method. The present invention thus relates to a method for designing an optimum wall thickness of a rain gutter.

【0002】[0002]

【従来の技術】開口部を持つ異型断面形状の連続製品を
設計する場合、その設計項目として、ねじれ性能、拡径
性能、たわみ性能等の各項目がある。
2. Description of the Related Art When designing a continuous product having an irregular cross-sectional shape having an opening, design items include twisting performance, diameter expansion performance, flexure performance and the like.

【0003】ねじれ性能は、製品の強度を表す重要な指
標となるものであり、ねじれ性能が劣ると製品の信頼性
を損なうことになる。ここで、ねじれ性能におけるねじ
れ角度とは、図9に示すように、雨樋の片側端部51を
指示あるいは固定等したときの、自由端52のねじれ角
度θ11をいう。
The twisting performance is an important index showing the strength of the product, and if the twisting performance is inferior, the reliability of the product is impaired. Here, the twist angle in the twist performance refers to the twist angle θ11 of the free end 52 when the one end 51 of the rain gutter is pointed or fixed, as shown in FIG.

【0004】また、拡径性能とは、雨樋の開きやすさを
表す項目であり、単に剛性の特性だけでなく、熱による
雨樋の開きや積雪による変形等により、雨樋が軒から脱
落するといった項目の代用特性にもなっている。ここ
で、雨樋の拡径とは、図10に示すように、雨樋の一端
部61の両耳部611,612を外側に押し広げる(図
中矢符により示す)場合の開きやすさを示すものであ
り、従って雨樋の拡径解析とは、一定の荷重(雨樋の両
耳部を手で開く開き荷重)に対して耳部がどの程度変形
するか(開くか)の解析を行うことをいう。
The diameter expansion performance is an item indicating the ease with which a rain gutter can be opened. Not only the characteristics of rigidity, but also the rain gutter is dropped from the eaves due to the opening of the rain gutter and deformation due to snowfall. It is also a substitute characteristic for items such as "do". Here, the diameter expansion of the rain gutter indicates the ease of opening when the both ears 611, 612 of the one end 61 of the rain gutter are pushed outward (indicated by arrows in the figure), as shown in FIG. Therefore, the diameter expansion analysis of rain gutter is to analyze how much the ears deform (open) with a constant load (opening load to open both ears of the rain gutter by hand). Say that.

【0005】また、ここにいうたわみ性能とは、満水時
の軒樋のたわみ性能のことであって、軒樋に水を満載し
たときの軒樋の変形、特に底壁部のたわみのことであ
る。軒樋底壁部のたわみは外観的に問題があるばかりで
なく、水のたまりを発生させ、排水性能を低下させる原
因となる。また、底壁部のたわみ量が増大すると、雨樋
を接合している部品類(ジョイントや止まり等)との間
に隙間を生じ、水が漏れるといった問題を生じる。
The flexure performance referred to here is the flexure performance of the eaves gutter when the eaves gutter is full, and is the deformation of the eaves gutter when the eaves gutter is full of water, especially the flexure of the bottom wall. is there. Deflection of the bottom wall of the eaves gutter not only has a problem in appearance, but also causes a pool of water and reduces drainage performance. In addition, when the amount of deflection of the bottom wall increases, a gap is created between the rain gutter and the components (joint, stop, etc.) to which the gutter is joined, and water leaks.

【0006】このように、上記各項目は設計上考慮すべ
き重要な項目であるが、従来はこのような各項目に対す
る製品設計は、経験的にもしくは構造解析等により、設
定した肉厚に対する変位量を求めているにすぎなかっ
た。
As described above, each of the above items is an important item to be considered in designing, but conventionally, product design for each such item is empirically or by a structural analysis or the like, displacement relative to a set wall thickness. I just wanted the amount.

【0007】つまり、従来の製品設計では、ねじれに対
する肉厚設計手順、拡径量に対する肉厚設計手順、満水
たわみ量に対する肉厚設計手順がそれぞれ一連の流れと
して確立されておらず、合理的な設計が行われていなか
った。
That is, in the conventional product design, the wall thickness design procedure for twisting, the wall thickness designing procedure for expanding diameter, and the wall thickness designing procedure for full water deflection are not established as a series of flow, respectively, which is rational. The design was not done.

【0008】本発明はかかる実情に鑑みてなされたもの
で、その目的は、ねじれ、拡径、満水たわみのそれぞれ
に対して、確立された肉厚の最適設計方法を提供するこ
とにある。
The present invention has been made in view of the above circumstances, and an object thereof is to provide an optimum designing method of the established wall thickness for each of twist, diameter expansion, and full-deflection.

【0009】[0009]

【課題を解決するための手段】上記課題を解決するた
め、本発明に係わる雨樋の最適肉厚設計方法は、異型断
面形状の連続製品である成形品形状モデルを微少要素の
解析形状モデルに分割し、有限要素法を用いて各種形状
の雨樋の変形解析を行うことにより、雨樋の最適な肉厚
を設計する方法であって、前記雨樋の変形の許容範囲の
最大値を変形基準値とするとき、複数種類の肉厚を設定
し、前記成形品形状モデルの任意の箇所を固定して一定
の負荷を与えることにより、そのときの変位量をそれぞ
れの肉厚について求め、この求めた肉厚毎の変位量に基
づいて近似曲線を作成し、この近似曲線と前記変形基準
値との交差点を含む一定範囲を最適肉厚として決定する
ものである。
In order to solve the above problems, the method for designing the optimum thickness of a rain gutter according to the present invention is to convert a molded product shape model, which is a continuous product of irregular cross-sectional shape, into an analysis shape model of minute elements. It is a method of designing the optimum wall thickness of the rain gutter by dividing and performing deformation analysis of the rain gutter of various shapes using the finite element method. When setting a reference value, a plurality of types of wall thicknesses are set, and a fixed load is applied by fixing any location of the molded product shape model, and the displacement amount at that time is obtained for each wall thickness. An approximate curve is created based on the calculated displacement amount for each wall thickness, and a certain range including the intersection of this approximate curve and the deformation reference value is determined as the optimum wall thickness.

【0010】[0010]

【作用】雨樋の変形の許容範囲の最大値を変形基準値と
して設定する。例えば、ねじれ性能の場合にはねじれ角
度35度を変形基準値とし、拡径性能(開きやすさ)の
場合には30mmを変形基準値とし、たわみ性能の場合に
は1mmを変形基準値として設定する。
The maximum value of the allowable range of deformation of the rain gutter is set as the deformation reference value. For example, in the case of twisting performance, the twisting angle of 35 degrees is set as the deformation reference value, in the case of diameter expansion performance (easiness to open), 30 mm is set as the deformation reference value, and in the case of bending performance, 1 mm is set as the deformation reference value. To do.

【0011】この後、解析すべき成形品形状モデルの肉
厚として複数種類(例えば、5種類)の肉厚を設定し、
それぞれの肉厚毎にFEM構造解析を行って、それぞれ
の肉厚に対する変位量を算出する。つまり、ねじれ性能
については、自由端底部におけるX,Yの2方向のねじ
れ角度を算出し、拡径性能については軒樋端部の拡径量
を算出し、たわみ性能については、軒樋の底壁部のたわ
み量を算出する。
After that, a plurality of types (for example, five types) of wall thicknesses are set as the wall thicknesses of the molded product shape model to be analyzed,
The FEM structural analysis is performed for each thickness, and the displacement amount for each thickness is calculated. That is, for the twisting performance, the twisting angle in the two directions of X and Y at the bottom of the free end is calculated, for the diameter expansion performance, the diameter expansion amount of the eaves gutter end is calculated, and for the deflection performance, the bottom wall of the eaves gutter is calculated. Calculate the amount of deflection of the part.

【0012】そして、このようにして求めた肉厚毎の変
形量に基づいて近似曲線を作成し、この近似曲線と変形
基準値との交差点を含む一定範囲を最適肉厚として決定
する。原則的には、近似曲線と変形基準値との交差点を
最適肉厚として決定するが、成形による肉厚のバラツキ
を考慮すると、例えば成形において±10%の肉厚のバ
ラツキがある場合には、上記交差点で求めた肉厚の値に
1.1をかけた値を最適肉厚として決定する。
Then, an approximate curve is created based on the amount of deformation for each wall thickness thus obtained, and a certain range including the intersection of this approximate curve and the deformation reference value is determined as the optimum wall thickness. In principle, the intersection of the approximate curve and the deformation reference value is determined as the optimum wall thickness, but considering the wall thickness variation due to molding, for example, when there is a wall thickness variation of ± 10% in molding, The value obtained by multiplying the wall thickness value obtained at the intersection by 1.1 is determined as the optimum wall thickness.

【0013】これにより、肉厚のバラツキをも含んだ最
適肉厚の製品設計が可能となる。
As a result, it is possible to design a product having an optimum wall thickness, including variations in the wall thickness.

【0014】[0014]

【実施例】以下、本考案の実施例を図面を参照して説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0015】図1は、本発明に係わる雨樋の最適肉厚設
計方法が適用される雨樋の形状の一例を示している。
FIG. 1 shows an example of the shape of a rain gutter to which the method for designing the optimum thickness of the rain gutter according to the present invention is applied.

【0016】すなわち、底壁部1、前壁部2及び後壁部
3からなる断面が上向き略コ字状の樋本体4と、この樋
本体4の前壁部2及び後壁部3の各先端縁に沿って形成
された前耳部5及び後耳部6と、前壁部2の中程よりや
や下部の位置において前記前耳部5と略平行に形成され
た中空状のリブ7とで形成されている。そして、底壁部
1に対する前壁部2の傾斜角度が、底壁部1に対する後
壁部3の傾斜角度よりやや緩やかに形成され、かつ前壁
部2の方が後壁部3よりも高く形成された異型断面形状
となっている。
That is, a gutter body 4 having a bottom wall portion 1, a front wall portion 2 and a rear wall portion 3 and having a substantially U-shaped cross section, and each of the front wall portion 2 and the rear wall portion 3 of the gutter body 4. A front ear portion 5 and a rear ear portion 6 formed along the front edge, and a hollow rib 7 formed substantially parallel to the front ear portion 5 at a position slightly lower than the middle of the front wall portion 2. Is formed by. Then, the inclination angle of the front wall portion 2 with respect to the bottom wall portion 1 is formed slightly more gently than the inclination angle of the rear wall portion 3 with respect to the bottom wall portion 1, and the front wall portion 2 is higher than the rear wall portion 3. The formed cross-sectional shape is atypical.

【0017】次に、上記構成の雨樋における最適肉厚設
計方法の具体例として、(1)ねじれ性能に対する最適
肉厚設計方法、(2)拡径性能に対する最適肉厚設計方
法、(3)満水たわみ性能に対する最適肉厚設計方法の
それぞれについて以下に説明する。
Next, as specific examples of the optimum wall thickness designing method for the rain gutter having the above-mentioned structure, (1) optimum wall thickness designing method for twisting performance, (2) optimum wall thickness designing method for diameter expansion performance, (3) Each of the optimum wall thickness designing methods for the full-deflection deflection performance will be described below.

【0018】(1)ねじれ性能に対する最適肉厚設計方
法 まず、雨樋のねじれ性能の許容範囲の最大値(変形基準
値)として、ねじれ角度35度を設定する。また、解析
すべき成形品形状モデルの肉厚(t)として、0.8、
0.9、1.0、1.1、1.2(mm)の5種類を設定
する。
(1) Optimum wall thickness design method for twisting performance First, a twisting angle of 35 degrees is set as the maximum value (deformation reference value) of the allowable range of twisting performance of a rain gutter. Further, as the wall thickness (t) of the molded product shape model to be analyzed, 0.8,
Five types of 0.9, 1.0, 1.1 and 1.2 (mm) are set.

【0019】そして、それぞれの肉厚(t)毎にFEM
構造解析を行って、それぞれの肉厚(t)に対する変位
量を算出する。つまり、ねじれ解析については、自由端
底部におけるX,Yの2方向のねじれ角度を算出する。
Then, for each wall thickness (t), the FEM
Structural analysis is performed to calculate the displacement amount for each wall thickness (t). That is, for the twist analysis, the twist angles in the two directions of X and Y at the bottom of the free end are calculated.

【0020】すなわち、図2に示すように、樋本体4の
底壁部1を垂直に置き、前壁部2を上にしてモデルを作
成する。そして、一方の端部8における断面の節点すべ
てに対して完全拘束(本実施例のモデル要素は、20節
点ソリッドとしている)とし、他方の端部9に一定の荷
重を加える。本実施例では、加える荷重として重力を設
定している。すなわち、自重によるねじれ角度θ1を算
出する。
That is, as shown in FIG. 2, the bottom wall portion 1 of the gutter body 4 is placed vertically, and the front wall portion 2 is turned up to create a model. Then, all the nodes of the cross section at one end 8 are completely constrained (the model element of this embodiment is a 20-node solid), and a constant load is applied to the other end 9. In this embodiment, gravity is set as the load to be applied. That is, the twist angle θ1 due to its own weight is calculated.

【0021】そして、このようにして求めた肉厚毎のね
じれ角度θ1を図3に示すグラフ上にプロットして近似
曲線(最小自乗法による回帰曲線、もしくは双曲線で近
似した曲線:実線により示す)を作成する。図3に示す
グラフは、縦軸がねじれ角度、横軸が肉厚(mm)となっ
ている。そして、このグラフ上に、変形基準値として設
定したねじれ角度35度を通る水平線(破線により示
す)を引き、この水平線と近似曲線との交差点P1によ
り示される肉厚(t)を最適肉厚として決定する。 本
実施例の場合、ねじれ性能についての最適肉厚は、図3
より約0.88(mm)となる。
The twist angle θ1 for each wall thickness thus obtained is plotted on the graph shown in FIG. 3 to obtain an approximate curve (a regression curve by the method of least squares or a curve approximated by a hyperbola: shown by a solid line). To create. In the graph shown in FIG. 3, the vertical axis represents the twist angle and the horizontal axis represents the wall thickness (mm). Then, a horizontal line (shown by a broken line) passing through the twist angle of 35 degrees set as the deformation reference value is drawn on this graph, and the wall thickness (t) indicated by the intersection P1 between this horizontal line and the approximate curve is set as the optimum wall thickness. decide. In the case of this embodiment, the optimum wall thickness for the twisting performance is shown in FIG.
It is about 0.88 (mm).

【0022】なお、成形による肉厚のバラツキを考慮
し、例えば成形において±10%の肉厚のバラツキがあ
る場合には、上記交差点P1より求めた肉厚の値(0.
88)に1.1をかけた0.97(mm)を最適肉厚とし
て決定する。
In consideration of variations in wall thickness due to molding, for example, when there is a wall thickness variation of ± 10% in molding, the wall thickness value obtained from the intersection P1 (0.
88) is multiplied by 1.1 to determine 0.97 (mm) as the optimum wall thickness.

【0023】これにより、肉厚のバラツキをも含んだ最
適肉厚の製品設計が行えるものである。
As a result, it is possible to design a product having an optimum wall thickness including variations in wall thickness.

【0024】(2)拡径性能に対する最適肉厚設計方法 まず、雨樋の拡径性能の許容範囲の最大値(変形基準
値)として、30mm(水平方向1Kg荷重)を設定する。
また、解析すべき成形品形状モデルの肉厚(t)とし
て、0.9、1.0、1.2、1.3、1.4(mm)の
5種類を設定する。
(2) Optimum wall thickness design method for diameter expansion performance First, 30 mm (1 kg load in the horizontal direction) is set as the maximum value (deformation reference value) of the allowable range of the diameter expansion performance of the rain gutter.
Further, as the wall thickness (t) of the molded product shape model to be analyzed, five types of 0.9, 1.0, 1.2, 1.3, 1.4 (mm) are set.

【0025】そして、それぞれの肉厚(t)毎にFEM
構造解析を行って、それぞれの肉厚(t)に対する拡径
量を算出する。
Then, for each wall thickness (t), FEM
Structural analysis is performed to calculate the amount of diameter expansion for each wall thickness (t).

【0026】すなわち、図4に示すように、樋本体4の
一端部における後壁部3の耳部6を固定Aとし、これに
対向する前壁部2の耳部5に、水平方向に1Kgの荷重W
をかけて、拡径量L1(図5参照)を算出する。
That is, as shown in FIG. 4, the ear portion 6 of the rear wall portion 3 at one end portion of the gutter body 4 is fixed to the ear portion 5 of the front wall portion 2 facing the ear portion 6 and the horizontal direction is 1 kg. Load W
By multiplying by, the diameter expansion amount L1 (see FIG. 5) is calculated.

【0027】そして、このようにして求めた肉厚毎の拡
径量L1を図6に示すグラフ上にプロットして近似曲線
(最小自乗法による回帰曲線、もしくは双曲線で近似し
た曲線:実線により示す)を作成する。図5に示すグラ
フは、縦軸が拡径量(mm)、横軸が肉厚(mm)となって
いる。そして、このグラフ上に、変形基準値として設定
した拡径30mmを通る水平線(破線により示す)を引
き、この水平線と近似曲線との交差点P2により示され
る肉厚(t)を最適肉厚として決定する。
The diameter expansion amount L1 for each wall thickness thus obtained is plotted on the graph shown in FIG. 6, and an approximate curve (a regression curve by the method of least squares or a curve approximated by a hyperbola: a solid line is shown. ) Is created. In the graph shown in FIG. 5, the vertical axis represents the diameter expansion amount (mm) and the horizontal axis represents the wall thickness (mm). Then, a horizontal line (shown by a broken line) passing through the expanded diameter 30 mm set as the deformation reference value is drawn on this graph, and the wall thickness (t) indicated by the intersection P2 between this horizontal line and the approximate curve is determined as the optimum wall thickness. To do.

【0028】本実施例の場合、拡径性能についての最適
肉厚は、図5より約0.97(mm)となる。
In the case of this embodiment, the optimum wall thickness for the diameter expansion performance is about 0.97 (mm) from FIG.

【0029】なお、成形による肉厚のバラツキを考慮
し、例えば成形において±10%の肉厚のバラツキがあ
る場合には、上記交差点P2より求めた肉厚の値(0.
97mm)に1.1をかけた1.07(mm)を最適肉厚と
して決定する。
In consideration of variations in wall thickness due to molding, for example, when there is a wall thickness variation of ± 10% in molding, the wall thickness value obtained from the intersection P2 (0.
The optimum thickness is determined to be 1.07 (mm) obtained by multiplying 97 mm) by 1.1.

【0030】これにより、肉厚のバラツキをも含んだ最
適肉厚の製品設計が行えるものである。
As a result, it is possible to design a product with an optimum wall thickness that includes variations in wall thickness.

【0031】(3)満水たわみ性能に対する最適肉厚設
計方法 まず、雨樋の満水たわみ性能の許容範囲の最大値(変形
基準値)として、1mmを設定する。また、解析すべき成
形品形状モデルの肉厚(t)として、0.9、1.0、
1.2、1.3、1.4(mm)の5種類を設定する。
(3) Optimum wall thickness design method for full water deflection performance First, 1 mm is set as the maximum value (deformation reference value) of the permissible range for full water deflection performance of a rain gutter. Further, as the wall thickness (t) of the molded article shape model to be analyzed, 0.9, 1.0,
Five types of 1.2, 1.3 and 1.4 (mm) are set.

【0032】そして、それぞれの肉厚(t)毎にFEM
構造解析を行って、それぞれの肉厚(t)に対する底壁
部のたわみ量を算出する。
Then, the FEM is calculated for each wall thickness (t).
Structural analysis is performed to calculate the amount of deflection of the bottom wall portion for each wall thickness (t).

【0033】すなわち、図7に示すように、500mm間
隔で軒先に固定された樋支持具(ジョイント含む)10
に樋本体4を支持固定し、この樋本体4を満水状態(後
耳部6の上部まで水を満たした静水圧の状態)として、
最大たわみ部位(破線で示す湾曲部の最下端位置)11
の最大たわみ量L2を算出する。
That is, as shown in FIG. 7, a gutter support (including joint) 10 fixed to the eaves at intervals of 500 mm.
The gutter body 4 is supported and fixed to the gutter body 4, and the gutter body 4 is filled with water (state of hydrostatic pressure with water filled up to the upper part of the rear ear part 6)
Maximum deflection part (the lowermost position of the curved part shown by the broken line) 11
The maximum deflection amount L2 of is calculated.

【0034】すなわち、密度ρ=1.0×10-6Kg/m
3 、重力加速度g=9.8m/s2とすると、樋本体4
の水深hでの圧力pは、
That is, the density ρ = 1.0 × 10 -6 Kg / m
3 and g = 9.8 m / s 2 , the gutter body 4
The pressure p at the water depth h of

【0035】[0035]

【数1】p=ρgh となるように与えた。また、拘束条件は、樋本体4と樋
支持具10とが接触している部分(前耳部5及び後耳部
6)と対称面に与えている。つまり、前耳接触部を完全
拘束、後耳接触部を水平方向に1mm強制変位(ただし、
垂直方向は完全拘束)。
## EQU1 ## It is given so that p = ρgh. In addition, the constraint condition is given to the symmetry plane with the portions (front ear 5 and rear ear 6) where the gutter body 4 and the gutter support 10 are in contact with each other. In other words, the front ear contact part is completely restrained, and the rear ear contact part is forcedly displaced horizontally by 1 mm (however,
(Completely restrained in the vertical direction).

【0036】以上の条件により求めた肉厚毎の最大たわ
み量L2を、図8に示すグラフ上にプロットして近似曲
線(最小自乗法による回帰曲線、もしくは双曲線で近似
した曲線:実線により示す)を作成する。図8に示すグ
ラフは、縦軸が満水たわみ量(mm)、横軸が肉厚(mm)
となっている。そして、このグラフ上に、変形基準値と
して設定した満水たわみ量1mmを通る水平線(破線によ
り示す)を引き、この水平線と近似曲線との交差点P3
により示される肉厚(t)を最適肉厚として決定する。
The maximum deflection amount L2 for each wall thickness obtained under the above conditions is plotted on the graph shown in FIG. 8 to obtain an approximate curve (regression curve by the method of least squares or a curve approximated by a hyperbola: shown by a solid line). To create. In the graph shown in FIG. 8, the vertical axis represents the amount of full-deflection (mm) and the horizontal axis represents the wall thickness (mm).
Has become. Then, on this graph, a horizontal line (shown by a broken line) passing through the full-deflection amount of 1 mm set as the deformation reference value is drawn, and the intersection P3 between this horizontal line and the approximate curve
The wall thickness (t) indicated by is determined as the optimum wall thickness.

【0037】本実施例の場合、満水たわみ性能について
の最適肉厚は、図8より約0.92(mm)となる。
In the case of this embodiment, the optimum wall thickness for the flexure performance under full water is about 0.92 (mm) from FIG.

【0038】なお、成形による肉厚のバラツキを考慮
し、例えば成形において±10%の肉厚のバラツキがあ
る場合には、上記交差点P3より求めた肉厚の値(0.
92mm)に1.1をかけた1.01(mm)を最適肉厚と
して決定する。
In consideration of variations in wall thickness due to molding, for example, when there is a wall thickness variation of ± 10% in molding, the wall thickness value obtained from the intersection P3 (0.
The optimum thickness is determined as 1.01 (mm) by multiplying 92 mm) by 1.1.

【0039】これにより、肉厚のバラツキをも含んだ最
適肉厚の製品設計が行えるものである。
As a result, it is possible to design a product having an optimum wall thickness including variations in wall thickness.

【0040】[0040]

【発明の効果】本発明に係わる雨樋の最適肉厚設計方法
は、複数種類の肉厚を設定し、成形品形状モデルの任意
の箇所を固定して一定の負荷を与えることにより、その
ときの変位量をそれぞれの肉厚について求め、この求め
た肉厚毎の変位量に基づいて近似曲線を作成し、この近
似曲線と変形基準値との交差点を含む一定範囲を最適肉
厚として決定するようにしたので、肉厚に対する各種変
位量(ねじれ角度、拡径量、たわみ量等)の変化がわか
ることから、より精度の高い設計が可能となる。
The optimum thickness designing method for rain gutters according to the present invention is performed by setting a plurality of types of thicknesses, fixing an arbitrary part of the molded product shape model and applying a constant load at that time. The displacement amount of each thickness is calculated, an approximate curve is created based on the calculated displacement amount for each thickness, and a certain range including the intersection of this approximate curve and the deformation reference value is determined as the optimum thickness. Since this is done, changes in various displacement amounts (twist angle, diameter expansion amount, deflection amount, etc.) with respect to the wall thickness can be known, so that more accurate design is possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係わる雨樋の最適肉厚設計方法が適用
される雨樋の形状の一例を示す側面図である。
FIG. 1 is a side view showing an example of the shape of a rain gutter to which an optimum wall thickness designing method for a rain gutter according to the present invention is applied.

【図2】ねじれ角度の解析方法を説明する図である。FIG. 2 is a diagram illustrating a method of analyzing a twist angle.

【図3】ねじれ角度と最適肉厚との関係を示すグラフで
ある。
FIG. 3 is a graph showing the relationship between the twist angle and the optimum wall thickness.

【図4】拡径量の解析方法を説明する図である。FIG. 4 is a diagram illustrating a method of analyzing a diameter expansion amount.

【図5】拡径量の解析方法を説明する図である。FIG. 5 is a diagram illustrating a method of analyzing a diameter expansion amount.

【図6】拡径量と最適肉厚との関係を示すグラフであ
る。
FIG. 6 is a graph showing the relationship between the amount of diameter expansion and the optimum wall thickness.

【図7】満水たわみ量の解析方法を説明する図である。FIG. 7 is a diagram illustrating a method of analyzing the amount of full water deflection.

【図8】満水たわみ量と最適肉厚との関係を示すグラフ
である。
FIG. 8 is a graph showing the relationship between the amount of full water deflection and the optimum wall thickness.

【図9】ねじれ性能におけるねじれ角度を説明する図で
ある。
FIG. 9 is a diagram illustrating a twist angle in twist performance.

【図10】雨樋の拡径方法を説明する図である。FIG. 10 is a diagram illustrating a method for expanding the diameter of a rain gutter.

【符号の説明】[Explanation of symbols]

1 底壁部 2 前壁部 3 後壁部 4 軒樋本体 8,9 端部 1 bottom wall 2 front wall 3 rear wall 4 eaves gutter body 8, 9 end

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 異型断面形状の連続製品である成形品形
状モデルを微少要素の解析形状モデルに分割し、有限要
素法を用いて各種形状の雨樋の変形解析を行うことによ
り、雨樋の最適な肉厚を設計する方法であって、 前記雨樋の変形の許容範囲の最大値を変形基準値とする
とき、複数種類の肉厚を設定し、前記成形品形状モデル
の任意の箇所を固定して一定の負荷を与えることによ
り、そのときの変位量をそれぞれの肉厚について求め、
この求めた肉厚毎の変位量に基づいて近似曲線を作成
し、この近似曲線と前記変形基準値との交差点を含む一
定範囲を最適肉厚として決定することを特徴とする雨樋
の最適肉厚設計方法。
1. A rain gutter is obtained by dividing a molded product shape model, which is a continuous product of atypical cross-sectional shape, into an analysis shape model of minute elements and performing deformation analysis of rain gutters of various shapes using the finite element method. A method of designing an optimum wall thickness, wherein when the maximum value of the allowable range of deformation of the rain gutter is set as a deformation reference value, a plurality of kinds of wall thicknesses are set, and any portion of the molded product shape model is set. By fixing and applying a constant load, the displacement at that time is calculated for each wall thickness,
An optimum curve of the rain gutter characterized by creating an approximate curve based on the calculated displacement amount for each wall thickness, and determining a certain range including the intersection of the approximate curve and the deformation reference value as the optimum wall thickness. Thickness design method.
JP5147626A 1993-06-18 1993-06-18 Optimum thickness design method for gutter Pending JPH0721221A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5147626A JPH0721221A (en) 1993-06-18 1993-06-18 Optimum thickness design method for gutter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5147626A JPH0721221A (en) 1993-06-18 1993-06-18 Optimum thickness design method for gutter

Publications (1)

Publication Number Publication Date
JPH0721221A true JPH0721221A (en) 1995-01-24

Family

ID=15434585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5147626A Pending JPH0721221A (en) 1993-06-18 1993-06-18 Optimum thickness design method for gutter

Country Status (1)

Country Link
JP (1) JPH0721221A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0892261A2 (en) * 1997-07-16 1999-01-20 Daimler-Benz Aktiengesellschaft Method for optimizing the thickness of machine or vehicle parts

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0892261A2 (en) * 1997-07-16 1999-01-20 Daimler-Benz Aktiengesellschaft Method for optimizing the thickness of machine or vehicle parts
EP0892261A3 (en) * 1997-07-16 1999-09-01 DaimlerChrysler AG Method for optimizing the thickness of machine or vehicle parts

Similar Documents

Publication Publication Date Title
JPH0721221A (en) Optimum thickness design method for gutter
CN211396175U (en) Stone curtain wall mounting structure
JP2011158271A (en) Method for predicting dent rigidity
JP2010150801A (en) Structure of edge of eaves
JP2000054350A (en) Mounting bracket and flexible film enlarging and shrinking structural body
CN109162424A (en) Precast floor mounting structure and its installation method
CN110939290A (en) FRP (fiber reinforced plastic) reinforcing structure of reinforced concrete special-shaped column and construction method thereof
JP2002273772A (en) Structural strength simulation method and device for injection molded article
KR102295747B1 (en) Structure and joining method of joint for panel parts
JPH09228324A (en) Soundproof wall and construction method of the same
JP3141151B2 (en) Rebar cross ties
JPH10131203A (en) Anchor bolt support member
CN114934623B (en) Cable dome inhaul cable space multidirectional intersection for space cable structure
JP3509528B2 (en) Rain gutter joint type water collector
JP2007004552A (en) Analysis method for laminated material
CH685510A5 (en) Metal supporting bracket for suspended ceiling panels
JPH09279780A (en) Drain cover
JPH06274574A (en) Minimum analysis model deciding method in diameter expansion analysis for rain gutter
JP2520259Y2 (en) Fitting cap type metal tile roof
CN212271332U (en) Decorative molding installation connecting system
KR102574446B1 (en) Seismic Performance Improvement Cladding Insulation Anchor
CN209099167U (en) A kind of bridge stretching structure
JP4104247B2 (en) Support structure for bent joints
JP2003336464A (en) Member and method for mounting grating and sash
CN115828367A (en) Super high-rise building wind-resistant design method and device based on adjustment of core tube opening