JPH07211865A - Inductor - Google Patents

Inductor

Info

Publication number
JPH07211865A
JPH07211865A JP380194A JP380194A JPH07211865A JP H07211865 A JPH07211865 A JP H07211865A JP 380194 A JP380194 A JP 380194A JP 380194 A JP380194 A JP 380194A JP H07211865 A JPH07211865 A JP H07211865A
Authority
JP
Japan
Prior art keywords
film
inductor
line
permeability material
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP380194A
Other languages
Japanese (ja)
Inventor
Yasumi Hikosaka
康己 彦坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP380194A priority Critical patent/JPH07211865A/en
Publication of JPH07211865A publication Critical patent/JPH07211865A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To increase inductance and to reduce the size of an inductor by covering a lines, which are aligned so that currents flow in the reverse direction through the neighboring lines, with a high-permeability material. CONSTITUTION:A substrate 1 is an insulating (SI-) GaSa substrate, an insulating film 2 is a silicon dioxide film, a gold film 3 is a line constituting inductance, an insulating film 4 is a silicon nitride film and a high-permeability material film 5 is an amorphous metal film, a ferrite film or the like. Here, the silicon nitride film 4 having the thickness of 500Angstrom is deposited on the meander line using the line or the conventional gold film 3 or the like. The amorphous metal film 5 having the thickness of 1mum is further deposited on the film 4. As the method for reducing the occupying area on the substrate of an inductor, the conventional inductance line is used. The magnetic field generated by the current flowing through the inductor is made large by covering the periphery of the inductor with the high-permeability material, and the inductance is made large. As a result, the size of the inductor is reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はモノリシックマイクロ波
IC(MMIC)等の基板上に形成されたインダクタに関する。
FIELD OF THE INVENTION The present invention relates to a monolithic microwave.
The present invention relates to an inductor formed on a substrate such as an IC (MMIC).

【0002】近年, マイクロ波IC(MIC) として, ハイブ
リッドICから半導体基板上にモノリシックに形成するMM
ICの開発が盛んに行われている。しかしながら,低周波
領域のMMIC形成技術として集中定数回路を用いるため,
受動回路素子の寸法が能動素子に比べて比較的大きい。
すなわち寸法が大きいためMMICの縮小化が難しく, 低コ
スト化が図りにくい。特に, 受動回路素子の1つである
インダクタの縮小化が望まれている。
In recent years, as a microwave IC (MIC), an MM monolithically formed on a semiconductor substrate from a hybrid IC.
IC development is actively carried out. However, since a lumped constant circuit is used as the MMIC formation technology in the low frequency region,
The dimensions of passive circuit elements are relatively large compared to active elements.
That is, it is difficult to reduce the size of the MMIC because of its large size, and it is difficult to reduce the cost. In particular, it is desired to reduce the size of the inductor, which is one of the passive circuit elements.

【0003】[0003]

【従来の技術】従来より,MMIC上での集中定数型のイン
ダクタとしては,ミアンダラインやスパイラルライン等
がある。ミアンダラインは,中程度の大きさのインダク
タンスの場合使われ, スパイラルラインは比較的大きい
インダクタンスの場合に用いられる。
2. Description of the Related Art Conventionally, lumped-constant type inductors on MMICs include meander lines and spiral lines. Meander lines are used for medium-sized inductances, and spiral lines are used for relatively large inductances.

【0004】いずれにしても,基本的には回路のインダ
クタンスを作成するのに線路を巻いた構造を用い, 且つ
その周囲は透磁率の小さい空気または真空であるため,
インダクタの面積は大きくなっている。
In any case, basically, a structure in which a line is wound is used to create the inductance of the circuit, and the surrounding area is air or vacuum with a low magnetic permeability,
The area of the inductor is increasing.

【0005】[0005]

【発明が解決しようとする課題】本発明では,MMIC上の
インダクタの構造として基本的に従来のミアンダライン
やスパイラルライン等の構造を利用して,寸法を縮小
し,低コスト化を図ることを目的とする。
SUMMARY OF THE INVENTION In the present invention, as a structure of an inductor on an MMIC, the structure of a conventional meander line, spiral line, or the like is basically used to reduce the size and reduce the cost. To aim.

【0006】[0006]

【課題を解決するための手段】上記課題の解決は (図
1,3参照), 1)基板上に形成されたインダクタであって,隣接する
線路が逆方向に電流が流れるように配置された線路 3
と,該線路の少なくとも上部を覆う絶縁膜 4と,該絶縁
膜を覆って被覆され且つ真空より透磁率の大きい高透磁
率材料膜 5とを有するインダクタ, あるいは, 2)基板上に形成されたインダクタであって,隣接する
線路が同方向に電流が流れるように配置された線路3A
と,該線路の少なくとも上部を覆う絶縁膜 4と,該絶縁
膜を覆って被覆され且つ真空より透磁率の大きい高透磁
率材料膜 5とを有し,該高透磁率材料膜が隣接する線路
間で分離されているインダクタにより達成される。
[Means for Solving the Problems] To solve the above problems (see FIGS. 1 and 3), 1) an inductor formed on a substrate, in which adjacent lines are arranged so that current flows in the opposite direction. Railroad track 3
And an inductor having an insulating film 4 covering at least the upper part of the line, and a high-permeability material film 5 covering the insulating film and having a magnetic permeability larger than vacuum, or 2) formed on a substrate Line 3A that is an inductor and is arranged so that current flows in the same direction in adjacent lines
And an insulating film 4 covering at least an upper portion of the line, and a high-permeability material film 5 covering the insulating film and having a magnetic permeability larger than that of vacuum, and the high-permeability material film is adjacent to the line. This is achieved by the inductors being separated between.

【0007】[0007]

【作用】本発明では,インダクタの基板上での占有面積
を小さくする方法として, 前記のように従来のインダク
タの線路を用いるが, インダクタの周囲を高透磁率材料
で覆うことにより, インダクタに流れる電流により発生
する磁場を大きくし,これによりインダクタンスを大き
くし,結果的にインダクタの寸法を縮小化している。
In the present invention, as a method of reducing the occupied area of the inductor on the substrate, the conventional inductor line is used as described above. However, by covering the inductor with a high-permeability material, the inductor flow The magnetic field generated by the current is increased, which increases the inductance and consequently reduces the size of the inductor.

【0008】本発明に類似の技術として高透磁率材料の
基板上にインダクタを形成したり,あるいは基板上に装
着されたチップインダクタに高透磁率材料を被覆する等
の開示は公知である。
As a technique similar to the present invention, it is known to form an inductor on a substrate of a high magnetic permeability material, or to cover a chip inductor mounted on the substrate with a high magnetic permeability material.

【0009】これに対し, 本発明は,基板上に形成され
るインダクタにおいて,ミアンダラインのように隣接す
る線路が逆方向に電流が流れるタイプのインダクタで
は,そのまま線路上または線路の周囲に高透磁率材料を
被覆することで, インダクタンスを増加させるようにし
ている。
On the other hand, according to the present invention, in an inductor formed on a substrate, such as a meander line, in which an adjacent line has a current flowing in the opposite direction, a high permeability is directly provided on or around the line. The inductance is increased by coating a magnetic susceptibility material.

【0010】一方,スパイラルラインのように隣接する
線路に同方向の電流が流れる場合は, 隣接線路の磁場の
発生が逆方向であるため,高透磁率材料をインダクタン
ス全体にわたって一様に被覆しても効果は少ない。従っ
て, この場合は自己の線路が発生する磁場を高透磁率材
料で閉じ込めるように被覆する, すなわち隣接する線路
間の高透磁率材料を分離することにより, 自己インダク
タンスを増加させるようにしている。
On the other hand, when current flows in the same direction in adjacent lines such as a spiral line, the magnetic fields in the adjacent lines are generated in opposite directions, so that the high-permeability material is uniformly coated over the entire inductance. Is less effective. Therefore, in this case, the self-inductance is increased by covering the magnetic field generated by its own line with a high magnetic permeability material, that is, by separating the high magnetic permeability material between adjacent lines.

【0011】[0011]

【実施例】図1(A),(B) は本発明の実施例1の説明図で
ある。図1(A) は平面図, 図1(B) は断面図である。
Embodiments FIGS. 1A and 1B are explanatory views of Embodiment 1 of the present invention. FIG. 1 (A) is a plan view and FIG. 1 (B) is a sectional view.

【0012】図において, 1は半絶縁性(SI-)GaAs 基
板, 2は絶縁膜で二酸化シリコン(SiO2)膜, 3はインダ
クタを構成する線路で金(Au)膜, 4は絶縁膜で窒化シリ
コン(Si3N4) 膜, 5は高透磁率材料膜でアモルファス金
属膜やフェライト膜等である。
In the figure, 1 is a semi-insulating (SI-) GaAs substrate, 2 is an insulating film which is a silicon dioxide (SiO 2 ) film, 3 is a line which constitutes an inductor, and is a gold (Au) film, and 4 is an insulating film. The silicon nitride (Si 3 N 4 ) film, 5 is a high permeability material film, such as an amorphous metal film or a ferrite film.

【0013】この実施例は,従来のAu膜 3等の線路を用
いたミアンダライン上に厚さ 500ÅのSi3N4 膜 4を堆積
し,さらにその上に厚さ 1μmのCoZrNi系等のアモルフ
ァス金属膜 5を堆積している。
In this embodiment, a Si 3 N 4 film 4 with a thickness of 500 Å is deposited on a meander line using a line such as a conventional Au film 3 and a 1 μm thick amorphous film of CoZrNi system or the like is further deposited thereon. A metal film 5 is deposited.

【0014】図2(A) 〜(C) は本発明の実施例2の説明
図である。この実施例は隣接する線路の電流方向が逆に
なるように巻いたインダクタの平面図で,断面図は図1
と同じである。
FIGS. 2A to 2C are explanatory views of the second embodiment of the present invention. This embodiment is a plan view of an inductor wound so that the current directions of adjacent lines are opposite to each other.
Is the same as.

【0015】図示のように, 実施例はいずれも隣接する
線路 3が, ミアンダラインのように逆方向の電流路とな
るように巻かれ,その上に絶縁膜 4として図1のSi3N4
膜の代わりに厚さ1000ÅのSiO2膜を堆積し,さらにその
上に厚さ 1μmのアモルファス金属膜 5を堆積してい
る。
[0015] As shown, the examples are line 3 adjacent either be wound such that the reverse current path as meander lines, Si 3 N 4 in FIG. 1 thereon as an insulating film 4
Instead of the film, a 1000 Å thick SiO 2 film is deposited, and an amorphous metal film 5 with a thickness of 1 μm is further deposited on it.

【0016】図3(A),(B) は本発明の実施例3の説明図
である。図3(A) は平面図, 図3(B) は断面図である。
この実施例は,隣接する線路3Aがスパイラルラインのよ
うに同方向の電流路となるインダクタで,その上に厚さ
500ÅのSi3N4 膜 4を堆積し,さらにその上に厚さ0.5
μmのアモルファス金属膜 5を堆積し, 且つ線路間のア
モルファス金属膜 5が分離された構造に形成する。
FIGS. 3A and 3B are explanatory views of the third embodiment of the present invention. FIG. 3A is a plan view and FIG. 3B is a sectional view.
In this embodiment, an adjacent line 3A is an inductor in which a current path in the same direction as a spiral line is formed, and a thickness above the inductor is set.
A 500 Å Si 3 N 4 film 4 was deposited and a thickness of 0.5
A μm amorphous metal film 5 is deposited, and the amorphous metal film 5 between lines is formed into a separated structure.

【0017】図4は本発明の実施例4の説明図である。
図は平面図を示し,断面図は図3と同様である。この実
施例では,インダクタはミアンダラインのように隣接す
る線路 3が逆方向の電流路となるように巻かれ,その上
に絶縁膜 4として厚さ1000ÅのSiO2膜を堆積し,さらに
その上に厚さ 1μmのアモルファス金属膜 5を堆積し,
且つ線路間のアモルファス金属膜 5が分離された構造に
形成する。
FIG. 4 is an explanatory view of the fourth embodiment of the present invention.
The figure shows a plan view, and the cross-sectional view is similar to FIG. In this embodiment, the inductor is wound such that the adjacent line 3 becomes a current path in the opposite direction like a meander line, and a SiO 2 film with a thickness of 1000 Å is deposited as an insulating film 4 on the line. 1 μm thick amorphous metal film 5 is deposited on
In addition, the amorphous metal film 5 between the lines is formed in a separated structure.

【0018】図5は本発明の実施例5の説明図である。
図において,半導体基板 1上に絶縁膜として厚さ1000Å
のSiO2膜 4を堆積し,その上に厚さ2000Åのフェライト
膜 6を堆積し,この上に線路として厚さ 3μmのAu膜 3
または3Aを形成し,これをマスクにしてフェライト膜 6
及びSiO2膜 4をエッチングし,さらにその上に厚さ1000
ÅのSiO2膜 4を堆積し,さらに高透磁率材料膜として厚
さ0.5 μmのフェライト膜 5を堆積し, 且つ線路間のフ
ェライト膜 5が分離された構造に形成する。
FIG. 5 is an explanatory view of the fifth embodiment of the present invention.
In the figure, the thickness of the insulating film on the semiconductor substrate 1 is 1000 Å
Of SiO 2 film 4 is deposited, a 2000 Å-thick ferrite film 6 is deposited on it, and a 3 μm-thick Au film 3 is formed on it as a line.
Or 3A is formed and this is used as a mask.
And SiO 2 film 4 is etched, and the thickness of 1000
A Å SiO 2 film 4 is deposited, a 0.5 μm-thick ferrite film 5 is further deposited as a high-permeability material film, and the ferrite film 5 between lines is separated.

【0019】図6は本発明の実施例6の説明図である。
図において,半導体基板 1上に絶縁膜として厚さ1000Å
のSiO2膜 4を堆積し,この上に線路として厚さ 3μmの
Au膜 3または3Aを形成し,これをマスクにしてSiO2膜 4
をエッチングし,さらにその上に厚さ1000ÅのSiO2膜 4
を堆積し,さらに高透磁率材料膜として厚さ0.5 μmの
フェライト膜 5を堆積し, 且つ線路間のフェライト膜 5
が分離された構造に形成する。
FIG. 6 is an explanatory diagram of a sixth embodiment of the present invention.
In the figure, the thickness of the insulating film on the semiconductor substrate 1 is 1000 Å
SiO 2 film 4 is deposited, and a line with a thickness of 3 μm is formed on it.
Form Au film 3 or 3A, and use this as a mask for SiO 2 film 4
Is etched, and a 1000 Å thick SiO 2 film
And a ferrite film 5 with a thickness of 0.5 μm as a high-permeability material film.
Form a separated structure.

【0020】図7は本発明の実施例7の説明図である。
図において,半絶縁性半導体基板 1上に直接線路として
厚さ 3μmのAu膜3 または3Aを形成し,これをマスクに
して半導体基板をエッチングして掘り下げ,さらにその
上に厚さ1000ÅのSiO2膜 4を堆積し,さらに高透磁率材
料膜として厚さ0.5 μmのフェライト膜 5を堆積し, 且
つ線路間のフェライト膜 5が分離された構造に形成す
る。
FIG. 7 is an explanatory diagram of a seventh embodiment of the present invention.
In the figure, a 3 μm-thick Au film 3 or 3A is formed as a direct line on a semi-insulating semiconductor substrate 1, the semiconductor substrate is etched and dug down using this as a mask, and further 1000 Å thick SiO 2 is formed on top of it. A film 4 is deposited, a 0.5 μm thick ferrite film 5 is further deposited as a high-permeability material film, and a ferrite film 5 between lines is formed in a separated structure.

【0021】以上の実施例では高透磁率材料としてCoZr
Ni系のアモルファス金属膜,フェライトを用いたが,本
発明はこれに限るものではなく,例えば,その他各種の
パーマロイ, フェライト, アモルファス金属材料等を用
いてもよい。
In the above embodiments, CoZr is used as the high magnetic permeability material.
Although the Ni-based amorphous metal film and ferrite are used, the present invention is not limited to this, and other various permalloys, ferrites, amorphous metal materials and the like may be used.

【0022】[0022]

【発明の効果】本発明によれぱ,MMIC上のインダクタの
構造として基本的に従来のメアンダラインやスパイラル
ライン等の構造を利用して,寸法を縮小し,且つ低コス
ト化を図ることができる。
According to the present invention, as the structure of the inductor on the MMIC, the structure such as the conventional meander line or spiral line is basically used, and the size can be reduced and the cost can be reduced. .

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施例1の説明図FIG. 1 is an explanatory diagram of a first embodiment of the present invention.

【図2】 本発明の実施例2の説明図FIG. 2 is an explanatory diagram of a second embodiment of the present invention.

【図3】 本発明の実施例3の説明図FIG. 3 is an explanatory diagram of Embodiment 3 of the present invention.

【図4】 本発明の実施例4の説明図FIG. 4 is an explanatory diagram of Embodiment 4 of the present invention.

【図5】 本発明の実施例5の説明図FIG. 5 is an explanatory diagram of Embodiment 5 of the present invention.

【図6】 本発明の実施例6の説明図FIG. 6 is an explanatory diagram of Embodiment 6 of the present invention.

【図7】 本発明の実施例7の説明図FIG. 7 is an explanatory diagram of Embodiment 7 of the present invention.

【符号の説明】[Explanation of symbols]

1 半導体基板でSI-GaAs 基板 2 絶縁膜でSiO2膜 3,3A インダクタを構成する線路でAu膜 4 絶縁膜Si3N4 膜またはSiO2膜 5, 6 高透磁率材料膜でアモルファス金属膜またはフ
ェライト膜
1 SI-GaAs substrate as a semiconductor substrate 2 SiO 2 film as an insulating film 3, 3A Au line as a line forming an inductor 4 Insulating film Si 3 N 4 film or SiO 2 film 5, 6 High magnetic permeability material film as an amorphous metal film Or ferrite film

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 基板上に形成されたインダクタであっ
て,隣接する線路が逆方向に電流が流れるように配置さ
れた線路(3)と,該線路の少なくとも上部を覆う絶縁膜
(4)と,該絶縁膜を覆って被覆され且つ真空より透磁率
の大きい高透磁率材料膜(5) とを有することを特徴とす
るインダクタ。
1. An inductor formed on a substrate, in which adjacent lines are arranged so that current flows in opposite directions, and an insulating film covering at least the upper part of the line.
An inductor comprising (4) and a high-permeability material film (5) which covers the insulating film and has a higher magnetic permeability than vacuum.
【請求項2】 基板上に形成されたインダクタであっ
て,隣接する線路が同方向に電流が流れるように配置さ
れた線路(3A)と,該線路の少なくとも上部を覆う絶縁膜
(4)と,該絶縁膜を覆って被覆され且つ真空より透磁率
の大きい高透磁率材料膜(5) とを有し,該高透磁率材料
膜が隣接する線路間で分離されていることを特徴とする
インダクタ。
2. An inductor formed on a substrate, wherein a line (3A) is arranged so that current flows in the same direction in adjacent lines, and an insulating film covering at least an upper part of the line.
(4) and a high-permeability material film (5) which covers the insulating film and has a magnetic permeability greater than that of vacuum, and the high-permeability material film is separated between adjacent lines. An inductor characterized by.
JP380194A 1994-01-19 1994-01-19 Inductor Withdrawn JPH07211865A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP380194A JPH07211865A (en) 1994-01-19 1994-01-19 Inductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP380194A JPH07211865A (en) 1994-01-19 1994-01-19 Inductor

Publications (1)

Publication Number Publication Date
JPH07211865A true JPH07211865A (en) 1995-08-11

Family

ID=11567308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP380194A Withdrawn JPH07211865A (en) 1994-01-19 1994-01-19 Inductor

Country Status (1)

Country Link
JP (1) JPH07211865A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09181264A (en) * 1995-12-27 1997-07-11 Nec Corp Semiconductor device and manufacture thereof
EP1542261A1 (en) * 2003-12-10 2005-06-15 Freescale Semiconductor, Inc. Method of producing an element comprising an electrical conductor encircled by magnetic material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09181264A (en) * 1995-12-27 1997-07-11 Nec Corp Semiconductor device and manufacture thereof
EP1542261A1 (en) * 2003-12-10 2005-06-15 Freescale Semiconductor, Inc. Method of producing an element comprising an electrical conductor encircled by magnetic material
WO2005093789A1 (en) * 2003-12-10 2005-10-06 Freescale Semiconductor, Inc. Method of producing an element comprising an electrical conductor encircled by magnetic material
CN100446174C (en) * 2003-12-10 2008-12-24 飞思卡尔半导体公司 Method of producing an element comprising an electrical conductor encircled by magnetic material

Similar Documents

Publication Publication Date Title
USRE41668E1 (en) Seal ring structure for radio frequency integrated circuits
EP0778593B1 (en) Method for realizing magnetic circuits in an integrated circuit
US6696744B2 (en) Integrated circuit having a micromagnetic device and method of manufacture therefor
US6649422B2 (en) Integrated circuit having a micromagnetic device and method of manufacture therefor
KR100305070B1 (en) A micromagnetic device for power processing applications and method of manufacture therefor
US6013939A (en) Monolithic inductor with magnetic flux lines guided away from substrate
US20020036335A1 (en) Spiral inductor and method for fabricating semiconductor integrated circuit device having same
JP2000277693A (en) Integrated circuit with incorporated inductive element and manufacture of the same
US7053165B2 (en) Semiconductor integrated circuit including an inductor and method of manufacturing the same
EP1248297B1 (en) Inductance element and semiconductor device
US5109270A (en) High frequency semiconductor device
JP2002100733A (en) High-frequency ic device
JPH07211865A (en) Inductor
US6525385B2 (en) Semiconductor device with inductance element
JPH07183458A (en) Semiconductor device
WO1996042110A1 (en) Semiconductor device
JPH0774311A (en) Semiconductor analog integrated circuit
JPS61161747A (en) Semiconductor integrated circuit
JPH10270248A (en) Spiral inductor
JPH04280407A (en) Monolithic inductor
JPH0513234A (en) Inductance element
JPH0513235A (en) Inductance element
JPH0553303B2 (en)
JPH11214622A (en) Semiconductor device
JPH09260587A (en) Inductor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010403