JPH07209473A - Atomic reactor core performance calculating device - Google Patents

Atomic reactor core performance calculating device

Info

Publication number
JPH07209473A
JPH07209473A JP6004397A JP439794A JPH07209473A JP H07209473 A JPH07209473 A JP H07209473A JP 6004397 A JP6004397 A JP 6004397A JP 439794 A JP439794 A JP 439794A JP H07209473 A JPH07209473 A JP H07209473A
Authority
JP
Japan
Prior art keywords
void
value
calculation
distribution
nuclear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6004397A
Other languages
Japanese (ja)
Inventor
Hiroki Sano
広樹 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6004397A priority Critical patent/JPH07209473A/en
Publication of JPH07209473A publication Critical patent/JPH07209473A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PURPOSE:To perform an estimation calculation in a short time by providing a means for storing the midway convergence values of a characteristic value calculable every void repeat, and providing a means for estimating and calculating the final convergence result of the characteristic value as the function of the stored midway convergence values. CONSTITUTION:As the measurement data of the core 11 of a reactor 10, the read value phim of the present control rod position CR and flow rate F are read to an input processing means 2. In a nuclear heat hydraulic power calculating part 3, neutron bundle distribution phi and output distribution P, and void distribution V are calculated in a nuclear calculating part 3a and a heat hydraulic power calculating part 3b, respectively, while the mutual output results are taken as the other input. When an estimation calculation is required, a user delivers the set value of CR or F to the processing part 2. Thereafter, void repeat is carried out, and the midway convergence value K1 of the characteristic value is delivered to a characteristic value storing part 4 every void repeat. The void repeat is ended three times, and the final convergence value is estimated by a characteristic value calculating part 5 by use of the characteristic value midway convergence values K2, K3 of the second and third void repeats stored in the housing part 4.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、原子炉出力分布等を計
算監視、あるいは予測するための原子炉炉心性能計算装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reactor core performance calculation device for calculating or monitoring a reactor power distribution and the like.

【0002】[0002]

【従来の技術】従来、原子炉の炉心の監視、予測には、
TIP(Traversing In-Core Probe),LPRM(Local P
ower Range Monitor)等の炉内中性子計測器による計数
値を利用すると同時に、原子炉の固有値,三次元の出力
分布,中性子束分布,熱的制限値からの余裕、等の核熱
水力特性を求めるため、物理モデルに基づく三次元炉心
シミュレータを備えている。物理モデルとしては、中性
子をエネルギにより、高速群,熱外群,熱群等に分類
し、各群の中性子束の従う拡散方程式を導いたのち、こ
れらを一群化したいわゆる修正一群拡散方程式を解く核
計算モデルが良く用いられる。
2. Description of the Related Art Conventionally, for monitoring and predicting the core of a nuclear reactor,
TIP (Traversing In-Core Probe), LPRM (Local P
ower range monitor) and other nuclear neutron counters are used, and at the same time, nuclear thermohydraulic characteristics such as eigenvalue of reactor, three-dimensional power distribution, neutron flux distribution, margin from thermal limit value, etc. In order to obtain it, a 3D core simulator based on a physical model is provided. As a physical model, neutrons are classified into high-speed group, out-heat group, heat group, etc. by energy, and a diffusion equation that follows the neutron flux of each group is derived, and then so-called modified one-group diffusion equation is solved. Nuclear calculation models are often used.

【0003】拡散方程式は、通常、水平方向に数百体あ
る燃料集合体一体一体を一格子とし、軸方向に十数ノー
ドから二十数ノードの格子に分割,離散化して解かれ
る。ところで、この核計算モデルには炉心内のボイド分
布や燃焼度分布,制御棒の有無などにより決まる核定数
を係数として含んでいる。例えば、制御棒を操作する
と、制御棒の有無による核定数の変化が生じ、中性子束
分布が変化することによって出力分布が変化し、炉内の
ボイド分布が変化するため、核定数が変化する。この出
力分布の変化によるボイド分布の変化は熱水力計算モデ
ルにより計算される。したがって、つじつまの合う中性
子束分布と、ボイド分布を求めるためには格子上の変数
を何度も置き換え、核計算と熱水力計算を繰り返す、い
わゆる、ボイド反復が行われる。
The diffusion equation is usually solved by dividing the fuel assembly, which has several hundreds in the horizontal direction, into one lattice and dividing it into a lattice of ten to twenty nodes in the axial direction and discretizing it. By the way, this nuclear calculation model includes a nuclear constant determined by the void distribution, burnup distribution, presence of control rods, etc. in the core as a coefficient. For example, when the control rod is operated, the nuclear constant changes depending on the presence or absence of the control rod, the neutron flux distribution changes, the output distribution changes, and the void distribution in the reactor changes, so the nuclear constant changes. The change in the void distribution due to the change in the output distribution is calculated by the thermal-hydraulic calculation model. Therefore, in order to find a consistent neutron flux distribution and void distribution, the variables on the grid are replaced many times and the nuclear calculation and thermal-hydraulic calculation are repeated, so-called void iteration is performed.

【0004】従来、計画点の炉心状態を予測する際に
は、まず、現在の炉心状態(出力,流量,制御棒位置
等)の実績データを取り込み、目標の出力レベルにあわ
せて、流量,制御棒位置の変化幅を設定する。この設定
は、予め求めておいた反応度の出力,流量,制御棒位置
との感度や、熱的余裕の有無に応じて、概略値を決める
ものである。
Conventionally, when predicting a core state at a planned point, first, actual data of the current core state (output, flow rate, control rod position, etc.) is taken in, and flow rate and control are performed in accordance with a target output level. Set the change width of the bar position. This setting determines an approximate value according to the output of the reactivity, the flow rate, the sensitivity with respect to the control rod position, and the presence or absence of a thermal margin, which are obtained in advance.

【0005】次に、この状態での三次元炉心計算によ
り、原子炉固有値,中性子束分布,出力分布,熱的余裕
などが求められる。この三次元炉心計算は前述の核計算
と熱水力計算の繰返しであるボイド反復を行うため、時
間がかかる。
Next, by performing three-dimensional core calculation in this state, the reactor eigenvalue, neutron flux distribution, power distribution, thermal margin, etc. are obtained. This three-dimensional core calculation takes time because it performs the void iteration, which is the repetition of the above-mentioned nuclear calculation and thermal-hydraulic calculation.

【0006】ところで、計画点で原子炉を臨界に保つた
めには、三次元拡散モデルの誤差も考慮して、原子炉固
有値を1.0 にする必要がある。このように最初の設定
は概略の状態なので、通常、原子炉固有値が1.0 にな
らず、新たに反応度(すなわち、固有値の1.0 とのず
れ)と炉心状態の感度を補正し直して、別の状態を設定
して計算し直す。この計算は予測点での状態が臨界とな
るまで繰り返される。すなわち、臨界となる状態を見つ
けるための試行計算を何度も必要としている。最終的に
臨界を維持できる状態での熱的余裕が制約条件を満足す
れば、計画点として採用される。
By the way, in order to keep the reactor critical at the planned point, it is necessary to set the reactor eigenvalue to 1.0 in consideration of the error of the three-dimensional diffusion model. In this way, the initial setting is a rough state, so normally the reactor eigenvalue does not become 1.0, and the reactivity (that is, the deviation from the eigenvalue of 1.0) and the sensitivity of the core state are corrected again. Then, set another state and recalculate. This calculation is repeated until the state at the prediction point becomes critical. That is, many trial calculations are required to find a critical state. If the thermal margin in the state where the criticality can be finally satisfied satisfies the constraint condition, it is adopted as the planned point.

【0007】[0007]

【発明が解決しようとする課題】このように、予測計算
では、まず原子炉が臨界となる状態探索のため、何度か
の試行計算が必要になっている。このため、時間のかか
るボイド反復を伴う三次元炉心計算を何度も行う必要が
あり、予測計算時間が非常に多くかかるという問題があ
る。
As described above, in the predictive calculation, first, several trial calculations are required to search the state where the reactor becomes critical. For this reason, it is necessary to perform three-dimensional core calculation repeatedly with time-consuming void iterations, and there is a problem that the prediction calculation time is very long.

【0008】このような探索の時間を減らすためには、
(1)設定した状態での固有値をうまくもとめ、三次元
核熱水力計算のボイド反復回数を減らす方法、(2)設
定した状態で得られた固有値から臨界となる炉心状態を
うまく見つけ、探索回数を減らす方法が考えられる。
In order to reduce the time required for such a search,
(1) A method to find the eigenvalue in the set state well and reduce the number of void iterations in 3D nuclear thermal-hydraulic calculation, (2) A method to find and search the critical core state from the eigenvalue obtained in the set state. A method of reducing the number of times can be considered.

【0009】本発明の目的は、予測計算を短時間で実行
する原子炉炉心性能計算装置を提供することにある。
An object of the present invention is to provide a reactor core performance calculation device that executes prediction calculation in a short time.

【0010】[0010]

【課題を解決するための手段】本発明は、上記目的を達
成するために、ボイド反復毎に計算できる固有値の途中
収束値を格納する手段を設け、格納された途中収束値の
関数として固有値の最終収束結果を予測計算する手段を
与える構成とした。
In order to achieve the above object, the present invention provides a means for storing the intermediate convergence value of eigenvalues that can be calculated for each void iteration, and the eigenvalues of the eigenvalues as a function of the stored intermediate convergence values. It is configured to provide a means for predicting and calculating the final convergence result.

【0011】[0011]

【作用】すなわち、従来は炉心三次元での多変数の繰返
し計算を必要とするボイド反復の結果、出力分布やボイ
ド分布が収束するまで何度も繰り返して一回の試行計算
を完了する。しかし、臨界となる状態探索のための試行
計算結果として必要とされるのは、炉心一点値である固
有値であり、三次元量の結果(出力分布やボイド分布)
は不要である。
That is, conventionally, one trial calculation is completed by repeating the iterations until the power distribution and the void distribution converge as a result of the void iteration which conventionally requires repeated calculation of multivariables in the three-dimensional core. However, what is needed as a result of trial calculation for critical state search is the eigenvalue, which is a single core value, and the result of three-dimensional quantity (power distribution and void distribution)
Is unnecessary.

【0012】ところで、固有値は、試行計算の中でボイ
ド反復一回ごとに推定され、反復を繰り返すことで最終
収束値に収束していく。炉心の出力分布やボイド分布の
ようにボイド反復ごとに局所的に激しく変化する量に比
べ、炉心の固有値は極めて単調に収束しやすい特性をも
っている。このため、ボイド反復初期の数回の固有値を
用い、その後の変化を関数近似により求めて最終的な収
束値を推定することにより、試行計算としては十分な精
度で固有値を求めることが可能になる。
By the way, the eigenvalue is estimated for each void iteration in the trial calculation, and the iteration is repeated to converge to the final converged value. The eigenvalues of the core tend to converge extremely monotonically, as compared to the amount that locally changes drastically with each iteration of voids, such as the core power distribution and void distribution. Therefore, it is possible to obtain the eigenvalues with sufficient accuracy as a trial calculation by using the eigenvalues several times in the early stages of void iteration and then estimating the final convergence value by finding the change after that by function approximation. .

【0013】本発明では、最初の三回までのボイド反復
で求められた固有値の途中収束値(炉心一点値)の関数
として固有値最終収束値を予測する手段を与えることに
より、三次元の炉心計算を最後まで収束させる必要がな
く、一回の試行計算が完了可能な構成となっている。こ
れによって一回あたりの試行計算に必要なボイド反復回
数が、大幅に低減でき、総計算時間を短縮することがで
きる。
According to the present invention, the three-dimensional core calculation is performed by providing a means for predicting the final convergent value of the eigenvalue as a function of the intermediate convergent value (core single point value) of the eigenvalues obtained by the first three void iterations. There is no need to converge to the end, and one trial calculation can be completed. As a result, the number of void iterations required for each trial calculation can be significantly reduced and the total calculation time can be shortened.

【0014】図2に本発明で短縮可能となる計算時間の
内訳を詳細に説明する。
FIG. 2 shows in detail the details of the calculation time which can be shortened by the present invention.

【0015】臨界となる状態の探索は、試行計算T(i)
の結果得られた固有値k(i)がk(=1.0)となるま
で、反応度(すなわち、固有値の1.0からのずれ)と
の感度に基づいて炉心状態を設定変更しながら繰り返さ
れる(図3の中段)。従来の試行計算T(i)一回当たり
には、ボイド反復U(ji) が繰り返される。特に大きな
状態変化を予測するときには反復回数が10回前後にも
なる(図3の上段)。
A search for a critical state is performed by trial calculation T (i)
Until the eigenvalue k (i) obtained as a result becomes k (= 1.0), the core state is changed based on the sensitivity with the reactivity (that is, the deviation from 1.0 of the eigenvalue) and repeated. (Fig. 3, middle row). The void iteration U (ji) is repeated for each conventional trial calculation T (i) . When predicting a particularly large state change, the number of iterations is about 10 times (upper part of FIG. 3).

【0016】ところが、本発明では一回の試行計算を収
束させるのに10回必要だったボイド反復回数を三回で
打切り、それぞれのボイド反復毎の収束値である、k
(ji)を保存しておく。そして、この三回の固有値の関数
(i)を計算することで、T(i)の固有値収束値k(i)
推定する。炉心状態を設定変更するためにはこの固有値
推定値を用いればよい。炉心一点の固有値の関数G(i)
の計算に要する時間は三次元炉心計算に必要なボイド反
復一回の計算時間に比べて無視できるため、一回の試行
計算に必要な計算時間が約1/3にできる(図3の下
段)。
However, in the present invention, the number of void iterations, which was required 10 times to converge one trial calculation, is terminated by three times, and the convergence value is k for each void iteration.
Save (ji) . Then, by calculating this three times a function of the eigenvalues G (i), to estimate the T eigenvalue convergence value k of (i) (i). This eigenvalue estimation value may be used to change the setting of the core state. Function of eigenvalue at one core G (i)
The time required for calculation can be neglected compared to the calculation time for one void iteration required for three-dimensional core calculation, so the calculation time required for one trial calculation can be reduced to about 1/3 (lower part of Fig. 3). .

【0017】最終的な分布を知るためには、本手段を用
いた試行計算によって流量や、制御棒位置を決定した
後、1度だけボイド反復が収束するまで各分布及び固有
値を求めれば良い。
In order to know the final distribution, after determining the flow rate and the control rod position by trial calculation using this means, each distribution and eigenvalue may be obtained until the void iteration converges only once.

【0018】[0018]

【実施例】以下、本発明の運転計画作成装置の第1の実
施例を図1により説明する。図1において、1は炉心性
能計算装置、2は入力処理部、3は各熱水力計算部、3
aは核計算部、3bは熱水力計算部、4は固有値の途中
収束値格納部、5は最終固有値収束値計算部、10は原
子炉、11は炉心を示している。以下それぞれの計算部
の動作について、詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the operation plan creating apparatus of the present invention will be described below with reference to FIG. In FIG. 1, 1 is a core performance calculation device, 2 is an input processing unit, 3 is each thermal-hydraulic calculation unit, 3
a is a nuclear calculation unit, 3b is a thermal-hydraulic calculation unit, 4 is a eigenvalue intermediate convergence value storage unit, 5 is a final eigenvalue convergence value calculation unit, 10 is a reactor, and 11 is a core. The operation of each calculation unit will be described in detail below.

【0019】通常の監視計算時には、原子炉10の炉心
11の測定データとして、現在の制御棒位置CR,流量
F、また図示しない炉内核計装(TIP,LPRM等)
の読み値φmなどが、入力処理部2に取り込まれる。核
熱水力計算部3では、中性子束分布φ,出力分布P等が
核計算部3aで、また熱水力計算部3bでボイド分布V
等が互いの出力結果を他方の入力としながら計算され
る。
At the time of normal monitoring calculation, the current control rod position CR, the flow rate F, and unillustrated nuclear instrumentation (TIP, LPRM, etc.) of the reactor core 11 are measured data.
The reading value φm and the like are read by the input processing unit 2. In the nuclear thermal-hydraulic calculation unit 3, the neutron flux distribution φ, the output distribution P, etc. are calculated in the nuclear calculation unit 3a, and the void distribution V is calculated in the thermal-hydraulic calculation unit 3b.
Etc. are calculated with each other's output results as the other's input.

【0020】図3はこの核熱水力計算部3の動作の詳細
を示している。すなわち、核計算部3aにおいては、原
子炉が臨界(固有値は1)の条件下で実測データφmを
用いて拡散方程式の係数を補正しておく。次に拡散計算
が行われ、中性子束分布、および固有値kj が求められ
る。さらに中性子束分布から出力分布Pを計算して熱水
力計算部3bに受け渡す。熱水力計算部3bは、流量配
分,圧損等を計算し、ボイド分布Vを決定する。このボ
イド分布Vをもちいて拡散方程式の係数を補正し、核熱
水力計算が繰り返される(ボイド反復)。
FIG. 3 shows details of the operation of the nuclear thermal-hydraulic calculation unit 3. That is, in the nuclear calculation unit 3a, the coefficient of the diffusion equation is corrected using the measured data φm under the condition that the reactor is critical (the eigenvalue is 1). Next, diffusion calculation is performed to obtain the neutron flux distribution and the eigenvalue k j . Further, the output distribution P is calculated from the neutron flux distribution and transferred to the thermal-hydraulic calculation unit 3b. The thermal-hydraulic calculation unit 3b calculates the flow distribution, pressure loss, etc., and determines the void distribution V. Using the void distribution V, the coefficient of the diffusion equation is corrected, and the nuclear thermal-hydraulic calculation is repeated (void repetition).

【0021】さて、予測計算が必要になると、ユーザが
CRまたはFの設定値を入力処理部2に受け渡す。予測
計算の全体手順を図4に示す。入出力処理部2への状態
の設定後、核熱水力計算部3でボイド反復が行われる。
また、図3に示すように各ボイド反復j毎に固有値の途
中収束値kj が固有値格納部4に受け渡される。このk
j は、ボイド反復途中の値であり、まだ、最終的な収束
値とは異なっている。本装置では、このボイド反復は三
回で打ち切られ、固有値格納部4に格納されたボイド反
復二回目及び三回目の固有値途中収束値k2,k3を用い
て固有値計算部5で最終収束値を推定する。
Now, when the prediction calculation becomes necessary, the user delivers the set value of CR or F to the input processing unit 2. The whole procedure of the prediction calculation is shown in FIG. After the state is set in the input / output processing unit 2, the nuclear thermal-hydraulic calculation unit 3 repeats the void.
Further, as shown in FIG. 3, the intermediate convergence value k j of the eigenvalue is passed to the eigenvalue storage unit 4 for each void iteration j. This k
j is a value in the middle of the void iteration, and is still different from the final converged value. In this device, this void iteration is aborted in three times, and the eigenvalue calculation unit 5 uses the eigenvalue intermediate convergence values k 2 and k 3 stored in the eigenvalue storage unit 4 for the second and third void iterations to obtain the final convergence value. To estimate.

【0022】次に、この固有値の推定の様子を図5に示
す。固有値格納部4から固有値計算部5にk2,k3が受
け渡されると、固有値計算部5の内部に定義された関数
Gの係数を決定する。図5では、固有値計算部5の
2,k3の関数として
FIG. 5 shows how the eigenvalue is estimated. When k 2 and k 3 are transferred from the eigenvalue storage unit 4 to the eigenvalue calculation unit 5, the coefficient of the function G defined inside the eigenvalue calculation unit 5 is determined. In FIG. 5, as a function of k 2 and k 3 of the eigenvalue calculator 5,

【0023】[0023]

【数1】 G(x)=x/(ax+b) …(数1) を選んだ場合を示す。ここでxはボイド反復回数、a,
bは定数であり、数1でx=2,3に対してk2,k3
代入してそれぞれ求めることができる。係数が決定され
ると、最終収束値の計算値はxを無限大としたときの値
1/a(aは、k2,k3の関数)としてただちに求めら
れる。
## EQU1 ## A case where G (x) = x / (ax + b) (Equation 1) is selected is shown. Where x is the number of void iterations, a,
b is a constant, and can be obtained by substituting k 2 and k 3 for x = 2 and 3 in Equation 1. When the coefficient is determined, the calculated value of the final convergence value is immediately obtained as a value 1 / a (a is a function of k 2 and k 3 ) when x is infinite.

【0024】ボイド反復の最終収束値が数1のような関
数でよく表される様子を次に示す。図6は、様々な状態
変化に対し、ボイド反復を最終的に各種の分布や固有値
が収束するまで続けたときの固有値のボイド反復途中の
推移を示している。状態が大きく変わると、収束するの
に10回前後のボイド反復が必要になっていることがわ
かる。また、ボイド反復一回目の固有値収束値は、制御
棒挿入時のように初期状態の影響がかなりある場合があ
るが、二回目以降は単調に増減することがわかる。本実
施例では、ボイド反復回数をなるべく減らすため、二回
目及び三回目の収束値k2,k3を用いている。ここで
は、固有値計算部5のk2,k3の関数として数1を選ん
だ場合の結果を黒丸で示した。また、実線は実際にボイ
ド反復を繰り返したときの固有値の推移である。各状態
変化に対して、ボイド反復の最終収束値(実線の右端で
の値)と数1による推定値(黒丸)は良く一致してい
る。従ってユーザは、この推定値を用いて固有値と制御
棒位置、流量の関係などから実際に臨界となる炉心状態
を推定することができる。本発明では三次元の多変数の
繰返し計算は三回ですみ、また、数1の計算時間は無視
できる程度なので、最終的にボイド反復が終了したとき
の固有値を用いるのに比べ、この試行計算に要する時間
を約1/3に低減できる。
The state in which the final convergence value of void iteration is often expressed by a function such as equation 1 is shown below. FIG. 6 shows transitions of eigenvalues during void repetition when the void repetition is continued until various distributions and eigenvalues finally converge with respect to various state changes. It can be seen that when the state changes significantly, around 10 void iterations are required to converge. Further, it can be seen that the eigenvalue convergence value at the first iteration of voids may be significantly affected by the initial state as when the control rod is inserted, but monotonically increases and decreases after the second iteration. In this embodiment, in order to reduce the number of void repetitions as much as possible, the second and third convergence values k 2 and k 3 are used. Here, the results when the equation 1 is selected as the function of k 2 and k 3 of the eigenvalue calculation unit 5 are shown by black circles. The solid line is the transition of the eigenvalue when the void repetition is actually repeated. For each state change, the final convergence value of void repetition (value at the right end of the solid line) and the estimated value (black circle) according to Equation 1 are in good agreement. Therefore, the user can use this estimated value to estimate the core state that is actually critical from the relationship between the eigenvalue, the control rod position, the flow rate, and the like. In the present invention, three-dimensional multivariable iterative calculation is performed only three times, and since the calculation time of Equation 1 is negligible, this trial calculation is performed as compared with the case where the eigenvalue at the end of void iteration is finally used. The time required for can be reduced to about 1/3.

【0025】以上のようにして試行計算の一回が完了
し、ボイド反復を繰り返したとき最終的に得られると推
定される最終固有値推定値kが求められる。この計算値
が1でなければ、各種の反応度に対する感度(出力,流
量,制御棒位置)を補正し、臨界となる状態の再設定が
行われ、次の試行計算が繰り返される。この計算値が1
になれば、最終的に、ボイド反復が収束するまで1度だ
け計算して出力分布,熱的余裕等を計算する。
As described above, one trial calculation is completed, and the final eigenvalue estimation value k estimated to be finally obtained when the void iteration is repeated is obtained. If this calculated value is not 1, the sensitivities (output, flow rate, control rod position) to various reactivities are corrected, the critical state is reset, and the next trial calculation is repeated. This calculated value is 1
Then, finally, the output distribution, the thermal margin, etc. are calculated by calculating only once until the void iterations converge.

【0026】本実施例によれば、試行計算一回に必要な
ボイド反復回数を約1/3に低減でき計算時間を短縮す
る効果がある。
According to the present embodiment, the number of void iterations required for one trial calculation can be reduced to about 1/3, and the calculation time can be shortened.

【0027】[0027]

【発明の効果】本発明によれば、流量,制御棒調整のた
めの試行計算において時間を要する三次元核熱水力計算
時間を短縮し、全体の予測計算時間が短縮できる効果が
ある。
According to the present invention, it is possible to reduce the time required for three-dimensional nuclear thermal-hydraulics calculation in trial calculation for adjusting the flow rate and control rod, and to shorten the entire prediction calculation time.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の原子炉炉心性能計算装置のブロック
図。
FIG. 1 is a block diagram of a reactor core performance calculation device of the present invention.

【図2】本発明の原子炉炉心性能計算装置の時間短縮の
内訳を表す説明図。
FIG. 2 is an explanatory diagram showing a breakdown of time reduction of the reactor core performance calculation device of the present invention.

【図3】核熱水力計算のフローチャート。FIG. 3 is a flowchart of nuclear thermal hydraulic calculation.

【図4】本発明の予測計算手順を表すフローチャート。FIG. 4 is a flowchart showing a prediction calculation procedure of the present invention.

【図5】固有値最終収束値推定のフローチャート。FIG. 5 is a flowchart of estimating an eigenvalue final convergence value.

【図6】各種炉心状態での固有値推定結果を表す説明
図。
FIG. 6 is an explanatory diagram showing eigenvalue estimation results in various core states.

【符号の説明】[Explanation of symbols]

1…原子炉炉心性能計算装置、2…入力処理部、3…核
熱水力計算部、3a…核計算部、3b…熱水力計算部、
4…固有値格納部、5…固有値計算部、10…原子炉、
11…炉心。
1 ... Reactor core performance calculation device, 2 ... Input processing unit, 3 ... Nuclear thermal-hydraulic calculation unit, 3a ... Nuclear calculation unit, 3b ... Thermal-hydraulic calculation unit,
4 ... Eigenvalue storage unit, 5 ... Eigenvalue calculation unit, 10 ... Reactor,
11 ... Reactor.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】原子炉の熱出力,炉心流量,制御棒パター
ン、及び炉内中性子検出器の計数値を入力とするととも
に、熱水力特性計算の結果得られたボイド分布を入力と
して原子炉の固有値,三次元の中性子束分布,出力分布
等の核特性を計算する手段と、前記核特性計算の結果、
得られた出力分布を入力としてボイド分布,熱的制限値
からの余裕等の熱水力特性を計算する手段とを備え、前
記核特性,熱水力特性を繰返し計算し、その収束結果と
して炉心状態を決定する原子炉性能計算装置において、
前記繰返し計算1回ごとの固有値の収束値を格納する手
段と、複数の固有値の前記繰返し計算途中収束値の関数
を用いて固有値の最終収束値を計算する手段とを備えた
ことを特徴とする原子炉炉心性能計算装置。
1. A reactor, which receives heat output of a nuclear reactor, core flow rate, control rod pattern, and count value of an in-core neutron detector as input, and a void distribution obtained as a result of thermal-hydraulic characteristic calculation as input. Means for calculating nuclear characteristics such as eigenvalues, three-dimensional neutron flux distribution, and power distribution, and the result of the nuclear characteristics calculation,
The obtained output distribution is used as an input, and means for calculating void distribution, thermal-hydraulic characteristics such as a margin from a thermal limit value, and the above-mentioned nuclear characteristics and thermal-hydraulic characteristics are repeatedly calculated. In the reactor performance calculation device that determines the state,
It is characterized by further comprising means for storing a convergent value of eigenvalues for each iteration, and means for calculating a final convergent value of eigenvalues by using a function of convergent values in the iterative calculation of a plurality of eigenvalues. Reactor core performance calculator.
【請求項2】請求項1において、前記固有値の収束値を
格納する手段には前記繰返し計算の二回目または、三回
目の収束値を格納する原子炉炉心性能計算装置。
2. The nuclear reactor core performance calculation device according to claim 1, wherein the means for storing the convergent value of the eigenvalue stores the convergent value of the second or third iteration.
【請求項3】請求項1において、前記複数の固有値の前
記繰返し計算の途中収束値の関数は、前記繰返し計算の
二回目及び三回目の固有値の途中収束値の関数である原
子炉炉心性能計算装置。
3. The reactor core performance calculation according to claim 1, wherein the function of the intermediate convergence value of the iterative calculation of the plurality of eigenvalues is a function of the intermediate convergence value of the second and third eigenvalues of the iterative calculation. apparatus.
JP6004397A 1994-01-20 1994-01-20 Atomic reactor core performance calculating device Pending JPH07209473A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6004397A JPH07209473A (en) 1994-01-20 1994-01-20 Atomic reactor core performance calculating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6004397A JPH07209473A (en) 1994-01-20 1994-01-20 Atomic reactor core performance calculating device

Publications (1)

Publication Number Publication Date
JPH07209473A true JPH07209473A (en) 1995-08-11

Family

ID=11583222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6004397A Pending JPH07209473A (en) 1994-01-20 1994-01-20 Atomic reactor core performance calculating device

Country Status (1)

Country Link
JP (1) JPH07209473A (en)

Similar Documents

Publication Publication Date Title
EP0238299B1 (en) Calibration of a nuclear reactor core parameter predictor
US6611572B2 (en) Determination of operating limit minimum critical power ratio
JP3253450B2 (en) Core performance estimation device and core performance estimation method
US4333797A (en) Reactor power control apparatus
JP3441178B2 (en) Method and apparatus for calculating core performance of nuclear reactor
JPH07209473A (en) Atomic reactor core performance calculating device
JP2000162364A (en) Device for calculating reactor core performance of reactor
JP2001133580A (en) Reactor core performance computing method and apparatus for reactor
JPH1020072A (en) Reactor core performance calculating device
JP4008131B2 (en) Reactor core performance calculator
JP2001133581A (en) Reactor core performance calculating method and apparatus
JPH06186380A (en) Performance calculator for reactor core
JPH11337677A (en) Performance calculator for reactor core
JP2696049B2 (en) Reactor core characteristics simulation device
JPH1123787A (en) Planning method for operating nuclear power station and reactor, and planning device therefor
JPH0772282A (en) Method and device for estimating reactor core performance
JPH05288888A (en) Measuring method of effective multiplication factor and disposing method of neutron detector
Ama et al. VERIFICATION AND VALIDATION OF PIN POWER DISTRIBUTION MODEL IN THREE-DIMENSIONAL ANALYTICAL NODAL CODE SIMULATE5 FOR BWR INCORE FUEL MANAGEMENT
JPH11258382A (en) Method for calculating reactor core performance of reactor
KR20230090221A (en) Method and system for gmdh-based reactor core output prediction
JPS62162993A (en) Core-performance arithmetic unit for nuclear reactor
Kallol et al. Temporal redundancy methods using risk-sensitive filtering and parameter estimation to detect failures in neutronic sensors during reactor start-up and steady-state operation
Fukao et al. The study on the BWR in-core detector response calculation
JP2585357B2 (en) Prediction method of axial power distribution of reactor
JPH11295473A (en) Reactor core performance calculating device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Effective date: 20061222

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20070214

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070507