JPH07209201A - Surface state inspection equipment, exposure apparatus employing it, and production of device using the exposure apparatus - Google Patents

Surface state inspection equipment, exposure apparatus employing it, and production of device using the exposure apparatus

Info

Publication number
JPH07209201A
JPH07209201A JP6005297A JP529794A JPH07209201A JP H07209201 A JPH07209201 A JP H07209201A JP 6005297 A JP6005297 A JP 6005297A JP 529794 A JP529794 A JP 529794A JP H07209201 A JPH07209201 A JP H07209201A
Authority
JP
Japan
Prior art keywords
light
inspected
optical system
diffraction grating
light receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6005297A
Other languages
Japanese (ja)
Inventor
Michio Kono
道生 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP6005297A priority Critical patent/JPH07209201A/en
Publication of JPH07209201A publication Critical patent/JPH07209201A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • G01N2021/95676Masks, reticles, shadow masks

Abstract

PURPOSE:To provide a surface state inspection equipment in which a foreign matter can be detected substantially at a constant sensitivity regardless of the position thereof while preventing erroneously detecting a circuit pattern as foreign matter CONSTITUTION:Linearly polarized lights LH, LV having different wavelength and intersecting perpendicularly, are reflected and deflected on a polygon mirror 36 and then passed through a scanning lens 101 and a polarization beam splitter 37 thus condensing the linearly polarized lights LH. LV, respectively, on a reticle 6 and a diffraction grating 21. The surface to be inspected of the reticle 6 and the diffraction grating 21 are then scanned, respectively, with the lights LH and LV by rotating the polygon mirror 36. During the scanning operation, the light scattering sideways from the reticle 6 is superposed on the light ditfracted sideways from the diffraction grating 21 by means of a half mirror 20. The superposed light impinges on a light receiving lens, which is telecentric on the inspecting surface side, and then converted into an electric signal by means of an optical detector.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は表面状態検査装置、該表
面状態検査装置を備える露光装置及び該露光装置を用い
てデバイスを製造する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface condition inspection apparatus, an exposure apparatus equipped with the surface condition inspection apparatus, and a method of manufacturing a device using the exposure apparatus.

【0002】[0002]

【従来の技術】レチクル(フォトマスク)上のごみ、傷
等の異物を検査する装置として、レーザー光によりレチ
クルの表面を走査する走査光学系と、走査中にレチクル
から生じる散乱光の内、この走査光学系の光軸(方向)
に対して側方へ散乱する光を受光する受光光学系とを備
える表面状態検査装置がある。
2. Description of the Related Art As an apparatus for inspecting foreign matters such as dust and scratches on a reticle (photomask), a scanning optical system for scanning the surface of the reticle with a laser beam and a scattered light generated from the reticle during scanning Optical axis (direction) of scanning optical system
There is a surface state inspection device including a light receiving optical system that receives light scattered sideways.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、この表
面状態検査装置は、受光光学系にレチクル上の回路パタ
ーンからの回折光や散乱光の一部が入射するため、レチ
クル上の回路パターンを異物として誤検出することが場
合があった。また、受光光学系が側方に置かれているた
め、レチクル上の異物の付着位置が受光光学系に近いか
遠いかで、受光光学系に対する立体角が変わり、同じ大
きさの異物であっても受光光学系に入射する散乱光の量
が異なるという問題が生じていた。
However, in this surface condition inspection apparatus, since a part of the diffracted light or scattered light from the circuit pattern on the reticle is incident on the light receiving optical system, the circuit pattern on the reticle is treated as a foreign matter. In some cases, false detection was performed. In addition, since the light receiving optical system is placed on the side, the solid angle with respect to the light receiving optical system changes depending on whether the position of the foreign matter on the reticle is close to or far from the light receiving optical system. However, there is a problem in that the amount of scattered light entering the light receiving optical system is different.

【0004】[0004]

【課題を解決するための手段】本発明の第1の目的は、
回路パターンを異物として誤検出することがなく、しか
も異物の付着位置によらずほぼ一定の感度で異物検出が
行なえる、表面状態検査装置を提供することにある。
The first object of the present invention is to:
An object of the present invention is to provide a surface state inspection device which does not erroneously detect a circuit pattern as a foreign matter and can detect the foreign matter with a substantially constant sensitivity regardless of the foreign matter attachment position.

【0005】この第1の目的を達成するために、本発明
の表面状態検査装置は、波長と偏光方向とが互いに異な
る第1と第2の光の内の第1の光により被検査面を走査
すると同時に第2の光により回折格子または光散乱部材
を走査する走査手段と、前記被検査面から側方に生じる
散乱光と前記回折格子または光散乱部材から側方に生じ
る回折光または散乱光とを受光して重ね合わせる受光光
学系と、前記受光光学系からの光を電気信号に変換する
光電変換手段とを有し、前記受光光学系が前記被検査面
側がテレセントリックな光学系より成ることを特徴とし
ており、光電変換手段から得られる散乱光と回折光また
は散乱光のヘテロダイン干渉に基づくビート信号に基づ
いて異物を検出することができるので回路パターンを異
物として誤検出することがなく、しかも前記受光光学系
を前記被検査面側がテレセントリックな光学系より構成
しているので異物の付着位置によらずほぼ一定の感度で
異物検出を行なうことが可能である。
In order to achieve this first object, the surface state inspection apparatus of the present invention uses a first light of the first light and the second light whose wavelength and polarization direction are different from each other to inspect the surface to be inspected. Scanning means for scanning the diffraction grating or the light scattering member with the second light at the same time as scanning, scattered light generated laterally from the surface to be inspected, and diffracted light or scattered light laterally generated from the diffraction grating or light scattering member. And a photoelectric conversion means for converting light from the light receiving optical system into an electric signal, and the light receiving optical system is an optical system in which the surface to be inspected is a telecentric optical system. Since the foreign matter can be detected based on the beat signal based on the heterodyne interference of the scattered light and the diffracted light or the scattered light obtained from the photoelectric conversion means, the circuit pattern is erroneously detected as the foreign matter. It not, moreover the light receiving optical system the inspected surface side is able to perform foreign object detection at a substantially constant speed regardless of the attachment position of the foreign matter since the configuration from the telecentric optical system.

【0006】本発明の第2の目的は、より一定の感度で
異物検出を行なうことができる表面状態検査装置を提供
することにあり、更に、前記光電変換手段の受光面を前
記受光光学系の開口絞りの位置または前記受光光学系の
開口絞りの位置と共役な位置に設けることにより、走査
中、光電変換手段の受光面の定位置に被検査面上の各点
からの散乱光と回折格子上の各点からの回折光または散
乱光とを入射させ、感度を安定させている。
A second object of the present invention is to provide a surface state inspection apparatus capable of detecting foreign matter with a more constant sensitivity, and further, to arrange the light receiving surface of the photoelectric conversion means in the light receiving optical system. By providing the position of the aperture stop or the position conjugate with the position of the aperture stop of the light receiving optical system, the scattered light from each point on the surface to be inspected and the diffraction grating at a fixed position of the light receiving surface of the photoelectric conversion means during scanning. Diffracted light or scattered light from each point above is made incident to stabilize the sensitivity.

【0007】本発明の第3の目的は、被検査面以外の面
からの散乱光の悪影響を減らした表面状態検査装置を提
供することにあり、更に、前記受光光学系が前記被検面
と共役な位置に視野絞りを備えることにより、視野絞り
により光電変換手段に入射する被検査面以外の面からの
散乱光の量を減らし、被検査面以外の面上のパターンや
異物を被検査面上の異物と誤検出を減らしている。
A third object of the present invention is to provide a surface state inspection device in which the adverse effect of scattered light from a surface other than the surface to be inspected is reduced, and further, the light receiving optical system and the surface to be inspected are By providing the field stop at the conjugate position, the amount of scattered light incident on the photoelectric conversion means from the surface other than the surface to be inspected is reduced by the field stop, and the pattern or foreign matter on the surface other than the surface to be inspected is inspected. Reduces false detections with foreign matter above.

【0008】本発明の第4の目的は、被検査面以外の面
からの散乱光の悪影響を更に減らした表面状態検査装置
を提供することにあり、更に、前記視野絞りが、前記被
検査面との間でシャインプルーフの条件を満たす結像面
に沿うよう傾けて設けることにより、視野絞りにより光
電変換手段に入射する被検査面以外の面からの散乱光の
量を大幅に減らし、被検査面以外の面上のパターンや異
物を被検査面上の異物と誤検出を抑制している。
A fourth object of the present invention is to provide a surface condition inspection apparatus in which the adverse effect of scattered light from a surface other than the surface to be inspected is further reduced, and further, the field stop is the surface to be inspected. By tilting it along the image forming plane that satisfies the Scheimpflug condition, the amount of scattered light from the surface other than the surface to be inspected incident on the photoelectric conversion means by the field stop is significantly reduced, and The erroneous detection of a pattern or foreign matter on a surface other than the surface as a foreign matter on the surface to be inspected is suppressed.

【0009】本発明の第5の目的は、簡単な光学系で安
定したS/N比でビート信号を得ることができ且つ被検
査面以外の面からの散乱光の悪影響を減らし得る表面状
態検査装置を提供することにあり、更に、前記受光光学
系が前記被検査面及び回折格子または光散乱部材側から
順に第1レンズ、開口絞り、第2レンズ、視野絞りを備
え、前記第1レンズの焦点位置近傍に前記開口絞りを設
け、前記第1、第2レンズによる前記被検査面の結像位
置に前記視野絞りを設け、前記光電変換手段の受光面を
前記開口絞りの位置または前記開口絞りの位置と共役な
位置に設けることにより、光電変換手段に入射する被検
査面以外の面からの散乱光の量を減らして被検査面以外
の面上のパターンや異物を被検査面上の異物と誤検出を
減らし、走査中光電変換手段の受光面の定位置に被検査
面上の各点からの散乱光と回折格子または光散乱部材上
の各点からの回折光または散乱光とを入射させてビート
信号のS/N比を安定させている。
A fifth object of the present invention is a surface condition inspection capable of obtaining a beat signal with a stable S / N ratio by a simple optical system and reducing adverse effects of scattered light from a surface other than the surface to be inspected. In order to provide an apparatus, the light receiving optical system further includes a first lens, an aperture stop, a second lens, and a field stop in order from the surface to be inspected and the diffraction grating or the light scattering member side. The aperture stop is provided in the vicinity of the focal position, the field stop is provided at the image forming position of the surface to be inspected by the first and second lenses, and the light receiving surface of the photoelectric conversion means is at the position of the aperture stop or the aperture stop. By arranging it at a position conjugate with the position of, the amount of scattered light incident on the photoelectric conversion means from the surface other than the surface to be inspected is reduced and the pattern or foreign matter on the surface other than the surface to be inspected And reduce false detection, light during scanning The scattered light from each point on the surface to be inspected and the diffracted light or scattered light from each point on the diffraction grating or the light scattering member are made incident on a fixed position on the light receiving surface of the conversion means, and the S / N ratio of the beat signal is set. Is stabilizing.

【0010】本発明の第6の目的は相異なる光で被検査
面と回折格子または光散乱部材を同時に走査できる走査
手段を備えた表面状態検査装置を提供することにあり、
前記走査手段が、前記第1と第2の光を重ね合わせた状
態で供給する手段と、前記重なり合った第1と第2の光
を偏向し走査する回転鏡と、前記回転鏡からの前記第1
と第2の光を夫々前記被検査面上と前記回折格子または
光散乱部材上に集光せしめる走査光学系とを備え、前記
走査光学系は、前記第1の光の前記被検査面への光路と
前記第2の光の前記回折格子または光散乱部材への光路
を定めるための光分割器を有することを特徴とし、第1
と第2の光を走査、集光するために共通の光学部材を用
いることにより、走査手段の構成を簡単にしている。
A sixth object of the present invention is to provide a surface state inspection device equipped with scanning means capable of simultaneously scanning the surface to be inspected and the diffraction grating or the light scattering member with different lights.
The scanning means supplies the first and second lights in a superimposed state, a rotating mirror for deflecting and scanning the overlapping first and second lights, and the first mirror from the rotating mirror. 1
And a scanning optical system for converging second light on the surface to be inspected and on the diffraction grating or the light scattering member, respectively. The scanning optical system is configured to direct the first light to the surface to be inspected. A light splitter for defining an optical path and an optical path of the second light to the diffraction grating or the light scattering member;
By using a common optical member for scanning and condensing the second light, the structure of the scanning means is simplified.

【0011】本発明の第7の目的は、回路パターンを異
物として誤検出することがなく且つ異物の付着位置によ
らず一定の感度で異物検出が行なえる表面状態検査装置
を備える露光装置を提供することにあり、本発明の露光
装置は、前記各表面状態検査装置のいづれかを備えるこ
とを特徴としており、レチクル上の異物の有無を正確に
検出し、問題となる異物の付着がないレチクルによる露
光のみを行なう高い信頼性を有する。
A seventh object of the present invention is to provide an exposure apparatus equipped with a surface condition inspection device which does not erroneously detect a circuit pattern as a foreign matter and can detect the foreign matter with a constant sensitivity regardless of the foreign matter attachment position. In view of the above, the exposure apparatus of the present invention is characterized by including any one of the above-mentioned surface condition inspection apparatuses, which accurately detects the presence or absence of foreign matter on the reticle, and uses the reticle that does not have a problematic foreign matter adhesion. It has high reliability of performing only exposure.

【0012】本発明の第8の目的は、回路パターンを異
物として誤検出することがなく且つ異物の付着位置によ
らず一定の感度で異物検出が行なえる表面状態検査装置
を備える露光装置を用いてIC、LSI、磁気ヘッド、
液晶パネル、CCD等のデバイスを製造するデバイス製
造方法を提供することにあり、本発明のデバイス製造方
法は、前記各表面状態検査装置のいづれかによりレチク
ル上の異物の有無を検出することを特徴としており、レ
チクル上の異物の有無を正確に検出し、問題となる異物
の付着がないレチクルのデバイスパターンを基板上に転
写することができるので、欠陥の少ないデバイスを得る
ことができる。
An eighth object of the present invention is to use an exposure apparatus equipped with a surface condition inspection device which does not erroneously detect a circuit pattern as a foreign matter and can detect the foreign matter with a certain sensitivity regardless of the foreign matter attachment position. IC, LSI, magnetic head,
It is to provide a device manufacturing method for manufacturing a device such as a liquid crystal panel and a CCD. The device manufacturing method of the present invention is characterized by detecting the presence or absence of a foreign matter on a reticle by any one of the surface state inspection devices. Since the presence or absence of foreign matter on the reticle can be accurately detected and the device pattern of the reticle free from the problematic foreign matter can be transferred onto the substrate, a device with few defects can be obtained.

【0013】[0013]

【実施例】図1と図2は本発明の表面状態検査装置の一
実施例を示す図であり、図1は表面状態検査装置の照明
系を、図2は表面状態検査装置の受光系を示す。本実施
例の表面状態検査装置は、レーザー光走査型の異物検査
装置において、ヘテロダイン干渉を利用して異物から側
方に生じる散乱光をビート信号として検出し、異物以外
の部分から生じる散乱光や回折光を非ビート信号として
検出し、異物とそれ以外とを区別する。本実施例の表面
状態検査装置のヘテロダイン干渉を利用した異物検出に
ついては、平成5年(1993年)6月16日に発行の
本願出願人の欧州公開特許567701号に開示されて
ある。
1 and 2 are views showing an embodiment of the surface condition inspection apparatus of the present invention. FIG. 1 shows an illumination system of the surface condition inspection apparatus, and FIG. 2 shows a light receiving system of the surface condition inspection apparatus. Show. The surface state inspection apparatus of the present embodiment, in the laser light scanning type foreign matter inspection apparatus, detects scattered light laterally generated from the foreign matter as a beat signal by utilizing heterodyne interference, and scattered light generated from a portion other than the foreign matter and The diffracted light is detected as a non-beat signal to distinguish the foreign matter from the other. The foreign matter detection using the heterodyne interference of the surface state inspection apparatus of the present embodiment is disclosed in European Patent Publication 567701 of the applicant of the present application issued on June 16, 1993.

【0014】図1において、レーザー30から発したレ
ーザー光LO は位相板また偏光板100を通過した後偏
光光分割器31に入射し、光分割器31によって互いに
偏光方向が直交する2つの直線偏光光LV 、LH に分け
られる。直線偏光光LV は光分割器31の光分割面で反
射された偏光光、直線偏光光LH は光分割器31の光分
割面を透過した偏光光であり、直線偏光光LV 、LH
は、夫々、周波数シフター41、43を通過して折り曲
げミラー33、32に入射し、折り曲げミラー33、3
2により光分割器(光合成器)34に向かって反射せし
められる。周波数シフター41、43は、駆動源40、
42により駆動され、各直線偏光光LV 、LH の光路中
にある周波数の表面弾性波を形成することにより、直線
偏光光LV、LH の周波数を変化させ、直線偏光光L
V 、LH の周波数をわずかにずらす。これにより、波長
と偏光方向とが互いに異なる2つの光が得られる。
In FIG. 1, a laser beam L O emitted from a laser 30 passes through a phase plate or a polarizing plate 100 and then enters a polarization light splitter 31, and the light splitter 31 causes two straight lines whose polarization directions are orthogonal to each other. It is divided into polarized light L V and L H. The linearly polarized light L V is the polarized light reflected by the light splitting surface of the light splitter 31, and the linearly polarized light L H is the polarized light that has passed through the light splitting surface of the light splitter 31, and the linearly polarized light L V , L H
Respectively pass through the frequency shifters 41 and 43 and enter the folding mirrors 33 and 32, and
It is reflected by the beam splitter 2 toward the light splitter (light combiner) 34. The frequency shifters 41 and 43 are the driving sources 40 and
The linearly polarized light L V and L H are driven by the linearly polarized light L V and L H to form a surface acoustic wave having a certain frequency in the optical path, thereby changing the frequency of the linearly polarized light L V and L H.
The frequencies of V and L H are slightly shifted. As a result, two lights having different wavelengths and polarization directions are obtained.

【0015】偏光光分割器34は、波長と偏光方向とが
互いに異なる直線偏光光LV 、LHを合成して重ね合わ
せ、同軸的に、折り曲げミラ−35に入射させる。折り
曲げミラー35は重なり合った直線偏光光LV 、LH
ポリゴンミラー、ガルバノミラー等の回転鏡36に向け
て反射する。回転鏡36は、重なり合った直線偏光光L
V 、LH を反射偏向して走査レンズ101、偏光光分割
器37に入射させる。重なり合った直線偏光光LV 、L
H は偏光光分割器37により互いに分離され、直線偏光
光LV はレチクル6の回路パターンが形成されている面
に、直線偏光光LH は参照光形成用の回折格子21に入
射する。走査レンズ101は直線偏光光LV 、LH が夫
々レチクル6上、回折格子21上に集光するよう構成さ
れており、回転鏡36が回転することにより直線偏光光
V 、LH が夫々レチクル6上、回折格子21を紙面に
垂直なx方向に走査せしめられる。一方、レチクル6は
z(−z)方向に移動せしめられので、直線偏光光LV
のx方向への走査(移動)とレチクル6はz(−z)方
向に移動とにより、レチクル6の被検査面全体が直線偏
光光LV により照明されることになる。
The polarized light splitter 34 combines the linearly polarized lights L V and L H whose wavelengths and polarization directions are different from each other, superimposes them, and makes them incident coaxially on the bending mirror 35. The folding mirror 35 reflects the overlapping linearly polarized light L V and L H toward a rotating mirror 36 such as a polygon mirror or a galvano mirror. The rotating mirror 36 reflects the linearly polarized light L
The V and L H are reflected and deflected to enter the scanning lens 101 and the polarized light splitter 37. Overlapping linearly polarized light L V , L
H are separated from each other by the polarizing beam splitter 37, linearly polarized light L V on the surface of the circuit pattern of the reticle 6 is formed, linearly polarized light L H is incident on the diffraction grating 21 of the reference beam formation. The scanning lens 101 is configured to collect the linearly polarized lights L V and L H on the reticle 6 and the diffraction grating 21, respectively, and the linearly polarized lights L V and L H are respectively rotated by rotating the rotating mirror 36. The diffraction grating 21 is scanned on the reticle 6 in the x direction perpendicular to the paper surface. On the other hand, since the reticle 6 is moved in the z (−z) direction, the linearly polarized light L V
By scanning (moving) in the x direction and moving the reticle 6 in the z (−z) direction, the entire surface to be inspected of the reticle 6 is illuminated with the linearly polarized light L V.

【0016】回折格子21は、走査方向に対して傾いた
格子線を有し、入射光を側方に反射回折して複数の回折
光を生じせしめる。本実施例では、側方に生じた複数の
回折光の内の特定次数の回折光をヘテロダイン干渉に用
いる。また、回折格子21の代わりに入射光を散乱させ
て散乱光を生じせしめる光散乱部材を用いても良い。
The diffraction grating 21 has a grating line inclined with respect to the scanning direction, and causes incident light to be reflected and diffracted laterally to generate a plurality of diffracted lights. In the present embodiment, a diffracted light of a specific order among a plurality of diffracted lights generated laterally is used for heterodyne interference. Instead of the diffraction grating 21, a light scattering member that scatters incident light to generate scattered light may be used.

【0017】本実施例の表面状態検査装置は、波長と偏
光方向とが互いに異なる直線偏光光LV 、LH を重ね合
わせた状態で供給し、直線偏光光LV 、LH を走査、集
光するために共通の光学部材35、36、37、101
を用いることにより、走査手段の構成を簡単にしてい
る。
The surface state inspecting device of this embodiment, linearly polarized light and the wavelength and the polarization directions are different from each other L V, supplied in a superimposed state to L H, scan linearly polarized light L V, the L H, collecting Common optical members 35, 36, 37, 101 for illuminating
Is used, the structure of the scanning means is simplified.

【0018】次に図2を用いて本実施例の表面状態検査
装置の受光系について説明する。
Next, the light receiving system of the surface condition inspection apparatus of this embodiment will be described with reference to FIG.

【0019】図2は、図1の装置のxy平面に関する展
開図である。部分反射鏡(ハーフミラー)20は、直線
偏光光LV 、LH が夫々レチクル6上、回折格子21を
x方向に走査した時にレチクル6上の異物から側方へ生
じる散乱光と回折格子21から側方へ生じる回折光とを
合成する。即ちレチクル6上の異物からの散乱光を透過
させ、回折格子21からの回折光を反射することにより
両者を重ね合わせて受光レンズ7に入射させる。受光レ
ンズ7の後側焦点位置には開口絞り8が設けられてお
り、受光系をレチクル6(回折格子21)側をテレセン
トリックな光学系としている。従って、受光レンズ7は
レチクル6上の各点A、B、C及び回折格子21上の各
点AR 、BR 、CR から受光レンズ7の光軸と平行な方
向に出射する散乱光及び回折光の中心光線を開口絞り8
の開口の中心に集光する。受光レンズ7及び開口絞り8
を通過した散乱光と回折光はレンズ9、視野絞り10及
びレンズ11を介して光検出器12上に入射する。光検
出器12は、偏光方向が同じ散乱光と回折光のヘテロダ
イン干渉により生じるビート信号を発生し、処理装置2
2に入力する。処理装置22は、ビート信号の強度や発
生時間等を対応する閾値と比較し、閾値を越える場合に
は問題となる異物があると判断する。
FIG. 2 is a development view of the apparatus of FIG. 1 on the xy plane. The partial reflection mirror (half mirror) 20 scatters the linearly polarized lights L V and L H from the foreign matter on the reticle 6 and the diffraction grating 21 when the diffraction grating 21 scans the reticle 6 in the x direction. And the diffracted light generated laterally are combined. That is, the scattered light from the foreign matter on the reticle 6 is transmitted, and the diffracted light from the diffraction grating 21 is reflected so that they are overlapped and made incident on the light receiving lens 7. An aperture stop 8 is provided at the rear focal position of the light receiving lens 7, and the light receiving system is a telecentric optical system on the reticle 6 (diffraction grating 21) side. Therefore, the light receiving lens 7 receives scattered light emitted from the points A, B and C on the reticle 6 and the points A R , B R and C R on the diffraction grating 21 in the direction parallel to the optical axis of the light receiving lens 7. Aperture stop 8 for the central ray of diffracted light
Focus on the center of the aperture. Light receiving lens 7 and aperture stop 8
The scattered light and the diffracted light that have passed through are incident on the photodetector 12 via the lens 9, the field stop 10 and the lens 11. The photodetector 12 generates a beat signal generated by heterodyne interference of scattered light and diffracted light having the same polarization direction, and the processing device 2
Enter 2. The processing device 22 compares the intensity of the beat signal, the generation time, and the like with the corresponding threshold value, and when the threshold value is exceeded, determines that there is a foreign matter in question.

【0020】レチクル6上の異物から側方に生じる散乱
光は回折格子21から側方に生じる回折光と同じ偏光成
分を含むのに対し、レチクル6上の回路パターンから側
方に生じる散乱光や回折光は回折格子21から側方に生
じる回折光と同じ偏光成分を含まず、ヘテロダイン干渉
を起こさない。従って、本実施例の表面状態検査装置に
よれば回路パターンを異物として誤検出することがな
い。
The scattered light laterally generated from the foreign matter on the reticle 6 contains the same polarization component as the diffracted light laterally generated from the diffraction grating 21, while the scattered light laterally generated from the circuit pattern on the reticle 6 and the like. The diffracted light does not contain the same polarization component as the diffracted light generated laterally from the diffraction grating 21 and does not cause heterodyne interference. Therefore, according to the surface condition inspection apparatus of this embodiment, the circuit pattern is not erroneously detected as a foreign matter.

【0021】また、レチクル6及び回折格子21側がテ
レセントリックな受光系を用いているため、レチクル6
からの一定の仰角及び立体角をもつ散乱光と回折格子2
1からの一定の仰角及び立体角を持つ回折光(参照光)
を受光レンズ7に取り込むことができ、レチクル上の異
物の付着位置に係らず、異物の大きさが同じ場合には、
常に一定の強度の散乱光が受光レンズ7(開口絞り8)
に入射し、しかも回折格子21からの回折光と常に正確
に重なり合うので、光検出器12からのビート信号の強
度も安定している。従って、異物の付着位置によらずほ
ぼ一定の感度で異物検出を行なうことが可能である。
Further, since the reticle 6 and the diffraction grating 21 side use a telecentric light receiving system, the reticle 6
Light with a constant elevation angle and solid angle from and diffraction grating 2
Diffracted light with a constant elevation angle and solid angle from 1 (reference light)
Can be taken into the light receiving lens 7, and if the size of the foreign matter is the same regardless of the position of the foreign matter on the reticle,
Scattered light with a constant intensity is always received by the light receiving lens 7 (aperture stop 8)
Since the light beam is incident on the photodetector 12 and is always accurately overlapped with the diffracted light from the diffraction grating 21, the intensity of the beat signal from the photodetector 12 is stable. Therefore, it is possible to detect a foreign matter with substantially constant sensitivity regardless of the foreign matter attachment position.

【0022】視野絞り10はレンズ7、9によるレチク
ル6の表面(被検査面)の結像位置に設けられており、
視野絞り10は、レチクル6の表面との間でシャインプ
ルーフの条件を満たす結像面に沿うよう、受光系の光軸
に対して傾けてある。このように視野絞りを設けること
により、レチクル6の表面以外の面からの散乱光や回折
光が光検出器12に入射するのを防止することができ
る。
The field stop 10 is provided at an image forming position on the surface (inspected surface) of the reticle 6 by the lenses 7 and 9.
The field stop 10 is tilted with respect to the optical axis of the light receiving system so as to be along the image forming plane that satisfies the Scheimpflug condition with the surface of the reticle 6. By providing the field stop in this way, it is possible to prevent scattered light or diffracted light from surfaces other than the surface of the reticle 6 from entering the photodetector 12.

【0023】一方、光検出器12の受光面はレンズ9、
11による開口絞り8の結像位置に設定されており、こ
のように光検出器(光電変換手段)を設けることによ
り、光検出器の受光面の定位置にレチクル6の表面上の
各点からの散乱光と回折格子21上の各点からの回折光
とを入射させ、感度を安定させている。
On the other hand, the light receiving surface of the photodetector 12 is the lens 9,
It is set to the image forming position of the aperture stop 8 by 11, and by providing the photodetector (photoelectric conversion means) in this way, from each point on the surface of the reticle 6 to the fixed position of the light receiving surface of the photodetector. The scattered light and the diffracted light from each point on the diffraction grating 21 are made incident to stabilize the sensitivity.

【0024】また光検出器12からコントラストの良い
ビ−ト信号を得るには、受光レンズ7とレチクル6間の
光路長と受光レンズ7と回折格子21間の光路長とをほ
ぼ同じにし、レチクル6と回折格子21とを受光系に対
して光学的に概ね同じ位置に配置するのが良い。
In order to obtain a high-contrast beat signal from the photodetector 12, the optical path length between the light receiving lens 7 and the reticle 6 and the optical path length between the light receiving lens 7 and the diffraction grating 21 are made substantially the same, and the reticle is used. 6 and the diffraction grating 21 are preferably arranged at substantially the same optical position with respect to the light receiving system.

【0025】図3は図1及び図2の表面状態検査装置の
変形例を示す図である。図1及び図2の表面状態検査装
置は、受光系の光軸が走査方向を含み且つレチクル6の
表面に垂直な平面内にあったが、図3に示すように、受
光系の光軸BKを走査方向B1 −B2 に対して捩じった
方向に配置し、側方で且つやや後方に散乱する光を受光
系に入射させる形態を採り、受光系にレチクル6上の回
路パターンからの回折光が入射しにくくして、異物の検
出精度を上げることが考えられる。
FIG. 3 is a view showing a modification of the surface condition inspection device of FIGS. 1 and 2. 1 and 2, the optical axis of the light receiving system is in the plane that includes the scanning direction and is perpendicular to the surface of the reticle 6, but as shown in FIG. 3, the optical axis BK of the light receiving system is shown. Is arranged in a direction twisted with respect to the scanning direction B 1 -B 2 , and the light scattered laterally and slightly backward is made incident on the light receiving system. It is conceivable to make it difficult for the diffracted light to enter and to improve the detection accuracy of the foreign matter.

【0026】図1〜図3の表面状態検査装置はレチクル
6を移動させるものであったが、レチクル6を動かさ
ず、直線偏光光LV を2次元的に走査する形態を採り、
装置全体の小型化を図ったり、駆動系の小型化を図った
りすることが考えられる。
Although the surface condition inspection apparatus of FIGS. 1 to 3 moves the reticle 6, the reticle 6 is not moved and linearly polarized light L V is two-dimensionally scanned.
It is conceivable to reduce the size of the entire device or the drive system.

【0027】図1〜図3の表面状態検査装置において、
波長と偏光方向とが互いに異なる直線偏光光LV 、LH
を得る場合に、一方の偏光光の光路のみに周波数シフタ
ーを置き他方の偏光光の光路に周波数シフターを置かず
に部材数を減らす形態もある。また、レーザーとして波
長と偏光方向とが互いに異なる直線偏光光LV 、LH
直接放射するレーザーを用いて、照明系を簡単にする形
態もある。
In the surface condition inspection device of FIGS. 1 to 3,
Linearly polarized light L V , L H whose wavelength and polarization direction are different from each other
In order to obtain the above, there is also a mode in which the frequency shifter is placed only in the optical path of one polarized light and the number of members is reduced without placing the frequency shifter in the optical path of the other polarized light. There is also a mode in which an illumination system is simplified by using a laser that directly emits linearly polarized lights L V and L H having different wavelengths and polarization directions as the laser.

【0028】図4は本発明の露光装置の一実施例を示す
概略図であり、図中、1100はアライメントススコー
プ、1101はエキシマレーザー等の紫外線光源、11
02は照明系、1109は投影光学系、1110はウエ
ハー、1111はウエハー1111を保持して移動する
ステージ、1113は前述した各異物検査装置のいづれ
か、1114はレチクルチェンジャー、1118はコン
トローラーを示す。異物検査装置1113は、チェンジ
ャー1114から取り出され露光位置EPまで搬送され
るレチクル上の異物の有無を検査する。本実施例の露光
装置は、問題となる異物が付着していないレチクルだけ
を用いて露光を行なうので、信頼性の高い装置となる。
FIG. 4 is a schematic view showing an embodiment of the exposure apparatus of the present invention. In the figure, 1100 is an alignment scope, 1101 is an ultraviolet light source such as an excimer laser, and 11 is a light source.
Reference numeral 02 is an illumination system, 1109 is a projection optical system, 1110 is a wafer, 1111 is a stage for holding and moving the wafer 1111, 1113 is any of the above-mentioned foreign matter inspection apparatuses, 1114 is a reticle changer, and 1118 is a controller. The foreign matter inspection device 1113 inspects the presence or absence of foreign matter on the reticle taken out from the changer 1114 and conveyed to the exposure position EP. The exposure apparatus of the present embodiment performs exposure using only the reticle on which no problematic foreign matter is attached, and thus is a highly reliable apparatus.

【0029】次に図4の投影露光装置を利用したデバイ
スの製造方法の一実施例を説明する。
Next, an embodiment of a device manufacturing method using the projection exposure apparatus of FIG. 4 will be described.

【0030】図5は半導体デバイス(ICやLSI等の
半導体チップ、液晶パネルやCCD)の製造フロー示
す。ステップ1(回路設計)では半導体デバイスの回路
設計を行なう。ステップ2(マスク製作)では設計した
回路パターを形成したマスク(レチクル304)を製作
する。一方、ステップ3(ウエハー製造)ではシリコン
等の材料を用いてウエハー(ウエハー306)を製造す
る。ステップ4(ウエハープロセス)は前工程と呼ば
れ、上記用意したマスクとウエハーとを用いて、リソグ
ラフィー技術によってウエハー上に実際の回路を形成す
る。次のステップ5(組み立て)は後工程と呼ばれ、ス
テップ4よって作成されたウエハーを用いてチップ化す
る工程であり、アッセンブリ工程(ダイシング、ボンデ
ング)、パッケージング工程(チップ封入)等の工程
を含む。ステップ6(検査)ではステップ5で作成され
た半導体装置の動作確認テスト、耐久性テスト等の検査
を行なう。こうした工程を経て半導体デバイスが完成
し、これが出荷(ステップ7)される。
FIG. 5 shows a manufacturing flow of semiconductor devices (semiconductor chips such as IC and LSI, liquid crystal panels and CCDs). In step 1 (circuit design), a semiconductor device circuit is designed. In step 2 (mask production), a mask (reticle 304) on which the designed circuit pattern is formed is produced. On the other hand, in step 3 (wafer manufacturing), a wafer (wafer 306) is manufactured using a material such as silicon. Step 4 (wafer process) is called a pre-process, and an actual circuit is formed on the wafer by the lithography technique using the mask and the wafer prepared above. The next step 5 (assembly) is called a post-process, which is a process of making chips using the wafer prepared in step 4, and an assembly process (dicing, bonding
B ring), a packaging process (chip encapsulation). In step 6 (inspection), the semiconductor device manufactured in step 5 undergoes inspections such as an operation confirmation test and a durability test. Through these steps, the semiconductor device is completed and shipped (step 7).

【0031】図6は上記ウエハープロセスの詳細なフロ
ーを示す。ステップ11(酸化)ではウエハー(ウエハ
ー306)の表面を酸化させる。ステップ12(CV
D)ではウエハーの表面に絶縁膜を形成する。ステップ
13(電極形成)ではウエハー上に電極を蒸着によって
形成する。ステップ14(イオン打ち込み)ではウエハ
ーにイオンを打ち込む。ステップ15(レジスト処理)
ではウエハーにレジスト(感材)を塗布する。ステップ
16(露光)では上記投影露光装置によってマスク(レ
チクル304)の回路パターンの像でウエハーを露光す
る。ステップ17(現像)では露光したウエハーを現像
する。ステップ18(エッチング)では現像したレジス
ト以外の部分を削り取る。ステップ19(レジスト剥
離)ではエッチングが済んで不要となったレジストを取
り除く。これらステップを繰り返し行なうことによりウ
エハー上に回路パタ−ンが形成される。
FIG. 6 shows a detailed flow of the wafer process. In step 11 (oxidation), the surface of the wafer (wafer 306) is oxidized. Step 12 (CV
In D), an insulating film is formed on the surface of the wafer. In step 13 (electrode formation), electrodes are formed on the wafer by vapor deposition. In step 14 (ion implantation), ions are implanted in the wafer. Step 15 (resist processing)
Then, a resist (photosensitive material) is applied to the wafer. In step 16 (exposure), the projection exposure apparatus exposes the wafer with an image of the circuit pattern of the mask (reticle 304). In step 17 (development), the exposed wafer is developed. In step 18 (etching), parts other than the developed resist are scraped off. In step 19 (resist stripping), the resist that is no longer needed after etching is removed. By repeating these steps, a circuit pattern is formed on the wafer.

【0032】本実施例の製造方法を用いれば、従来は難
しかった欠陥の少ない高集積度のデバイスを製造するこ
とが可能になる。
By using the manufacturing method of this embodiment, it becomes possible to manufacture a highly integrated device with few defects, which was difficult in the past.

【0033】[0033]

【発明の効果】本発明の表面状態検査装置は、波長と偏
光方向とが互いに異なる第1と第2の光の内の第1の光
により被検査面を走査すると同時に第2の光により回折
格子または光散乱部材を走査する走査手段と、前記被検
査面から側方に生じる散乱光と前記回折格子または光散
乱部材から側方に生じる回折光または散乱光とを受光し
て重ね合わせる受光光学系と、前記受光光学系からの光
を電気信号に変換する光電変換手段とを有し、前記受光
光学系が前記被検査面側がテレセントリックな光学系よ
り成ることを特徴としており、光電変換手段から得られ
る散乱光と回折光または散乱光のヘテロダイン干渉に基
づくビート信号に基づいて異物を検出することができる
ので回路パターンを異物として誤検出することがなく、
しかも前記受光光学系を前記被検査面側がテレセントリ
ックな光学系より構成しているので異物の付着位置によ
らずほぼ一定の感度で異物検出を行なうことが可能であ
る。
According to the surface condition inspection apparatus of the present invention, the surface to be inspected is scanned by the first light of the first and second lights having different wavelengths and polarization directions, and at the same time, diffracted by the second light. Scanning means for scanning a grating or a light scattering member, and light receiving optics for receiving and superposing scattered light generated laterally from the surface to be inspected and diffracted light or scattered light laterally generated from the diffraction grating or light scattering member. System, and a photoelectric conversion means for converting light from the light receiving optical system into an electric signal, wherein the light receiving optical system is characterized in that the surface to be inspected is composed of a telecentric optical system. Since the foreign matter can be detected based on the beat signal based on the heterodyne interference of the obtained scattered light and diffracted light or scattered light, the circuit pattern is not erroneously detected as a foreign matter,
Moreover, since the light receiving optical system is composed of an optical system in which the surface to be inspected is a telecentric optical system, it is possible to detect foreign matter with a substantially constant sensitivity regardless of the position where foreign matter is attached.

【0034】また本発明の表面状態検査装置は、更に、
前記光電変換手段の受光面を前記受光光学系の開口絞り
の位置または前記受光光学系の開口絞りの位置と共役な
位置に設けることにより、走査中、光電変換手段の受光
面の定位置に被検査面上の各点からの散乱光と回折格子
または光散乱部材上の各点からの回折光または散乱光と
を入射させ、感度を安定させている。
The surface condition inspection apparatus of the present invention further comprises:
By providing the light receiving surface of the photoelectric conversion means at the position of the aperture stop of the light receiving optical system or at a position conjugate with the position of the aperture stop of the light receiving optical system, a fixed position of the light receiving surface of the photoelectric conversion means is covered during scanning. The scattered light from each point on the inspection surface and the diffracted light or scattered light from each point on the diffraction grating or the light scattering member are made incident to stabilize the sensitivity.

【0035】また本発明の表面状態検査装置は、更に、
前記受光光学系が前記被検面と共役な位置に視野絞りを
備えることにより、視野絞りにより光電変換手段に入射
する被検査面以外の面からの散乱光の量を減らし、被検
査面以外の面上のパターンや異物を被検査面上の異物と
誤検出を減らしている。
The surface condition inspection apparatus of the present invention further comprises:
Since the light receiving optical system includes the field stop at a position conjugate with the surface to be inspected, the amount of scattered light from the surface other than the surface to be inspected incident on the photoelectric conversion means by the field stop is reduced, and the area other than the surface to be inspected is reduced. False detection of patterns and foreign matter on the surface as foreign matter on the surface to be inspected is reduced.

【0036】また本発明の表面状態検査装置は、更に、
前記視野絞りが、前記被検査面との間でシャインプルー
クの条件を満たす結像面に沿うよう傾けて設けることに
より、視野絞りにより光電変換手段に入射する被検査面
以外の面からの散乱光の量を大幅に減らし、被検査面以
外の面上のパターンや異物を被検査面上の異物と誤検出
を抑制している。
The surface condition inspection apparatus of the present invention further comprises:
The field stop is provided so as to be inclined with respect to the surface to be inspected along an image forming surface that satisfies the condition of Scheimpflug, so that scattered light from a surface other than the surface to be inspected which is incident on the photoelectric conversion means by the field stop. Is significantly reduced, and erroneous detection of a pattern or foreign matter on a surface other than the surface to be inspected as a foreign matter on the surface to be inspected is suppressed.

【0037】また本発明の表面状態検査装置は、更に、
前記受光光学系が前記被検査面及び回折格子または光散
乱部材側から順に第1レンズ、開口絞り、第2レンズ、
視野絞りを備え、前記第1レンズの焦点位置近傍に前記
開口絞りを設け、前記第1、第2レンズによる前記被検
査面の結像位置に前記視野絞りを設け、前記光電変換手
段の受光面を前記開口絞りの位置または前記開口絞りの
位置と共役な位置に設けることにより、光電変換手段に
入射する被検査面以外の面からの散乱光の量を減らして
被検査面以外の面上のパターンや異物を被検査面上の異
物と誤検出を減らし、走査中光電変換手段の受光面の定
位置に被検査面上の各点からの散乱光と回折格子または
光散乱部材上の各点からの回折光または散乱光とを入射
させてビート信号のS/N比を安定させている。従って
簡単な光学系で安定したS/N比でビート信号を得るこ
とができ且つ被検査面以外の面からの散乱光の悪影響を
減らし得る表面状態検査装置を提供する。
The surface condition inspection apparatus of the present invention further comprises:
The light receiving optical system includes a first lens, an aperture stop, a second lens, in order from the surface to be inspected and the diffraction grating or the light scattering member side.
A field stop is provided, the aperture stop is provided near the focal position of the first lens, the field stop is provided at an image forming position of the surface to be inspected by the first and second lenses, and the light receiving surface of the photoelectric conversion means is provided. By providing the position of the aperture stop or a position conjugate with the position of the aperture stop, the amount of scattered light from the surface other than the surface to be inspected incident on the photoelectric conversion means is reduced and the surface on the surface other than the surface to be inspected is reduced. Reduces false detection of patterns and foreign substances as foreign substances on the surface to be inspected, and scatters light from each point on the surface to be inspected and each point on the diffraction grating or light scattering member at a fixed position on the light receiving surface of the photoelectric conversion means during scanning. The diffracted light or scattered light from is incident to stabilize the S / N ratio of the beat signal. Therefore, a surface state inspection device capable of obtaining a beat signal with a stable S / N ratio with a simple optical system and reducing the adverse effect of scattered light from a surface other than the surface to be inspected is provided.

【0038】本発明の表面状態検査装置は、前記走査手
段が、前記第1と第2の光を重ね合わせた状態で供給す
る手段と、前記重なり合った第1と第2の光を偏向し走
査する回転鏡と、前記回転鏡からの前記第1と第2の光
を夫々前記被検査面上と前記回折格子または光散乱部材
上に集光せしめる走査光学系とを備え、前記走査光学系
は、前記第1の光の前記被検査面への光路と前記第2の
光の前記回折格子または光散乱部材への光路を定めるた
めの光分割器を有することを特徴とし、第1と第2の光
を走査、集光するために共通の光学部材を用いることに
より、走査手段の構成を簡単にしている。
In the surface state inspection apparatus of the present invention, the scanning means supplies the first and second light in a superposed state, and deflects and scans the overlapping first and second light. And a scanning optical system for converging the first and second lights from the rotating mirror on the surface to be inspected and on the diffraction grating or the light scattering member, respectively. And a light splitter for defining an optical path of the first light to the surface to be inspected and an optical path of the second light to the diffraction grating or a light scattering member. By using a common optical member for scanning and condensing the above light, the structure of the scanning means is simplified.

【0039】本発明の露光装置は、前記各表面状態検査
装置のいづれかを備えることを特徴としており、レチク
ル上の異物の有無を正確に検出し、問題となる異物の付
着がないレチクルによる露光のみを行なう高い信頼性を
有する。
The exposure apparatus of the present invention is characterized by including any one of the above-mentioned surface condition inspection apparatuses. It accurately detects the presence or absence of foreign matter on the reticle, and only the exposure by the reticle is free from the problematic foreign matter. Have high reliability to do.

【0040】本発明のIC、LSI、磁気ヘッド、液晶
パネル、CCD等のデバイスを製造するデバイス製造方
法は、前記各表面状態検査装置のいづれかによりレチク
ル上の異物の有無を検出することを特徴としており、レ
チクル上の異物の有無を正確に検出し、問題となる異物
の付着がないレチクルのデバイスパターンを基板上に転
写することができるので、欠陥の少ないデバイスを得る
ことができる。
A device manufacturing method for manufacturing a device such as an IC, an LSI, a magnetic head, a liquid crystal panel, and a CCD according to the present invention is characterized by detecting the presence or absence of a foreign matter on a reticle by any of the above-mentioned surface condition inspection apparatuses. Since the presence or absence of foreign matter on the reticle can be accurately detected and the device pattern of the reticle free from the problematic foreign matter can be transferred onto the substrate, a device with few defects can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の表面状態検査装置の一実施例の照明系
を示す図である。
FIG. 1 is a diagram showing an illumination system of an embodiment of a surface state inspection device of the present invention.

【図2】本発明の表面状態検査装置の一実施例の受光系
を示す図である。
FIG. 2 is a diagram showing a light receiving system of an embodiment of the surface state inspection device of the present invention.

【図3】図1及び図2に示す表面状態検査装置の変形例
を示す図である。
FIG. 3 is a diagram showing a modification of the surface state inspection device shown in FIGS. 1 and 2.

【図4】本発明の露光装置の一実施例を示す図である。FIG. 4 is a diagram showing an embodiment of the exposure apparatus of the present invention.

【図5】半導体デバイスの製造フローを示す図である。FIG. 5 is a diagram showing a manufacturing flow of a semiconductor device.

【図6】図5中のウエハープロセスを示す図である。FIG. 6 is a diagram showing a wafer process in FIG.

【符号の説明】[Explanation of symbols]

H 、LV 波長と偏光方向とが互いに異なる光 6 レチクル 7、9、11 受光レンズ 8 開口絞り 10 視野絞り 12 光検出器 20 ハーフミラー 21 回折格子 22 信号処理装置 36 回転鏡 37 偏光光分割器 101 走査レンズL H , L V Lights with different wavelengths and polarization directions 6 Reticle 7, 9, 11 Light receiving lens 8 Aperture stop 10 Field stop 12 Photodetector 20 Half mirror 21 Diffraction grating 22 Signal processing device 36 Rotating mirror 37 Polarized light splitting Device 101 scanning lens

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 波長と偏光方向とが互いに異なる第1と
第2の光の内の第1の光により被検査面を走査すると同
時に第2の光により回折格子または光散乱部材を走査す
る走査手段と、前記被検査面から側方に生じる散乱光と
前記回折格子または光散乱部材から側方に生じる回折光
または散乱光とを受光して重ね合わせる受光光学系と、
前記受光光学系からの光を電気信号に変換する光電変換
手段とを有し、前記受光光学系が前記被検査面側がテレ
セントリックな光学系より成ることを特徴とする表面状
態検査装置。
1. A scan for scanning a surface to be inspected by a first light of a first light and a second light having different wavelengths and polarization directions, and at the same time scanning a diffraction grating or a light scattering member by the second light. Means, a light receiving optical system for receiving and superposing scattered light generated laterally from the surface to be inspected and diffracted light or scattered light laterally generated from the diffraction grating or the light scattering member,
A surface condition inspection apparatus comprising: a photoelectric conversion unit that converts light from the light receiving optical system into an electric signal, and the light receiving optical system is an optical system in which the surface to be inspected is a telecentric optical system.
【請求項2】 前記光電変換手段の受光面が前記受光光
学系の開口絞りの位置または前記受光光学系の開口絞り
の位置と共役な位置に設けられることを特徴とする請求
項1の表面状態検査装置。
2. The surface state according to claim 1, wherein the light receiving surface of the photoelectric conversion means is provided at a position of the aperture stop of the light receiving optical system or at a position conjugate with the position of the aperture stop of the light receiving optical system. Inspection device.
【請求項3】 前記受光光学系が前記被検査面と共役な
位置に視野絞りを備えることを特徴とする請求項1、2
の表面状態検査装置。
3. The light receiving optical system comprises a field stop at a position conjugate with the surface to be inspected.
Surface condition inspection device.
【請求項4】 前記受光光学系が前記被検査面及び回折
格子または散乱部材側から順に第1レンズ、開口絞り、
第2レンズ、視野絞りを備え、前記第1レンズの焦点位
置近傍に前記開口絞りが設けられ、前記第1、第2レン
ズによる前記被検査面の結像位置に前記視野絞りが設け
られることを特徴とする請求項3の表面状態検査装置。
4. The light receiving optical system comprises a first lens, an aperture stop, and an inspection stop in order from the surface to be inspected and the diffraction grating or the scattering member side.
A second lens and a field diaphragm are provided, the aperture diaphragm is provided in the vicinity of the focal position of the first lens, and the field diaphragm is provided at an image forming position of the surface to be inspected by the first and second lenses. The surface condition inspection apparatus according to claim 3, which is characterized in that.
【請求項5】 前記視野絞りが、前記被検査面との間で
シャインプルーフの条件を満たす結像面に沿うよう傾け
て設けてあることを特徴とする請求項3、4の表面状態
検査装置。
5. The surface state inspection apparatus according to claim 3, wherein the field stop is provided so as to be inclined with respect to the surface to be inspected so as to be along an image forming surface satisfying a Scheimpflug condition. .
【請求項6】 前記走査手段が、前記第1と第2の光を
重ね合わせた状態で供給する手段と、前記重なり合った
第1と第2の光を偏向し走査する回転鏡と、前記回転鏡
からの前記第1と第2の光を夫々前記被検査面上と前記
回折格子または光散乱部材上に集光せしめる走査光学系
とを備え、前記走査光学系は、前記第1の光の前記被検
査面への光路と前記第2の光の前記回折格子または光散
乱部材への光路を定めるための光分割器を有することを
特徴とする請求項1、2の表面状態検査装置。
6. The scanning means supplies the first and second light in a superposed state, a rotary mirror that deflects and scans the overlapping first and second light, and the rotation. A scanning optical system for converging the first and second light beams from a mirror on the surface to be inspected and on the diffraction grating or the light scattering member, respectively, is provided. 3. The surface condition inspection apparatus according to claim 1, further comprising a light splitter for determining an optical path to the surface to be inspected and an optical path of the second light to the diffraction grating or the light scattering member.
【請求項7】 請求項1〜6のいづれかに記載の表面状
態検査装置を備え、該表面状態検査装置により検査を行
なったレチクルのデバイスパターンを介して基板を露光
することを特徴とする露光装置。
7. An exposure apparatus comprising the surface condition inspection apparatus according to claim 1, wherein the substrate is exposed through a device pattern of a reticle inspected by the surface condition inspection apparatus. .
【請求項8】 請求項7に記載の露光装置を用いてデバ
イスパターンを基板上に転写する段階を含むデバイス製
造方法。
8. A device manufacturing method including a step of transferring a device pattern onto a substrate by using the exposure apparatus according to claim 7.
JP6005297A 1994-01-21 1994-01-21 Surface state inspection equipment, exposure apparatus employing it, and production of device using the exposure apparatus Withdrawn JPH07209201A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6005297A JPH07209201A (en) 1994-01-21 1994-01-21 Surface state inspection equipment, exposure apparatus employing it, and production of device using the exposure apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6005297A JPH07209201A (en) 1994-01-21 1994-01-21 Surface state inspection equipment, exposure apparatus employing it, and production of device using the exposure apparatus

Publications (1)

Publication Number Publication Date
JPH07209201A true JPH07209201A (en) 1995-08-11

Family

ID=11607320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6005297A Withdrawn JPH07209201A (en) 1994-01-21 1994-01-21 Surface state inspection equipment, exposure apparatus employing it, and production of device using the exposure apparatus

Country Status (1)

Country Link
JP (1) JPH07209201A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6621567B1 (en) 1997-07-01 2003-09-16 Newcreation Co., Ltd. Surface inspecting method and surface inspecting device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6621567B1 (en) 1997-07-01 2003-09-16 Newcreation Co., Ltd. Surface inspecting method and surface inspecting device

Similar Documents

Publication Publication Date Title
JPH07209202A (en) Surface state inspection equipment, exposure apparatus employing it, and production of device using the exposure apparatus
JP3211538B2 (en) Inspection apparatus and semiconductor device manufacturing method using the same
JP3183046B2 (en) Foreign particle inspection apparatus and method for manufacturing semiconductor device using the same
US5861952A (en) Optical inspection method and apparatus including intensity modulation of a light beam and detection of light scattered at an inspection position
US5461474A (en) Inspection apparatus for detecting foreign matter on a surface to be inspected, and an exposure apparatus and a device manufacturing method using the same
JP2003287407A (en) Dual beam symmetric height system and method
JPS60220940A (en) Automatic examining unit for foreign object
US5585918A (en) Foreign particle inspecting system
JPH0580497A (en) Surface state inspecting device
JPH075115A (en) Surface condition inspection apparatus
JPH0333645A (en) Surface state inspecting apparatus
US6337488B1 (en) Defect inspection apparatus and defect inspection method
JP2000097872A (en) Optical inspection device
JP2004163198A (en) Defect inspection device, defect inspection method, optical scanner, and method of manufacturing semiconductor device
JP2006250843A (en) Surface inspection device
JPH07209201A (en) Surface state inspection equipment, exposure apparatus employing it, and production of device using the exposure apparatus
JP3101459B2 (en) Inspection device and system using it
JP3042225B2 (en) Surface condition inspection method and surface condition inspection device using the same
EP0598582B1 (en) Inspection method and apparatus
JP3336392B2 (en) Foreign matter inspection apparatus and method
JPH07333167A (en) Surface state inspection device and exposure device using the inspection device
JPH04339245A (en) Inspecting device for surface condition
JP2671896B2 (en) Foreign matter inspection device
JPS6232612A (en) Alignment mark
JP2762313B2 (en) Inspection method for foreign substances on lattice face plate

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010403