JPH07204869A - Beginning method of electroslag welding - Google Patents

Beginning method of electroslag welding

Info

Publication number
JPH07204869A
JPH07204869A JP1880794A JP1880794A JPH07204869A JP H07204869 A JPH07204869 A JP H07204869A JP 1880794 A JP1880794 A JP 1880794A JP 1880794 A JP1880794 A JP 1880794A JP H07204869 A JPH07204869 A JP H07204869A
Authority
JP
Japan
Prior art keywords
welding
flux
time
addition
arc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1880794A
Other languages
Japanese (ja)
Other versions
JP3103475B2 (en
Inventor
Yuji Suzuki
雄二 鈴木
Kazuo Nagatomo
和男 長友
Mitsuaki Otoguro
盈昭 乙黒
Tadashi Hoshino
忠 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Welding and Engineering Co Ltd
Original Assignee
Nippon Steel Welding and Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Welding and Engineering Co Ltd filed Critical Nippon Steel Welding and Engineering Co Ltd
Priority to JP06018807A priority Critical patent/JP3103475B2/en
Publication of JPH07204869A publication Critical patent/JPH07204869A/en
Application granted granted Critical
Publication of JP3103475B2 publication Critical patent/JP3103475B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Arc Welding In General (AREA)

Abstract

PURPOSE:To introduce the excellent welding state by automatically adding a flux suitable for the thickness of an object to be welded in a welding beginning time of an electroslag welding and forming a slag bath while keeping the steady state. CONSTITUTION:An arc generating material is preliminarily scattered onto a groove's bottom part, a consumable electrode is fed through a consuming nozzle or an un-consuming nozzle, arc is generated between the consumable electrode and the arc generating material, an arc generating signal is detected, after a prescribed arc generating time, a flux adding amount suitable for the groove's cross-sectional area of the welding place is preliminarily controlled with the adding frequency, the adding time and the waiting time, and a slag bath is formed by intermittently adding the flux.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、エレクトロスラグ溶接
のフラックス自動添加方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an automatic flux addition method for electroslag welding.

【0002】[0002]

【従来の技術】消耗ノズルまたは非消耗ノズルを用いた
エレクトロスラグ溶接を行う際には、溶接開始時に被溶
接部の板厚に適したスラグ浴を形成できるだけのフラッ
クスを添加させなければならない。しかし、溶接開始時
にはスラグ浴がないためアークが発生し、その後、フラ
ックスを開先内に添加させるが、開先の4面を鋼板や銅
板で囲っているため、溶接長が長ければ長い程底部の溶
接状態を視覚で捕らえることは不可能で、いわゆるブラ
ックボックス状態である。適切な状態を維持させながら
スラグ浴を形成させるためには、開先内のわずかな明る
さや溶接音を認知し、勘と経験則を加味して、適切な添
加量、添加後の間合いをとり、添加したフラックスが溶
融してスラグ浴を形成したかどうかを見極めてから、次
の添加へとつなぐ作業を繰り返し、安定した状態を常に
維持させながらスラグ浴を形成させなければならない。
2. Description of the Related Art When performing electroslag welding using a consumable nozzle or a non-consumable nozzle, it is necessary to add a flux that can form a slag bath suitable for the plate thickness of a welded portion at the start of welding. However, since there is no slag bath at the start of welding, an arc is generated, and then flux is added to the groove, but since the four faces of the groove are surrounded by steel plates or copper plates, the longer the welding length, the longer the bottom It is impossible to visually detect the welding state of, and it is a so-called black box state. In order to form a slag bath while maintaining an appropriate state, recognize the slight brightness and welding sound in the groove, and add intuition and empirical rules to obtain an appropriate amount of addition and a post-addition interval. As to whether or not the added flux has melted to form a slag bath, the work of connecting to the next addition must be repeated to form a slag bath while always maintaining a stable state.

【0003】従来の技術においては、溶接開始時に作業
者がフラックスの添加を行い、溶接中のスラグ浴に何ら
かの異常が現れた時に自動添加方法を用いて、フラック
スの添加を行っている特公昭49−42229、特公昭
50−22498号公報に示された手段はあるが、この
添加手段は、溶接中のフラックス自動添加方法であるた
め、溶接開始時の問題を解決することはできない。ま
た、近年、慢性的な技能者不足、熟練者の高年齢化が問
題になっており、これらを解消できる溶接技能不要機器
の出現が望まれている。
In the prior art, a worker adds flux at the start of welding, and when some abnormality appears in the slag bath during welding, the flux is added by an automatic addition method. -42229 and Japanese Patent Publication No. 50-22498, there is a means, but since this addition means is an automatic flux addition method during welding, the problem at the start of welding cannot be solved. Further, in recent years, chronic shortage of skilled workers and aging of skilled workers have become problems, and the advent of a welding skill unnecessary device capable of solving these problems is desired.

【0004】[0004]

【発明が解決しようとする課題】本発明が解決しようと
するところは、上記のような従来の問題点を解決して、
誰にでも簡単に操作できるよう脱技能化を図ったもの
で、溶接開始時に被溶接部の板厚に適したフラックスを
自動的に添加し、安定した状態を維持させながらスラグ
浴を形成し、良好な溶接状態に導くことにある。
The problem to be solved by the present invention is to solve the conventional problems as described above,
It is designed to be skillless so that anyone can easily operate it.At the start of welding, a flux suitable for the plate thickness of the welded part is automatically added to form a slag bath while maintaining a stable state. To lead to a good welding condition.

【0005】[0005]

【課題を解決するための手段】本発明は上記問題点に鑑
みなされたものであって、エレクトロスラグ溶接の開始
方法におけるフラックス自動添加方法において、予め開
先底部にアーク発生材を散布し、消耗ノズルまたは非消
耗ノズルを通じて消耗電極を送り、消耗電極とアーク発
生材間でアークを発生させ、該アーク発生信号を検出
し、所定のアーク発生時間を経た後、予め溶接箇所の開
先断面積に適したフラックス添加量を添加回数、添加時
間、待機時間で制御し、断続的にフラックスを添加して
スラグ浴を形成させることを特徴とするエレクトロスラ
グ溶接の開始方法を提供するものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and in an automatic flux adding method in a method of starting electroslag welding, an arc generating material is previously sprayed on the bottom of the groove and is consumed. A consumable electrode is sent through a nozzle or a non-consumable nozzle, an arc is generated between the consumable electrode and the arc-generating material, the arc generation signal is detected, and after a predetermined arc generation time, the groove cross-sectional area of the welding location is determined in advance. It is intended to provide a method for starting electroslag welding, which is characterized in that a suitable flux addition amount is controlled by the number of times of addition, an addition time, and a waiting time, and flux is intermittently added to form a slag bath.

【0006】[0006]

【作用】エレクトロスラグ溶接のフラックス自動添加方
法において、溶接を開始するとアークが発生する。この
アークを数秒間発生させた後、溶接開先の断面積に適し
たフラックス量を断続的に添加させる。断続添加とは、
フラックスを適量に分けて添加し、フラックスが充分溶
融するまで次の添加は行わず、溶融した後次の添加を行
うことを指す。この動作を自動的に繰り返し、溶接開始
時に適正なスラグ浴を形成させることを特徴とする。
In the automatic flux addition method for electroslag welding, an arc is generated when welding is started. After this arc is generated for several seconds, a flux amount suitable for the cross-sectional area of the weld groove is intermittently added. What is intermittent addition?
It means that the flux is added in an appropriate amount, the next addition is not performed until the flux is sufficiently melted, and the next addition is performed after the flux is melted. This operation is automatically repeated to form an appropriate slag bath at the start of welding.

【0007】本発明のフラックス自動添加方法を図2な
いし図4に基づいて詳細に説明する。図2は溶接開始前
の状態を表す溶接部の縦断面図で、図3は溶接開始後、
溶接箇所の開先断面積に適したフラックス量を添加し、
適正なスラグ浴14を形成し良好な溶接を行っている状
態の溶接部の縦断面図である。図中12は溶接金属、1
3は溶融金属である。
The automatic flux adding method of the present invention will be described in detail with reference to FIGS. FIG. 2 is a longitudinal sectional view of the welded portion showing the state before the start of welding, and FIG.
Add a flux amount suitable for the groove cross section of the welded part,
It is a longitudinal cross-sectional view of a welded portion in a state where a proper slag bath 14 is formed and good welding is performed. In the figure, 12 is weld metal, 1
3 is a molten metal.

【0008】図2において、被溶接部材1で囲んで形成
した開先10にローラ8で自動上昇を行う非消耗ノズル
4を挿入し、溶接用給電チップ5の先端からワイヤ6を
送り出し、ワイヤ突き出し長さLをたとえば35mmに
し、被溶接部材1の溶接開始箇所に取付けた水冷銅板7
の底部にはカットワイヤ9を散布しておく。また、ワイ
ヤ先端が底部に接触しない程度に、非消耗ノズル4を引
き上げておく。さらに、開先10の上部には、フラック
ス添加装置3とフラックスを開先内に導くチューブ2を
設置しておく。
In FIG. 2, a non-consumable nozzle 4 which is automatically raised by a roller 8 is inserted into a groove 10 formed by being surrounded by a member to be welded 1, a wire 6 is fed out from a tip of a welding power supply tip 5, and a wire is ejected. A water-cooled copper plate 7 having a length L of, for example, 35 mm and attached to the welding start point of the member 1 to be welded
The cut wire 9 is sprinkled on the bottom of the. Further, the non-consumable nozzle 4 is pulled up so that the tip of the wire does not contact the bottom. Further, a flux adding device 3 and a tube 2 for guiding the flux into the groove are installed above the groove 10.

【0009】ここで、溶接開始スイッチを投入すると無
負荷電圧が発生する。無負荷電圧は瞬時にアーク電圧へ
と切替わりアークが発生する。例えば、溶接開始は毎回
良好に行えるとは限らず、溶接条件や溶接用給電チップ
の老朽化、溶接材料やその他の要因等で溶接開始直後に
ワイヤ送給不良を起こすことがある。そのため、適切な
フラックス添加時期を定めるためには、無負荷電圧の発
生からアーク電圧への切替り時点を的確に捕らえなくて
はならない。また、アーク電圧に切替ってからワイヤ送
給不良が発生することも考慮しなければならない。
When the welding start switch is turned on, a no-load voltage is generated. The no-load voltage is instantly switched to the arc voltage and an arc is generated. For example, the start of welding is not always performed well, and there are cases in which poor wire feeding occurs immediately after the start of welding due to deterioration of welding conditions, welding tips for welding, welding materials, and other factors. Therefore, in order to determine an appropriate flux addition time, it is necessary to accurately grasp the time when the no-load voltage is generated and the arc voltage is switched. In addition, it must be taken into consideration that wire feeding failure occurs after switching to the arc voltage.

【0010】また、アークを発生させる時間も勘と経験
の領域に属する。これを解明するため熟練者の溶接作業
の手順を徹底的に追求した結果、アーク発生継続時間は
1秒から3秒程度までが良く、その中でも2秒程度が最
も良いことが分かった。このアーク発生継続時間の長短
は次のような問題につながる。アーク発生時間が極端に
短かすぎる場合、例えば、溶接開始直後に瞬時アークが
発生するが、これをアーク発生と捕らえフラックスを添
加すると、アーク発生時間が短いのでアークの予熱効果
が少なく、ワイヤは母材をはじくように送給と短絡を繰
り返しながら激しくスラグを飛散させ、やがてはチップ
に付着しワイヤ送給不良を起こすことになる。また、溶
接開始部の溶込みは熱量不足の影響を受け浅くなる。
Further, the time for generating an arc also belongs to the region of intuition and experience. As a result of thoroughly pursuing the procedure of welding work by a skilled person in order to clarify this, it was found that the arc generation duration time is preferably about 1 second to 3 seconds, and of these, about 2 seconds is the best. The length of this arc generation duration leads to the following problems. If the arc generation time is extremely short, for example, an instantaneous arc is generated immediately after the start of welding, but if you add flux to catch this arc generation, the arc generation time is short, so the preheating effect of the arc is small and the wire is Repeating feeding and short-circuiting so as to repel the base metal, the slag is violently scattered and eventually adheres to the chip, causing wire feeding failure. Further, the penetration at the welding start portion becomes shallow due to the effect of insufficient heat quantity.

【0011】次に、アーク発生継続時間を長くした場合
では、通常、溶接開始部の溶込み不良を回避させる目的
で溶接開始部に水冷銅板を使用しているが、アーク発生
継続時間が長いと水冷銅板の底部を溶かし過ぎてしま
い、水冷銅板の寿命を短くする。また、溶接終了後、水
冷銅板をハンマー等で叩いてはずしているが、底部を溶
かし過ぎてしまうため、はずせなくなり壊さなければな
らない事もある。このようなことを避けるためにも、ア
ーク発生継続時間は適切な時間にしなければならない。
Next, when the arc generation duration time is extended, a water-cooled copper plate is usually used at the welding start portion for the purpose of avoiding defective penetration at the welding start portion. It melts the bottom of the water-cooled copper plate too much and shortens the life of the water-cooled copper plate. After the welding is finished, the water-cooled copper plate is hit with a hammer or the like to remove it. However, the bottom part is too melted, and it may be impossible to remove and must be broken. In order to avoid such a situation, the arc generation duration must be an appropriate time.

【0012】次に、図4に示す回路と検出方法について
説明する。30は溶接電源で、4、5、6、8等は図1
で示したのと同様の非消耗ノズル等を模式的に示し、1
5は被溶接材等を模式的に示したものである。まず、溶
接開始と共に無負荷電圧が発生し、次にアーク電圧へと
切替わるが、この切替わりの時期を確実に検出するため
に比較検出の行えるメーターリレー(MR)31を用
い、アーク電圧を基準に上限検出接点(MRH )と下限
検出接点(MRL )を設定する。その上限検出接点(M
H )と下限検出接点(MRL )のa接点(常開接点、
以下同じ)33、36が共に閉成したら無負荷電圧が発
生したと判断させている。
Next, the circuit and detection method shown in FIG. 4 will be described. 30 is a welding power source, and 4, 5, 6, 8 etc. are shown in FIG.
1 schematically shows a non-consumable nozzle or the like similar to that shown in 1.
Reference numeral 5 schematically shows a material to be welded and the like. First, when welding starts, a no-load voltage is generated, and then the voltage is switched to the arc voltage. A meter relay (MR) 31 capable of comparative detection is used to reliably detect the timing of this switching. Set the upper limit detection contact (MR H ) and lower limit detection contact (MR L ) as the reference. The upper limit detection contact (M
RH ) and lower limit detection contact (MR L ) a contact (normally open contact,
The same applies hereinafter) When both 33 and 36 are closed, it is determined that a no-load voltage has occurred.

【0013】通常、溶接動作が正常に働けばアーク電圧
へと切替わっていくが、場合によってはワイヤ送給不良
が発生し、アーク電圧に切替わらないことがある。この
場合、無負荷電圧が継続して発生するので、ワイヤ送給
不良の異常を早期に検出させるために溶接開始時に連動
させて、無負荷電圧の継続時間を検出させる異常検出タ
イマー37を設けている。この異常検出タイマーが時限
完了する前にアーク電圧に切替われば正常と判断し、異
常検出をリセットさせる回路構成にしてある。しかし、
異常検出タイマーが時限完了してもアーク電圧に切替わ
らない場合には、限時接点38を閉じ異常と判断させラ
ンプ39やブザー40で警報を発し、オペレータに異常
を伝達する。異常検出時間の設定については、誤検出を
防ぐために最短で3秒程度とし、異常の発生を迅速に検
出させるために最長でも6秒程度の設定が検出制御に最
も適している。
Normally, if the welding operation works normally, the arc voltage is switched to. However, in some cases, wire feeding failure may occur, and the arc voltage may not be switched. In this case, since the no-load voltage continues to be generated, an abnormality detection timer 37 that detects the duration of the no-load voltage is provided in association with the start of welding in order to detect an abnormality in wire feeding failure at an early stage. There is. The circuit configuration is such that it is determined to be normal and the abnormality detection is reset if the arc voltage is switched to before the abnormality detection timer completes the time limit. But,
When the abnormality detection timer does not switch to the arc voltage even after the time is completed, the time contact 38 is closed and an alarm is issued by the lamp 39 or the buzzer 40 to inform the operator of the abnormality. The abnormality detection time is set to about 3 seconds at the shortest to prevent erroneous detection, and about 6 seconds at the longest is most suitable for detection control in order to quickly detect the occurrence of the abnormality.

【0014】次に、アークが発生すると電圧はアーク電
圧値に下がり、上限検出のa接点36は開放されb接点
(常閉接点、以下同じ)32は閉じ、下限検出のa接点
33も引きつづき閉じている。この状態になると無負荷
電圧からアーク電圧に切替わったことになり、アーク発
生検出のリレー35に通電して接点41が接点保持し、
アーク発生タイマー42を作動させる。アーク発生タイ
マーの時限完了までの2秒間アークを発生させ、時限完
了に伴い接点45と添加タイマー44を作動させるため
の接点43を閉成させる。これにより添加タイマー44
が計時開始すると共に添加が開始される。
Next, when an arc occurs, the voltage drops to the arc voltage value, the a-contact 36 for the upper limit detection is opened, the b-contact (normally closed contact, the same applies hereinafter) 32 is closed, and the a-contact 33 for the lower limit detection continues. It's closed. In this state, it means that the no-load voltage is switched to the arc voltage, the relay 35 for arc generation detection is energized, and the contact 41 holds the contact,
The arc generation timer 42 is activated. An arc is generated for 2 seconds until the time limit of the arc generation timer is completed, and the contact 45 and the contact 43 for operating the addition timer 44 are closed with the completion of the time period. With this, the addition timer 44
Is started and the addition is started.

【0015】本発明に用いたフラックス添加量の制御方
法は、添加量を時間と添加装置のモーター47の回転数
を可変制御させることで行っている。具体的には、フラ
ックス添加時間制御は各溶接箇所の開先断面積を問わず
共通の時間設定としている。例えば、開先断面積が62
5mm2 と1250mm2 の溶接箇所に各々に適したフ
ラックス量を共通の添加時間制御で添加させた場合、6
25mm2 の回転速度を1としたら、1250mm2
回転速度を倍の2として共通の添加時間でも安定したス
ラグ浴が形成できるように制御を行っている。また、モ
ーター回転数の可変調整はモーターコントローラー(M
CR)48で行っている。
The method of controlling the flux addition amount used in the present invention is performed by variably controlling the addition amount and the rotation speed of the motor 47 of the addition device. Specifically, the flux addition time control is set to a common time regardless of the groove cross-sectional area of each welding location. For example, the groove cross section is 62
When a flux amount suitable for each of the 5 mm 2 and 1250 mm 2 welded spots is added under the common addition time control, 6
When the rotation speed of 25 mm 2 is 1, the rotation speed of 1250 mm 2 is doubled to 2 so that a stable slag bath can be formed even with a common addition time. In addition, the motor controller (M
CR) 48.

【0016】次に、添加回数についても各溶接箇所の開
先断面積に対し共通の回数で制御することが最も好まし
く、熟練者の添加回数を各板厚の開先断面積毎に調査し
た結果、10回程度に分けて添加させることが最も自動
添加制御に適しており、安定した状態でスラグ浴を形成
することができる。
Next, it is most preferable to control the number of additions by a common number for the groove cross-sectional area of each welded part. The result of investigation of the number of additions by a skilled person for each groove cross-sectional area of each plate thickness It is most suitable for automatic addition control that the slag bath is added in batches of about 10 times, and the slag bath can be formed in a stable state.

【0017】また、フラックスを添加した後にフラック
スを充分溶融させるための待機時間を設け、待機時間内
に次のフラックスを添加させないような制御を行ってい
る。この添加時間は、添加タイマー44が時限完了する
とa接点49が閉成し、b接点46は開放されてモータ
ー47は停止し、待機タイマー50が計時開始する。こ
の待機時間は、フラックス添加量に対比させて設定して
おり、基本的にはフラックスが充分溶融する時間と更に
スラグ浴を安定させる時間を考慮して決めている。しか
し、溶接開始時から3回程度までは、フラックスを添加
してスラグ浴を形成させてもまだアークが発生するた
め、エレクトロスラグ溶接に早く移行させるためには待
機時間を短くすることが必要である。そのため、1〜3
回は溶融のための最小限必要な時間を設定して制御させ
ている。また、エレクトロスラグ溶接に移行してからの
待機時間としては5〜8秒程度が制御に適しており、そ
の中でも6秒程度が最も好ましい。このように添加と待
機を1組合せとし、1〜10回に分けてフラックスを添
加させている。
Further, after the flux is added, a waiting time is provided for sufficiently melting the flux, and control is performed so that the next flux is not added within the waiting time. With respect to this addition time, when the addition timer 44 is timed, the a contact 49 is closed, the b contact 46 is opened, the motor 47 is stopped, and the standby timer 50 starts timing. This waiting time is set in comparison with the amount of flux added, and is basically determined in consideration of the time for the flux to sufficiently melt and the time for further stabilizing the slag bath. However, from the start of welding up to about 3 times, arc is still generated even if flux is added to form a slag bath. Therefore, it is necessary to shorten the waiting time in order to quickly shift to electroslag welding. is there. Therefore, 1-3
The time is controlled by setting the minimum required time for melting. The waiting time after the transition to electroslag welding is about 5 to 8 seconds, which is suitable for control, and of these, about 6 seconds is most preferable. In this way, the addition and the standby are combined into one, and the flux is added in 1 to 10 times.

【0018】また、本制御方法を用いてスラグ浴を良好
な状態で形成させるためには、図5の添加回数ごとのス
ラグ浴深さを示すグラフの61のラインに沿って行うこ
とが望ましい。しかし、62のように1回毎の添加量を
増やした制御方法では、添加されたフラックスが溶けな
いうちに次のフラックスが添加され、チップの先端が半
溶融のスラグの中に埋まりワイヤ送給不良を起こすこと
がある。また、63のように1回毎の添加量を少なくし
た制御方法では、アーク溶接からスラグ溶接への移行が
遅くなり、即ちアークの発生時間が長くなることから溶
接欠陥を誘発しやすくなる。
Further, in order to form the slag bath in a good state using this control method, it is desirable to perform along the line 61 in the graph showing the slag bath depth for each number of additions in FIG. However, in the control method in which the amount of addition is increased once, as in 62, the next flux is added before the added flux is melted, the tip of the chip is buried in the semi-molten slag, and the wire is fed. It may cause a defect. In addition, in the control method in which the addition amount for each time is reduced as in 63, the transition from arc welding to slag welding is delayed, that is, the arc generation time is lengthened, so that welding defects are easily induced.

【0019】図4に示す回路例は上記で説明した動作を
1〜10回に順次歩進させて、10回目の添加と待機が
終了したら動作を停止させている。図中限時接点51、
53は9番目のタイマーの接点、52は10番目の添加
タイマー、54、55はその限時接点、56は10番目
の待機タイマーで、その図示しない限時接点により制御
動作の終了信号を得ている。なお、異常検出は溶接が終
わるまで動作させるように制御している。また、各板厚
毎に添加回数、添加時間、待機時間を変えて板厚毎の最
適条件で制御させても良好なスラグ浴を形成させること
ができる。
In the circuit example shown in FIG. 4, the above-described operation is sequentially stepped 1 to 10 times, and the operation is stopped when the 10th addition and the standby are completed. Fig. Time limit contact 51,
Reference numeral 53 is a contact of the 9th timer, 52 is a 10th addition timer, 54 and 55 are its time-delay contacts, and 56 is a 10th standby timer. It should be noted that the abnormality detection is controlled to operate until the welding is completed. Further, a good slag bath can be formed even if the number of additions, the addition time, and the waiting time are changed for each plate thickness and controlled under optimum conditions for each plate thickness.

【0020】また、本発明は電圧を検出手段に用いた実
施例で説明したが、図6の溶接電流の時間経過を示すグ
ラフに示すように、電流短絡検出Iに置き換えれば同等
な検出制御ができる。
Although the present invention has been described with reference to the embodiment in which the voltage is used as the detecting means, as shown in the graph of the welding current in FIG. it can.

【0021】なお図4は有接点回路で示したが、TTL
などの論理素子やシーケンサ、ワンチップマイクロコン
ピュータなどのいずれによっても同等の動作を行わせる
ことができることは当然である。また図2ないし図4に
おいて非消耗ノズルを用いたエレクトロスラグ溶接につ
いて説明したが、フラックスを塗布したノズルを順次消
耗させていく消耗ノズルを用いる場合にも本発明は当然
適用できる。
Although FIG. 4 shows a contact circuit, the TTL
It goes without saying that the same operation can be performed by any of the logic elements such as, a sequencer, and a one-chip microcomputer. Although the electroslag welding using the non-consumable nozzle has been described with reference to FIGS. 2 to 4, the present invention can be naturally applied to the case where a consumable nozzle that sequentially consumes the flux-coated nozzle is used.

【0022】[0022]

【実施例】以下に本発明に基づいて、直流定電圧電源を
用いた非消耗ノズル式エレクトロスラグ溶接法で、溶接
開始時のフラックス添加にフラックス自動添加方法を用
いて行った一実施例について説明する。
EXAMPLES An example of performing non-consumable nozzle type electroslag welding method using a DC constant voltage power source by using an automatic flux addition method for flux addition at the start of welding according to the present invention will be described below. To do.

【0023】使用した溶接試験板は、ボックス柱を模し
たもので、21はコラム板、22はダイヤフラム板、2
3は側板に相当し、図8の(a)平面図、(b)斜視図
に示す開先形状(T1 =25mm、T2 =50mm、T
3 =25mm、G=25mm、L=500)である。溶
接条件は溶接電流380A、溶接電圧46V、使用溶材
として溶接ワイヤは外径1.6mmの軟鋼用Si−Mn
系のソリッドワイヤ、フラックスは中酸化Mn系の溶融
型フラックスを用い、表1に示す添加条件で溶接を実施
した。フラックスの添加量は53(g)を目標とし、ス
ラグ浴深さ35mm程度に形成させるようにした。添加
モータの時間と量(g/秒)を決める条件としては、3
g/秒と4g/秒の条件とし、添加回数は一律10回の
条件で行った。
The welding test plate used was a model of a box column, 21 was a column plate, 22 was a diaphragm plate, and 2 was a plate.
Reference numeral 3 corresponds to a side plate, and the groove shape (T 1 = 25 mm, T 2 = 50 mm, T shown in (a) plan view and (b) perspective view of FIG.
3 = 25 mm, G = 25 mm, L = 500). The welding conditions are welding current 380A, welding voltage 46V, and the welding wire used is welding wire Si-Mn with an outer diameter of 1.6 mm.
Welding was carried out under the additive conditions shown in Table 1 using a medium-oxidized Mn-based molten type flux as the system solid wire and flux. The amount of flux added was 53 (g), and the slag bath depth was set to about 35 mm. The condition for determining the time and amount (g / sec) of the addition motor is 3
The conditions were g / sec and 4 g / sec, and the number of additions was 10 times.

【0024】[0024]

【表1】 [Table 1]

【0025】その結果、図7の溶接電圧の時間経過を示
すグラフのようにAで無負荷電圧を検出し、Bでアーク
出し時間を作動させ、Cでフラックスの添加、Dで待機
時間を良好に制御した。図1のスラグ浴深さの時間経過
を示すグラフのように1回から3回の添加量と待機時間
が最適で、スラグ浴を良好な状態で早めに形成すること
ができた。また、4回目以降の添加については添加量に
対し充分な待機時間が保たれており、安定した状態を常
に維持しながらスラグ浴が形成でき、終始安定した溶接
が行えた。
As a result, the no-load voltage is detected at A, the arc starting time is activated at B, the flux is added at C, and the waiting time is good at D, as shown in the graph of welding voltage in FIG. Controlled to. As shown in the graph of the slag bath depth over time in FIG. 1, the addition amount of 1 to 3 times and the waiting time were optimal, and the slag bath could be formed early in a good state. Further, for the fourth and subsequent additions, a sufficient waiting time was maintained with respect to the addition amount, and a slag bath could be formed while always maintaining a stable state, and stable welding could be performed from beginning to end.

【0026】比較例1は、本発明例と同じ添加モータ速
度(3g/秒)で添加量も同じ条件とし、全体の待機時
間を短かめにして行った。その結果、全添加回数を通し
て添加量に対しフラックスが溶融し終わる前に次の添加
を行っており、待機時間の不足が目立った。
In Comparative Example 1, the addition motor speed (3 g / sec) and the addition amount were the same as those of the present invention, and the total standby time was shortened. As a result, throughout the total number of additions, the next addition was performed before the flux was completely melted with respect to the addition amount, and the shortage of waiting time was noticeable.

【0027】比較例2は、添加モータ速度(4g/秒)
を本発明例より早くし、時間内の添加量を増やした条件
とし、待機時間は本発明例と同条件で行った。その結
果、1回から3回までの添加量が多く、しかも添加速度
が速いため、3回目の添加が終わる前でワイヤ送給不良
を起こしてしまった。その後、数回同じ条件で4回目以
降の状態を調べるため溶接を行った。その結果、4回目
以降の待機時間と添加量は時間的にはほぼ良好である
が、添加する速度が速いためフラックスが溶けにくくス
ラグ浴の形成を不安定にしていることがわかった。
In Comparative Example 2, the addition motor speed (4 g / sec)
Was set earlier than in the example of the present invention, and the amount of addition within the time was increased, and the waiting time was the same as in the example of the present invention. As a result, since the addition amount from the 1st to 3rd times was large and the addition rate was high, the wire feeding failure occurred before the completion of the 3rd addition. After that, welding was performed several times under the same conditions to examine the state after the fourth time. As a result, it was found that the standby time and the addition amount after the fourth time were almost good in terms of time, but the flux was difficult to melt and the formation of the slag bath was made unstable due to the high addition rate.

【0028】[0028]

【発明の効果】本発明のエレクトロスラグ溶接における
フラックス自動添加方法は、熟練者の勘と経験に頼らざ
るを得なかった溶接開始時のフラックスの添加を、各板
厚毎に対応して自動的に添加させることを可能にした。
よって、無監視で溶接が行えるようになり、慢性的な技
能者不足、熟練者の高齢化の問題を解消することもで
き、誰にでも簡単に操作可能で良好な状態を常に維持し
ながらスラグ浴を形成できる本発明の工業的価値は非常
に高い。
The automatic flux adding method in electroslag welding according to the present invention automatically adds the flux at the start of welding, which must rely on the intuition and experience of an expert, for each plate thickness. It was made possible to add to.
Therefore, unsupervised welding can be performed, and chronic problems of shortage of skilled workers and aging of skilled workers can be solved, slag can be easily operated by anyone and always maintains a good condition. The industrial value of the present invention capable of forming a bath is very high.

【図面の簡単な説明】[Brief description of drawings]

【図1】スラグ浴深さと添加回数、添加時間、待機時間
の関係を示すグラフ
FIG. 1 is a graph showing the relationship between the slag bath depth, the number of additions, the addition time, and the waiting time.

【図2】本発明を用いたエレクトロスラグ溶接開始前を
示す溶接部の縦断面図
FIG. 2 is a vertical cross-sectional view of a welded portion before the start of electroslag welding using the present invention.

【図3】図2の溶接において溶接開始後スラグ浴が安定
した状態を示す溶接部の縦断面図
FIG. 3 is a longitudinal sectional view of a welded portion showing a stable state of the slag bath after the start of welding in the welding shown in FIG.

【図4】本発明の一実施例の回路図FIG. 4 is a circuit diagram of an embodiment of the present invention.

【図5】添加量と回数によるスラグ浴の形成状態を示す
グラフ
FIG. 5 is a graph showing the state of formation of a slag bath depending on the addition amount and the number of times.

【図6】溶接電流の時間経過の例を示すグラフFIG. 6 is a graph showing an example of elapsed time of welding current.

【図7】溶接電圧の時間経過の例を示すグラフFIG. 7 is a graph showing an example of elapsed time of welding voltage.

【図8】実施例で用いた試験板形状を示し、(a)は開
先形状を示す平面図、(b)は斜視図
FIG. 8 shows the shape of the test plate used in the examples, (a) is a plan view showing the groove shape, and (b) is a perspective view.

【符号の説明】[Explanation of symbols]

1 被溶接部材 2 チューブ 3 フラックス添加装置 4 非消耗ノズル 5 溶接用給電チップ 6 溶接ワイヤ 7 水冷銅板 8 ローラ 9 カットワイヤ 10 開先 12 溶接金属 13 溶融金属 14 スラグ浴 15 被溶接材等 21 コラム板 22 ダイアフラム板 23 側板 30 溶接電源 31 メーターリレー 47 モーター 48 モーターコントローラー 1 Welded member 2 Tube 3 Flux addition device 4 Non-consumable nozzle 5 Welding power supply tip 6 Welding wire 7 Water-cooled copper plate 8 Roller 9 Cut wire 10 Bevel 12 Weld metal 13 Molten metal 14 Slag bath 15 Welded material 21 Column plate 22 diaphragm plate 23 side plate 30 welding power source 31 meter relay 47 motor 48 motor controller

───────────────────────────────────────────────────── フロントページの続き (72)発明者 星野 忠 東京都中央区築地三丁目5番4号 日鐵溶 接工業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tadashi Hoshino 3-5-4 Tsukiji, Chuo-ku, Tokyo Inside Nittetsu Welding Industry Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 エレクトロスラグ溶接の開始方法におけ
るフラックス自動添加方法において、予め開先底部にア
ーク発生材を散布し、消耗ノズルまたは非消耗ノズルを
通じて消耗電極を送り、消耗電極とアーク発生材間でア
ークを発生させ、該アーク発生信号を検出し、所定のア
ーク発生時間を経た後、予め溶接箇所の開先断面積に適
したフラックス添加量を添加回数、添加時間、待機時間
で制御し、断続的にフラックスを添加してスラグ浴を形
成させることを特徴とするエレクトロスラグ溶接の開始
方法。
1. In the automatic flux addition method in the electroslag welding start method, an arc generating material is previously sprayed on the groove bottom, and a consumable electrode is sent through a consumable nozzle or a non-consumable nozzle so that the consumable electrode and the arc generating material are connected to each other. An arc is generated, the arc generation signal is detected, and after a predetermined arc generation time, a flux addition amount suitable for the groove cross-sectional area of the welding location is controlled in advance by the number of times of addition, the addition time, and the standby time, and then intermittently. A method for starting electroslag welding, which comprises adding a flux to form a slag bath.
JP06018807A 1994-01-20 1994-01-20 How to start electroslag welding Expired - Fee Related JP3103475B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06018807A JP3103475B2 (en) 1994-01-20 1994-01-20 How to start electroslag welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06018807A JP3103475B2 (en) 1994-01-20 1994-01-20 How to start electroslag welding

Publications (2)

Publication Number Publication Date
JPH07204869A true JPH07204869A (en) 1995-08-08
JP3103475B2 JP3103475B2 (en) 2000-10-30

Family

ID=11981869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06018807A Expired - Fee Related JP3103475B2 (en) 1994-01-20 1994-01-20 How to start electroslag welding

Country Status (1)

Country Link
JP (1) JP3103475B2 (en)

Also Published As

Publication number Publication date
JP3103475B2 (en) 2000-10-30

Similar Documents

Publication Publication Date Title
US5521353A (en) Welding robot
US2776361A (en) Sigma spot or tack welding
JP3103475B2 (en) How to start electroslag welding
CN115519214A (en) Arc striking method for argon arc welding machine and argon arc welding machine adopting same
JP2916872B2 (en) Method and apparatus for controlling welding wire position
JP3226767B2 (en) Non-consumable nozzle type electroslag welding method
JPH11347732A (en) Weld starting spot control method for welding robot
CN109693016A (en) Arc-welding apparatus and arc-welding method
JP3279082B2 (en) Method and apparatus for detecting position of welding wire
JPS5868472A (en) Arc welding device using consumable electrode
JP3303527B2 (en) Method and apparatus for detecting welding wire position
JP3226779B2 (en) Electroslag welding method
JP3105124B2 (en) Non-consumable nozzle type electroslag welding method
JPH05337643A (en) Welding restarting method
JP2002045964A (en) Arc welding method and arc welding apparatus
JP3226746B2 (en) Flux addition method for electroslag welding
JPH05200555A (en) Nonconsumable electrode arc welding method and equipment
JPH115163A (en) Single face butt welding
JPS5832581A (en) Welding machine using shielding gas
JP3741402B2 (en) Two-electrode electrogas welding method
JP2001001143A (en) Arc welding method with consumable electrode
JPH06170542A (en) Inert gas arc welding equipment
JPH0639553A (en) Controller for stud welding machine
JPH0254189B2 (en)
JPS6127176A (en) Arc welding method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees