JPH0720471A - Reflection type liquid crystal display device - Google Patents

Reflection type liquid crystal display device

Info

Publication number
JPH0720471A
JPH0720471A JP16223193A JP16223193A JPH0720471A JP H0720471 A JPH0720471 A JP H0720471A JP 16223193 A JP16223193 A JP 16223193A JP 16223193 A JP16223193 A JP 16223193A JP H0720471 A JPH0720471 A JP H0720471A
Authority
JP
Japan
Prior art keywords
liquid crystal
light
voltage
display device
parallel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16223193A
Other languages
Japanese (ja)
Inventor
Chiaki Domoto
千秋 堂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP16223193A priority Critical patent/JPH0720471A/en
Publication of JPH0720471A publication Critical patent/JPH0720471A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PURPOSE:To increase contrast with a low driving voltage and to improve the visibility by rubbing vertical orientation films and controlling liquid crystal directors at the time of voltage application to parallel with the rubbing direction. CONSTITUTION:When a voltage is applied, the directors are directed in parallel to substrates 3 and 4 by the anisotropy of the dielectric constant that liquid crystal 7 itself has. The vertical orientation films 5 and 6 are previously rubbed and the directors of the liquid crystal 7 are directed in the rubbing direction. Dichroic dye 11 also faces in the same direction according to the motion of molecules of the liquid crystal 7. Consequently, light 13 which has a polarization plane in parallel to the director direction of the dichroic dye 11 is absorbed as to incident light, but light 14 having a vertical polarizing plate is passed. The passed light is rotated and polarized by a wavelength plate 12, and reflected by a reflecting plate 10 and then further rotated and polarized by the wavelength plate 12. Consequently, the light is rotated by 90 deg. and enters a liquid crystal layer 7 again, so it is absorbed on its return way. At this time, the light is not reflected to make a black display.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、パソコン、ワープロ、
小型テレビなどの表示装置に用いられる液晶表示装置に
関する。
BACKGROUND OF THE INVENTION The present invention relates to a personal computer, a word processor,
The present invention relates to a liquid crystal display device used for a display device such as a small television.

【0002】[0002]

【従来の技術】従来の液晶表示装置を図4に示す。IT
O(Indium-Tin-Oxygen )などの透明な画素電極1、2
を設けたガラスなどの透光性基板3、4上に、ポリイミ
ド樹脂などを1000Å程度の厚みに成膜して一方向に
ラビングした配向膜5、6が形成されている。この基板
3、4間に液晶7が挟持され、この液晶分子はラビング
方向に配向される。基板3、4の外壁には偏光板8、9
が設けられており、この偏光板8、9の偏光軸はそれぞ
れの偏光板8、9を貼り合わせる基板3、4の配向膜
5、6のラビング方向に一致する。また偏光板9のさら
に外側には反射板10が配置されている。
2. Description of the Related Art A conventional liquid crystal display device is shown in FIG. IT
Transparent pixel electrodes 1, 2 such as O (Indium-Tin-Oxygen)
Alignment films 5 and 6 are formed on a light-transmitting substrate 3 and 4 such as glass on which a polyimide resin is formed to a thickness of about 1000 Å and rubbed in one direction. A liquid crystal 7 is sandwiched between the substrates 3 and 4, and the liquid crystal molecules are aligned in the rubbing direction. Polarizing plates 8 and 9 are provided on the outer walls of the substrates 3 and 4, respectively.
The polarizing axes of the polarizing plates 8 and 9 are aligned with the rubbing directions of the alignment films 5 and 6 of the substrates 3 and 4 to which the polarizing plates 8 and 9 are attached. Further, a reflection plate 10 is arranged further outside the polarizing plate 9.

【0003】このような液晶表示装置は、画素電極1、
2間に電位差を生じさせない時には、液晶7は配向膜
5、6のラビング方向に支配されて、一定方向に配向す
る。ラビング方向が透光性基板3、4で一致していない
ために、液晶分子は基板3、4間で徐々に旋回する。こ
の時、基板3側より入射した光は、偏光板8の偏光軸に
一致した光のみ液晶層7に入射し、液晶7の分子の旋回
にあわせて、入射光の偏光面が旋光される。旋光された
光は、もう一方の偏光板9と同一方向に偏光軸を持つの
で透過する。さらに反射板10によって反射され、光は
偏光板8、9を透過して出てくる。この時、液晶表示装
置は白色表示である。
Such a liquid crystal display device has a pixel electrode 1,
When no potential difference is generated between the two, the liquid crystal 7 is dominated by the rubbing directions of the alignment films 5 and 6 and is aligned in a fixed direction. Since the rubbing directions do not match between the transparent substrates 3 and 4, the liquid crystal molecules gradually rotate between the substrates 3 and 4. At this time, light incident from the substrate 3 side only enters the liquid crystal layer 7 that matches the polarization axis of the polarizing plate 8, and the plane of polarization of the incident light is rotated according to the rotation of the molecules of the liquid crystal 7. The rotated light has a polarization axis in the same direction as the other polarizing plate 9 and is transmitted. Further, the light is reflected by the reflecting plate 10, and the light passes through the polarizing plates 8 and 9 and emerges. At this time, the liquid crystal display device displays white.

【0004】これに対して、画素電極1、2間に電位差
を生じさせた場合、液晶7の分子は、それ自身が持つ誘
電率異方性により立ち上がる。したがって、基板3側か
ら液晶層7に入射した光は、液晶分子の旋回がないため
に旋光されず、偏光板9の偏光軸と一致しないために吸
収される。このため、液晶表示装置から出射する光はな
い。この時、液晶表示装置は黒色表示となる。この様な
方法で白黒表示が行われる。
On the other hand, when a potential difference is generated between the pixel electrodes 1 and 2, the molecules of the liquid crystal 7 rise due to their own dielectric anisotropy. Therefore, the light incident on the liquid crystal layer 7 from the substrate 3 side is not rotated because the liquid crystal molecules do not rotate, and is absorbed because it does not coincide with the polarization axis of the polarizing plate 9. Therefore, no light is emitted from the liquid crystal display device. At this time, the liquid crystal display device displays black. Black and white display is performed by such a method.

【0005】[0005]

【発明が解決しようとする問題点】ところが、この従来
の液晶表示装置では、偏光板8、9を用いているため、
白色・黒色表示に拘らず、入射光の約50%が偏光板8
によって吸収される。このため光の利用率が低い。した
がって、白色表示の時でさえ十分な明るさが得られず、
視認性に優れた表示が不可能である。
However, in this conventional liquid crystal display device, since the polarizing plates 8 and 9 are used,
Approximately 50% of the incident light is the polarizing plate 8 regardless of white or black display.
Absorbed by Therefore, the light utilization rate is low. Therefore, sufficient brightness cannot be obtained even when displaying white,
Display with excellent visibility is impossible.

【0006】白色表示時の明るさを向上させる場合、通
常は、反射型とはせずに、バックライトを設けて、充分
な明るさの光量を透光性基板4側から入射させることで
白色表示時の明るさを向上させていた。しかしながら、
バックライトを用いると、その消費電力が非常に大きい
ために、携帯性に優れるという液晶表示装置本来の特性
が損なわれるという問題があった。
In order to improve the brightness of white display, it is usually not a reflection type, but a backlight is provided and a sufficient amount of light is made incident from the transparent substrate 4 side. The brightness at the time of display was improved. However,
When a backlight is used, its power consumption is so large that it has a problem that the original characteristic of the liquid crystal display device, which is excellent in portability, is impaired.

【0007】また、電圧無印加時の配向状態が、透光性
基板3、4に対して平行配向であるため、基板3、4か
らの配向規制力が大きく、電圧を印加しても液晶分子は
容易に動かず、駆動電圧を非常に高くしなければならな
いという問題もあった。
Since the alignment state when no voltage is applied is parallel to the transparent substrates 3 and 4, the alignment regulating force from the substrates 3 and 4 is large, and liquid crystal molecules are applied even when a voltage is applied. There is also a problem that the motor does not move easily and the driving voltage must be very high.

【0008】[0008]

【課題を解決するための手段】本発明は、このような従
来技術の問題点に鑑みてなされたものであり、その特徴
とするところは、電極が設けられた二枚の透光性基板
で、二色性染料を混合した誘電率異方性が負である液晶
材料を垂直配向状態に狭持し、この透光性基板の一方側
に反射板を配置し、この反射板と液晶層の間に4分の1
波長板を配置した反射型液晶表示装置において、前記垂
直配向膜にラビング処理を施すことによって、電圧印加
時の液晶ダイレクターをラビング方向と平行になるよう
に制御する点にある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems of the prior art, and is characterized in that it has two transparent substrates provided with electrodes. , A liquid crystal material having a negative dielectric anisotropy mixed with a dichroic dye is sandwiched in a vertically aligned state, and a reflector is arranged on one side of this translucent substrate. A quarter
In the reflection type liquid crystal display device in which the wave plate is arranged, a rubbing treatment is applied to the vertical alignment film to control the liquid crystal director when voltage is applied so as to be parallel to the rubbing direction.

【0009】[0009]

【作用】このように電圧印加時に液晶ダイレクターをラ
ビング方向と平行になるように制御することで、電圧印
加時に入射光の偏光方向による光の透過率に差が生じ、
反射型液晶表示装置において往路で吸収できなかった偏
光光を、波長板を用いて90度旋光させることで復路で
充分に吸収することが可能となり、偏光板を必要とせ
ず、明るくコントラストの高い、視認性の良い表示装置
となる。また 電圧無印加時の配向状態は、透光性基板
に対して垂直配向であるため、基板からの配向規制力が
弱く、低電圧駆動が可能となる。
By controlling the liquid crystal director to be parallel to the rubbing direction when a voltage is applied in this way, a difference occurs in the light transmittance depending on the polarization direction of the incident light when a voltage is applied,
Polarized light that could not be absorbed on the outward path in the reflection type liquid crystal display device can be sufficiently absorbed on the return path by rotating the light 90 degrees using a wave plate, and a polarizing plate is not necessary, and the contrast is high. The display device has good visibility. In addition, since the alignment state when no voltage is applied is vertical to the translucent substrate, the alignment regulating force from the substrate is weak and low voltage driving is possible.

【0010】[0010]

【実施例】以下、本発明に係る反射型液晶表示装置の実
施例を添付図面に基づき詳細に説明する。図1は本発明
に係る反射型液晶表示装置の構成を示す図であり、同図
(a)は白色表示状態を示し、同図(b)は黒色表示状
態を示す。画素電極1、2を設けた透光性基板3、4
に、所定方向にラビング処理したポリイミド樹脂などか
ら成る垂直配向膜5、6が形成され、この基板3、4間
にアントラキノン色素やアゾ色素などからなる二色性色
素11を負の誘電率異方性を有する液晶7と混入したゲ
スト−ホスト型の液晶材料を封入し、光を旋光させるた
めにリタデーションを120〜160nm領域にした4
分の1波長板12、および反射板10を設けている。
Embodiments of the reflective liquid crystal display device according to the present invention will be described in detail below with reference to the accompanying drawings. 1A and 1B are diagrams showing a configuration of a reflective liquid crystal display device according to the present invention, wherein FIG. 1A shows a white display state, and FIG. 1B shows a black display state. Translucent substrates 3 and 4 provided with pixel electrodes 1 and 2
Vertical alignment films 5 and 6 made of a polyimide resin or the like that has been rubbed in a predetermined direction are formed on the substrate 3, and a dichroic dye 11 such as an anthraquinone dye or an azo dye is provided between the substrates 3 and 4 to have a negative dielectric anisotropy. A guest-host type liquid crystal material mixed with the liquid crystal 7 having optical properties is enclosed, and the retardation is set to a range of 120 to 160 nm in order to rotate light.
A half-wave plate 12 and a reflection plate 10 are provided.

【0011】本発明で負の誘電率異方性を有する液晶を
用いる理由は、次のとおりである。正の誘電率異方性の
液晶を用いた場合、液晶のダイレクターは、電圧無印加
時に基板3、4とほぼ平行になる。平行に配向させる理
由は、配向規制力が強いためである。したがって、高電
圧を印加しなければ、配向膜近傍の液晶分子をスイッチ
させることができない。特に、ゲスト−ホストタイプの
液晶表示装置では、二色性染料のために液晶の粘性が大
きくなり、また飽和電圧も高くなる。一方、負の誘電率
異方性を有する液晶では、電圧無印加状態で液晶分子の
ダイレクターを基板と垂直にする。基板と垂直になるの
は、配向規制力が弱いためである。電圧を印加していく
と液晶層7の中心部から液晶はスイッチするが、配向規
制力が弱いため、配向膜近傍まで低電圧でスイッチさせ
ることができる。
The reason why the liquid crystal having a negative dielectric anisotropy is used in the present invention is as follows. When a liquid crystal having a positive dielectric constant anisotropy is used, the director of the liquid crystal is substantially parallel to the substrates 3 and 4 when no voltage is applied. The reason for aligning in parallel is that the alignment regulating force is strong. Therefore, liquid crystal molecules in the vicinity of the alignment film cannot be switched unless a high voltage is applied. In particular, in a guest-host type liquid crystal display device, the viscosity of the liquid crystal increases due to the dichroic dye, and the saturation voltage also increases. On the other hand, in the case of liquid crystal having a negative dielectric anisotropy, the director of liquid crystal molecules is made perpendicular to the substrate in the state where no voltage is applied. The reason for being perpendicular to the substrate is that the alignment regulating force is weak. When a voltage is applied, the liquid crystal switches from the central portion of the liquid crystal layer 7, but since the alignment regulating force is weak, it is possible to switch at a low voltage near the alignment film.

【0012】上下の画素電極1、2間に電圧を印加しな
い状態(図1−a)では、垂直配向膜5、6の垂直配向
規制力により液晶ダイレクターは基板3、4に垂直に向
いている。液晶7に混入した二色性色素11も細長い分
子構造を持っており、そのダイレクターも液晶分子の動
きにあわせて動く。したがって、電圧無印加状態では二
色性染料11のダイレクターも基板3、4に対して垂直
方向に向いているので、液晶7に入射した光を吸収しな
い。このため、入射した光はその偏光面によらず、液晶
7層を透り抜けて波長板12によって偏光面が旋光さ
れ、反射板10に反射された後、再び波長板12によっ
て偏光面が旋光され、復路では、往路に対して、90度
回転した偏光面を持つ光となり、液晶層7を通り抜け
る。この時、ディスプレイは白色表示である。
In the state where no voltage is applied between the upper and lower pixel electrodes 1 and 2 (FIG. 1-a), the liquid crystal director is oriented vertically to the substrates 3 and 4 due to the vertical alignment regulating force of the vertical alignment films 5 and 6. There is. The dichroic dye 11 mixed in the liquid crystal 7 also has an elongated molecular structure, and its director also moves according to the movement of the liquid crystal molecules. Therefore, when no voltage is applied, the director of the dichroic dye 11 is also oriented in the direction perpendicular to the substrates 3 and 4, and thus does not absorb the light incident on the liquid crystal 7. Therefore, the incident light passes through the liquid crystal 7 layer regardless of the polarization plane, the polarization plane is rotated by the wave plate 12 and is reflected by the reflection plate 10, and then the polarization plane is rotated again by the wave plate 12. Then, in the return path, the light has a polarization plane rotated by 90 degrees with respect to the outward path, and passes through the liquid crystal layer 7. At this time, the display is white.

【0013】電圧を印加すると、液晶7自身の誘電率の
異方性から、そのダイレクター方向を基板3、4に対し
て平行に向ける(図1−b)。垂直配向膜5、6はあら
かじめラビング処理されているので、液晶7のダイレク
ターがラビング方向を向く。二色性染料11も液晶7分
子の動きに合わせて、同じ方向を向く。このため、入射
した光のうち、二色性染料11のダイレクター方向に平
行な偏光面を持つ光13が吸収され、垂直な偏光面を持
つ光14は通り抜ける。通り抜けた光は、波長板12に
よって旋光され、反射板10で反射された後、さらに波
長板によって旋光され、その結果90度旋光されて再び
液晶層7に入るので、復路で吸収される。この時光は反
射されず、黒色表示となる。
When a voltage is applied, due to the anisotropy of the dielectric constant of the liquid crystal 7 itself, its director direction is oriented parallel to the substrates 3 and 4 (FIG. 1-b). Since the vertical alignment films 5 and 6 have already been rubbed, the director of the liquid crystal 7 faces the rubbing direction. The dichroic dye 11 also faces the same direction according to the movement of the seven molecules of the liquid crystal. Therefore, of the incident light, the light 13 having the polarization plane parallel to the director direction of the dichroic dye 11 is absorbed, and the light 14 having the perpendicular polarization plane passes through. The light passing therethrough is rotated by the wave plate 12, reflected by the reflection plate 10, and further rotated by the wave plate. As a result, the light is rotated by 90 degrees and enters the liquid crystal layer 7 again, and is absorbed in the return path. At this time, light is not reflected and a black display is obtained.

【0014】図2は電圧印加時の液晶ダイレクターがラ
ビング方向に向いているか確認するための実験方法であ
り、図1に示す波長板12と反射板10をはずした状態
で、偏光板8を用いて偏光光による光の透過率によって
これを確認する。透光性基板5、6のラビング方向に平
行になるように、偏光板8の偏光軸を合わせる。光源部
15より光を入射し、透過光強度を受光部16によって
測定する。画素電極間に電圧を印加したときの、光透過
率の変化を測定した。次に偏光板の偏光軸を90度回転
させ、ラビング方向と垂直方向の時に画素電極間の電圧
と、光透過率の変化を測定した。
FIG. 2 shows an experimental method for confirming whether or not the liquid crystal director is oriented in the rubbing direction when a voltage is applied. The polarizing plate 8 is shown with the wave plate 12 and the reflecting plate 10 shown in FIG. 1 removed. This is confirmed by the light transmittance of polarized light used. The polarization axis of the polarizing plate 8 is aligned so as to be parallel to the rubbing directions of the transparent substrates 5 and 6. Light is incident from the light source unit 15, and the transmitted light intensity is measured by the light receiving unit 16. The change in light transmittance when a voltage was applied between the pixel electrodes was measured. Next, the polarization axis of the polarizing plate was rotated by 90 degrees, and the voltage between the pixel electrodes and the change in light transmittance were measured in the direction perpendicular to the rubbing direction.

【0015】実験の結果は、図3に示すように、ラビン
グ方向に平行方向に偏光面を持つ光の電圧−透過率特性
は、〔◇〕印の様に液晶7のダイレクターが基板3、4
に平行になるにつれて吸収が大きくなる。逆にラビング
方向に垂直方向に偏光面を持つ光は、〔+〕印の様に電
圧を印加しても吸収は変わらない。
As a result of the experiment, as shown in FIG. 3, the voltage-transmittance characteristic of the light having the polarization plane in the direction parallel to the rubbing direction is shown by the mark [◇] when the director of the liquid crystal 7 is the substrate 3, Four
The absorption increases as it becomes parallel to. On the contrary, light having a plane of polarization perpendicular to the rubbing direction does not change in absorption even if a voltage is applied as indicated by the [+] mark.

【0016】[0016]

【発明の効果】以上のように、本発明に係る反射型液晶
表示装置によれば、垂直配向膜にラビング処理を行うこ
とにより、電圧無印加時の光の反射率が高く、低駆動電
圧でコントラストの高い視認性に優れた液晶表示セルの
提供が可能となる。
As described above, according to the reflection type liquid crystal display device of the present invention, by rubbing the vertical alignment film, the reflectance of light when no voltage is applied is high and the driving voltage is low. It is possible to provide a liquid crystal display cell having high contrast and excellent visibility.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る反射型液晶表示装置の断面図であ
り、(a)は白色表示時(b)は黒色表示時をそれぞれ
示す。
FIG. 1 is a cross-sectional view of a reflective liquid crystal display device according to the present invention, in which (a) shows white display and (b) shows black display.

【図2】電圧印加時の液晶ダイレクターを確認するため
にの実験を示す図である。
FIG. 2 is a diagram showing an experiment for confirming a liquid crystal director when a voltage is applied.

【図3】電圧印加時の液晶ダイレクターと電圧−透過率
特性を示す図である。
FIG. 3 is a diagram showing a liquid crystal director and voltage-transmittance characteristics when a voltage is applied.

【図4】従来の反射型液晶表示装置の断面図である。FIG. 4 is a cross-sectional view of a conventional reflective liquid crystal display device.

【符号の説明】[Explanation of symbols]

1、2・・・画素電極、3、4・・・基板、5、6・・
・配向膜、7・・・液晶、8、9・・・偏光板、10・
・・反射板、11・・・二色性色素、12・・・4分の
1波長板、13・・・ラビング方向に平行な偏光面を持
つ入射光、14・・・ラビング方向に垂直な偏光面を持
つ入射光、15・・・光源、16・・・受光部
1, 2 ... Pixel electrodes, 3, 4 ... Substrate, 5, 6, ...
・ Alignment film, 7 ・ ・ ・ Liquid crystal, 8, 9 ・ ・ ・ Polarizing plate, 10 ・
..Reflector, 11 ... Dichroic dye, 12 ... Quarter wave plate, 13 ... Incident light having polarization plane parallel to rubbing direction, 14 ... Perpendicular to rubbing direction Incident light having a polarization plane, 15 ... Light source, 16 ... Light receiving section

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 電極が設けられた二枚の透光性基板で、
負の誘電率異方性を有する液晶材料を挟持し、一方の透
光性基板のさらに外側に、波長板及び反射板を備え、前
記透光性基板内面に垂直配向膜が成膜された反射型液晶
表示装置において、前記垂直配向膜にラビング処理を行
うことによって、電圧無印加時に液晶が垂直配向とな
り、電圧印加時にラビング方向と液晶ダイレクターが平
行になるように制御することを特徴とする反射型液晶表
示装置。
1. Two translucent substrates provided with electrodes,
A liquid crystal material having a negative dielectric anisotropy is sandwiched, a wavelength plate and a reflection plate are provided outside one of the translucent substrates, and a vertical alignment film is formed on the inner surface of the translucent substrate. Type liquid crystal display device, the liquid crystal is vertically aligned when no voltage is applied by rubbing the vertical alignment film, and the rubbing direction and the liquid crystal director are controlled to be parallel when voltage is applied. Reflective liquid crystal display device.
JP16223193A 1993-06-30 1993-06-30 Reflection type liquid crystal display device Pending JPH0720471A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16223193A JPH0720471A (en) 1993-06-30 1993-06-30 Reflection type liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16223193A JPH0720471A (en) 1993-06-30 1993-06-30 Reflection type liquid crystal display device

Publications (1)

Publication Number Publication Date
JPH0720471A true JPH0720471A (en) 1995-01-24

Family

ID=15750468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16223193A Pending JPH0720471A (en) 1993-06-30 1993-06-30 Reflection type liquid crystal display device

Country Status (1)

Country Link
JP (1) JPH0720471A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5951060A (en) * 1996-03-22 1999-09-14 Smc Kabushiki Kaisha Pipe joint
US5996636A (en) * 1997-01-24 1999-12-07 Smc Kabushiki Kaisha Tube joint
KR100262410B1 (en) * 1997-11-25 2000-08-01 김영환 Liquid crystal display device
US6193239B1 (en) 1997-04-14 2001-02-27 Smc Kabushiki Kaisha Tube joint
EP1255068A1 (en) 2001-04-20 2002-11-06 Nippon Pillar Packing Co., Ltd. Pipe joint made of resin
US6550119B2 (en) 2000-10-16 2003-04-22 Nippon Pillar Packing Co., Ltd. Inner ring press-insertion jig for a pipe member made of resin
US6776440B2 (en) 2001-06-01 2004-08-17 Nippon Pillar Packing Co., Ltd. Method and structure for preventing slipping-off of a tube in a pipe joint made of resin

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5951060A (en) * 1996-03-22 1999-09-14 Smc Kabushiki Kaisha Pipe joint
US5996636A (en) * 1997-01-24 1999-12-07 Smc Kabushiki Kaisha Tube joint
US6193239B1 (en) 1997-04-14 2001-02-27 Smc Kabushiki Kaisha Tube joint
KR100262410B1 (en) * 1997-11-25 2000-08-01 김영환 Liquid crystal display device
US6550119B2 (en) 2000-10-16 2003-04-22 Nippon Pillar Packing Co., Ltd. Inner ring press-insertion jig for a pipe member made of resin
EP1255068A1 (en) 2001-04-20 2002-11-06 Nippon Pillar Packing Co., Ltd. Pipe joint made of resin
US6517123B2 (en) 2001-04-20 2003-02-11 Nippon Pillar Packing Co., Ltd. Pipe joint made of resin
US6776440B2 (en) 2001-06-01 2004-08-17 Nippon Pillar Packing Co., Ltd. Method and structure for preventing slipping-off of a tube in a pipe joint made of resin

Similar Documents

Publication Publication Date Title
US3912369A (en) Single polarizer reflective liquid crystal display
US5726723A (en) Sub-twisted nematic liquid crystal display
US6295113B1 (en) Twisted nematic color liquid crystal display
JP2001510594A (en) Display device
JPH1055003A (en) Twisted liquid crystal device, assembly and liquid crystal device
JP2000035570A (en) Liquid crystal display device
JP2002098961A (en) Liquid crystal device and electronic device
JP3410663B2 (en) Liquid crystal display
JPH1083000A (en) Twisted nematic liquid crystal device
US7009677B2 (en) LCD device implementing FLCP orientation film
KR20030011572A (en) Liquid crystal display device
JPH07333617A (en) Liquid crystal display element
JPH0720471A (en) Reflection type liquid crystal display device
KR20010066252A (en) reflection type and transflection type liquid crystal display device with retardation film
JPS60117283A (en) Improvement in liquid crystal display unit
WO1998058291A1 (en) Projection device
JP2004069835A (en) Liquid crystal display device
KR100476600B1 (en) Liquid crystal display with reflection mode and transmission mode
JP3619506B2 (en) Liquid crystal display
JPH06281927A (en) Liquid crystal display device
KR100446375B1 (en) Semi-transmission type liquid crystal display using fringe filed switching mode
KR100957567B1 (en) Liquid crystal display panel and liquid crystal display apparatus having the same
KR100683138B1 (en) Reflective type - fringe field switching lcd
JP3619507B2 (en) Liquid crystal display
JP2001100253A (en) Liquid crystal display device