JP2000035570A - Liquid crystal display device - Google Patents

Liquid crystal display device

Info

Publication number
JP2000035570A
JP2000035570A JP10201392A JP20139298A JP2000035570A JP 2000035570 A JP2000035570 A JP 2000035570A JP 10201392 A JP10201392 A JP 10201392A JP 20139298 A JP20139298 A JP 20139298A JP 2000035570 A JP2000035570 A JP 2000035570A
Authority
JP
Japan
Prior art keywords
liquid crystal
plate
crystal layer
retardation plate
retardation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10201392A
Other languages
Japanese (ja)
Other versions
JP3410666B2 (en
Inventor
Masumi Kubo
真澄 久保
Yozo Narutaki
陽三 鳴瀧
Shiyougo Fujioka
正悟 藤岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=16440337&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2000035570(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to JP20139298A priority Critical patent/JP3410666B2/en
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to KR1019980060504A priority patent/KR100283275B1/en
Priority to US09/220,792 priority patent/US6295109B1/en
Publication of JP2000035570A publication Critical patent/JP2000035570A/en
Priority to US09/927,547 priority patent/US6819379B2/en
Application granted granted Critical
Publication of JP3410666B2 publication Critical patent/JP3410666B2/en
Priority to US10/922,020 priority patent/US6950159B2/en
Priority to US11/196,749 priority patent/US7151581B2/en
Priority to US11/507,597 priority patent/US7663717B2/en
Priority to US11/507,514 priority patent/US7535528B2/en
Priority to US11/507,671 priority patent/US7468768B2/en
Priority to US12/654,805 priority patent/US8054423B2/en
Priority to US12/805,163 priority patent/US7952667B2/en
Priority to US13/137,885 priority patent/US8228469B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve coloring in a reflection mode of dark display by eliminating the variation of polarization in the light wavelength band, and approximately circular-polarizing the light in the reflection mode. SOLUTION: A λ/4-wave plate 7 is arranged on the opposite plane of the side where a counter electrode 4 of a substrate 2 is formed, and further, a λ/4-wave plate 10 is arranged on the opposite plane of the side where a reflecting electrode 3 and a transparent electrode 8 of a substrate 1 are formed, and the lagging axis, of the λ/4-wave plate 10 is set so as to be perpendicular to that of the λ/4-wave plate 7. A λ/2-wave plate 11 is arranged on the other side of the substrate 2 of the λ/4 board 7 and a λ/2-wave plate 12 is arranged on the other side of the substrate 1 of the λ/4-wave plate 10, respectively, and the lagging axis of the λ/2-wave plate 11 is set to be 60 degrees tilted against that of λ/4-wave plate 7; the lagging axis of the λ/2-wave plate 12 is set to be 60 degrees tilted against that of λ/4-wave plate 10; and the lagging axis of the λ/2-wave plate 12 is set to be perpendicular to that of the λ/2-wave plate 11.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ワードプロセッサ
やパーソナルコンピュータなどのOA機器や、電子手帳
等の携帯情報機器、あるいは、液晶モニターを備えたカ
メラ一体型VTR等に用いられる反射型と透過型とを兼
ね備えた液晶表示装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reflective type and a transmissive type used for OA equipment such as a word processor or a personal computer, portable information equipment such as an electronic organizer, or a camera-integrated VTR equipped with a liquid crystal monitor. The present invention relates to a liquid crystal display device having both of the above.

【0002】[0002]

【従来の技術】液晶ディスプレイは、CRT(ブラウン
管)やEL(エレクトロルミネッセンス)とは異なり自
らは発光しないため、バックライトを液晶表示素子の背
面に設置して照明する透過型液晶表示装置が用いられて
いる。しかしながら、バックライトは通常液晶ディスプ
レイの全消費電力のうち50%以上を消費するため、戸
外や常時携帯して使用する機会が多い携帯情報機器では
バックライトの代わりに反射板を設置し、周囲光のみで
表示を行う反射型液晶表示装置も実現されている。
2. Description of the Related Art Unlike CRTs (CRTs) and ELs (electroluminescence), liquid crystal displays do not emit light by themselves. Therefore, a transmissive liquid crystal display device in which a backlight is installed on the back of a liquid crystal display element to illuminate it is used. ing. However, backlights typically consume 50% or more of the total power consumption of liquid crystal displays. Therefore, in portable information devices that are often used outdoors or on a regular basis, a reflector is installed instead of the backlight and ambient light is used. A reflection type liquid crystal display device which performs display only by itself has been realized.

【0003】反射型液晶表示装置で用いられる表示モー
ドには、現在透過型で広く用いられているTN(ツイス
テッドネマティック)モード、STN(スーパーツイス
テッドネマティック)モードといった偏光板を利用する
タイプの他、偏光板を用いないために明るい表示が実現
できる相転移型ゲストホストモードも近年盛んに開発が
行われており、例えば特開平4−75022号公報に開
示されている。
The display modes used in the reflection type liquid crystal display device include a type using a polarizing plate such as a TN (twisted nematic) mode and an STN (super twisted nematic) mode which are widely used in a transmission type, and a polarization mode. In recent years, a phase change type guest host mode capable of realizing a bright display because a plate is not used has been actively developed, and is disclosed in, for example, Japanese Patent Application Laid-Open No. 4-75022.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、相転移
型ゲストホストモードは、液晶分子と色素を分散させた
液晶層において色素の光吸収を用いて表示を行なうため
コントラストが十分とれず、TN(ツイステッドネマテ
ィック)モード及びSTN(スーパーツイステッドネマ
ティック)モードといった偏光板を利用するタイプの液
晶表示装置に比べて表示品位は著しく悪くなる。
However, in the phase transition type guest-host mode, a display is performed by using light absorption of a dye in a liquid crystal layer in which liquid crystal molecules and a dye are dispersed, so that sufficient contrast cannot be obtained. The display quality is remarkably deteriorated as compared with a liquid crystal display device using a polarizing plate, such as a nematic mode or an STN (super twisted nematic) mode.

【0005】また、平行配向若しくはツイスト配向の液
晶表示装置の場合には、液晶層の中心付近の液晶分子は
電圧印加時に基板面に対して垂直方向に傾くが、配向膜
表面付近の液晶分子は電圧を印加しても基板に対して垂
直にならないため液晶層の複屈折率は0には程遠く、電
圧印加時に黒表示を行う表示モードの場合、液晶層の複
屈折のため十分な黒が表示できず、十分なコントラスト
を得ることができない。
In the case of a parallel or twisted liquid crystal display device, the liquid crystal molecules near the center of the liquid crystal layer are tilted in the direction perpendicular to the substrate surface when a voltage is applied, but the liquid crystal molecules near the alignment film surface are not tilted. The birefringence of the liquid crystal layer is far from 0 because it does not become perpendicular to the substrate even when voltage is applied. In the display mode in which black display is performed when voltage is applied, sufficient black is displayed due to the birefringence of the liquid crystal layer. No sufficient contrast can be obtained.

【0006】TNモード及びSTNモードの液晶表示装
置も現在では輝度やコントラストの点で十分な表示品位
を有するとは言い難く、更なる高輝度化及びコントラス
トの向上等の表示品位の向上が求められている。また、
反射型液晶表示装置は、周囲の光が暗い場合に表示に用
いる反射光が低下し視認性が極端に低下するという欠点
を有し、一方透過型液晶表示装置はこれとは逆に周囲光
が非常に明るい晴天下等での視認性が低下する問題があ
った。
At present, it is difficult to say that TN mode and STN mode liquid crystal display devices have sufficient display quality in terms of brightness and contrast, and further improvement in display quality such as higher brightness and higher contrast is required. ing. Also,
Reflective liquid crystal display devices have the disadvantage that when ambient light is dark, the amount of reflected light used for display is reduced and visibility is extremely reduced. There was a problem that visibility under extremely bright sunny weather was reduced.

【0007】従って、透過表示と反射表示を組み合わせ
た表示装置が開発されているが、黒表示の場合に光漏れ
が発生し十分な黒レベルが得られない問題点がある。
Accordingly, a display device combining transmission display and reflection display has been developed. However, in the case of black display, there is a problem that light leakage occurs and a sufficient black level cannot be obtained.

【0008】[0008]

【課題を解決するための手段】請求項1に記載の発明
は、反射機能を有する領域と透過機能を有する領域とが
形成された一方基板と、対向電極が形成された他方基板
を有し、前記一方基板と前記他方基板の間に液晶層が挟
持された液晶表示装置において、前記他方基板の前記液
晶層とは反対の面に設けられた第1の偏光手段と、前記
一方基板の前記液晶層とは反対の面に設けられた第2の
偏光手段と、前記第1の偏光手段と前記液晶層との間に
設けられ、前記第1の偏光手段からの直線偏光を円偏光
とする第1の位相差板と、前記第2の偏光手段と前記液
晶層との間に設けられ、前記第2の偏光手段からの直線
偏光を円偏光とする第2の位相差板と、前記第1の偏光
手段と前記液晶層との間に設けられ、前記第1の位相差
板の屈折率異方性の波長依存性を補償する第3の位相差
板とを有することを特徴とする。
According to a first aspect of the present invention, there is provided one substrate having a region having a reflective function and a region having a transmissive function, and another substrate having a counter electrode formed thereon. In a liquid crystal display device having a liquid crystal layer sandwiched between the one substrate and the other substrate, a first polarizing means provided on a surface of the other substrate opposite to the liquid crystal layer; A second polarizing means provided on a surface opposite to the layer, and a second polarizing means provided between the first polarizing means and the liquid crystal layer, wherein the linearly polarized light from the first polarizing means is circularly polarized. A first retardation plate, a second retardation plate provided between the second polarizing means and the liquid crystal layer, and configured to make linearly polarized light from the second polarizing means circularly polarized; Is provided between the polarizing means and the liquid crystal layer, and has a refractive index anisotropy of the first retardation plate. And having a third phase difference plate for compensating the length dependence.

【0009】請求項2に記載の発明は、前記第1の偏光
手段と第1の位相差板の間に配置された前記第3の位相
差板がλ/2板であり、前記第1の偏光手段の透過軸と
前記第3の位相差板の遅相軸とのなす角度がαのとき、
前記第1の偏光手段の透過軸と第1の位相差板の遅相軸
とのなす角度が2α+45度であることを特徴とする。
According to a second aspect of the present invention, the third retardation plate disposed between the first polarization means and the first retardation plate is a λ / 2 plate, and the first polarization means is a λ / 2 plate. When the angle between the transmission axis of the third phase plate and the slow axis of the third retardation plate is α,
The angle between the transmission axis of the first polarizing means and the slow axis of the first retardation plate is 2α + 45 degrees.

【0010】請求項3に記載の発明は、前記第2の偏光
手段と前記液晶層との間に設けられ、前記第2の位相差
板の屈折率異方性の波長依存性を補償する第4の位相差
板を有することを特徴とする。
The invention according to claim 3 is provided between the second polarizing means and the liquid crystal layer and compensates for the wavelength dependence of the refractive index anisotropy of the second retardation plate. 4 is provided.

【0011】請求項4に記載の発明は、前記第2の偏光
板と第2の位相差板の間に配置された前記第4に位相差
板がλ/2板であり、前記第2の偏光手段の透過軸と前
記第4の位相差板の遅相軸とのなす角度がαのとき、前
記第2の偏光手段の透過軸と第2の位相差板の遅相軸と
のなす角度が2α+45度であることを特徴とする。
In a preferred embodiment of the present invention, the fourth retardation plate disposed between the second polarizing plate and the second retardation plate is a λ / 2 plate, and the second polarizing means is provided. When the angle between the transmission axis of the second phase difference plate and the slow axis of the fourth phase difference plate is α, the angle between the transmission axis of the second polarizing means and the slow axis of the second phase difference plate is 2α + 45. Degree.

【0012】請求項5に記載の発明は、前記第1の偏光
手段の透過軸と前記第2の偏光手段の透過軸とが直交
し、前記第1の位相差板と前記第2の位相差板の遅相軸
とが直交し、前記第3の位相差板と前記第4の位相差板
の遅相軸とが直交していることを特徴とする。
According to a fifth aspect of the present invention, the transmission axis of the first polarizing means and the transmission axis of the second polarizing means are orthogonal to each other, and the first retardation plate and the second phase difference The slow axis of the plate is orthogonal to the slow axis of the third retardation plate and the slow axis of the fourth retardation plate is orthogonal to the fourth retardation plate.

【0013】請求項6に記載の発明は、前記液晶層が負
の誘電率異方性を有する垂直配向液晶材料であることを
特徴とする。請求項7に記載の発明は、前記液晶表示装
置をノーマリブラックの表示モードとすることを特徴と
する。
The invention according to claim 6 is characterized in that the liquid crystal layer is a vertically aligned liquid crystal material having a negative dielectric anisotropy. The invention according to claim 7 is characterized in that the liquid crystal display device is set to a normally black display mode.

【0014】以下に本発明による作用について説明す
る。本発明の請求項1に記載の液晶表示装置によれば、
第1の位相差板により、直線偏光を円偏光に変換する際
に生じる屈折率異方性の波長依存性をある程度相殺する
ことができる。これによって、反射モードにおいて、広
波長帯で偏光状態のばらつきが小さくなった状態で円偏
光にすることができる。このため、暗表示の反射モード
における色づきが改善できる。
The operation of the present invention will be described below. According to the liquid crystal display device of the first aspect of the present invention,
The first retardation plate can offset to some extent the wavelength dependence of the refractive index anisotropy generated when converting linearly polarized light to circularly polarized light. As a result, in the reflection mode, circular polarization can be achieved in a state where the dispersion of the polarization state is small in a wide wavelength band. For this reason, coloring in the reflection mode of dark display can be improved.

【0015】本発明の請求項2に記載の液晶表示装置に
よれば、偏光板を通過した直線偏光を、第3の位相差板
によりその方位を回転させてから、第1の位相差板によ
り円偏光とすることができるので、第1の位相差板の屈
折率異方性の波長依存性を最適に補償することができ
る。これによって、反射モードにおいて、広波長帯で偏
光状態のばらつきがさらに小さくなり、円偏光にするこ
とができる。このため、暗表示の反射モードにおける色
づきが改善できる。
According to the liquid crystal display device of the second aspect of the present invention, the azimuth of the linearly polarized light that has passed through the polarizing plate is rotated by the third retardation plate, and then the first polarization plate is rotated by the first retardation plate. Since the light can be circularly polarized, the wavelength dependence of the refractive index anisotropy of the first retardation plate can be optimally compensated. As a result, in the reflection mode, the dispersion of the polarization state in a wide wavelength band is further reduced, and the light can be circularly polarized. For this reason, coloring in the reflection mode of dark display can be improved.

【0016】特に、液晶層が垂直配向モードであるとき
や、暗状態において液晶層に残存するリターデーション
が無視できる場合は、第1の位相差板をλ/4板にする
ことができる。
In particular, when the liquid crystal layer is in a vertical alignment mode or when the retardation remaining in the liquid crystal layer in a dark state can be ignored, the first retardation plate can be a λ / 4 plate.

【0017】暗状態において、液晶層に、反射モードで
はγのリターデーションが残存している場合、第1の位
相差板のリターデーションを(λ/4−γ)にして、円
偏光からずらせて液晶層に入射させる。液晶層を通過し
て反射板に達したとき、広波長帯で偏光状態のばらつき
がなくなり円偏光となっているので、反射モードにおい
て良好な黒表示が実現される。
In the dark state, when the retardation of γ remains in the liquid crystal layer in the reflection mode, the retardation of the first retardation plate is set to (λ / 4−γ) and shifted from the circularly polarized light. Light is incident on the liquid crystal layer. When the light reaches the reflector after passing through the liquid crystal layer, the polarization state does not vary in a wide wavelength band and the light becomes circularly polarized light, so that good black display is realized in the reflection mode.

【0018】本発明の請求項3に記載の液晶表示装置に
よれば、第4の位相差板により、直線偏光を円偏光に変
換する際に生じる屈折率異方性の波長依存性をある程度
相殺することができる。これによって、これによって、
透過モードにおいて、広波長帯で偏光状態のばらつきが
なくなった円偏光にすることができる。このため、請求
項1に加えて、暗表示の透過モードにおける色づきが改
善でき、反射モードと透過モードとを両用した場合で
も、良好な黒表示が実現される。
According to the liquid crystal display device of the third aspect of the present invention, the wavelength dependence of the refractive index anisotropy generated when converting the linearly polarized light to the circularly polarized light is offset to some extent by the fourth retardation plate. can do. By this, by this,
In the transmission mode, it is possible to obtain circularly polarized light in which the dispersion of the polarization state is eliminated in a wide wavelength band. For this reason, in addition to the first aspect, coloring in the transmission mode of dark display can be improved, and excellent black display can be realized even when both the reflection mode and the transmission mode are used.

【0019】本発明の請求項4に記載の液晶表示装置に
よれば、偏光板を通過した直線偏光を、第4の位相差板
によりその方位を回転させてから、第2の位相差板によ
り円偏光とすることができるので、第1の位相差板の屈
折率異方性の波長依存性を最適に補償することができ
る。これによって、透過モードにおいて、広波長帯で偏
光状態のばらつきがさらに小さくなり、円偏光にするこ
とができる。
According to the liquid crystal display device of the fourth aspect of the present invention, the direction of the linearly polarized light that has passed through the polarizing plate is rotated by the fourth retardation plate, and then the second polarization plate is rotated by the second retardation plate. Since the light can be circularly polarized, the wavelength dependence of the refractive index anisotropy of the first retardation plate can be optimally compensated. Thereby, in the transmission mode, the dispersion of the polarization state is further reduced in a wide wavelength band, and circular polarization can be obtained.

【0020】特に、液晶層が垂直配向モードであるとき
や、暗状態で液晶層に残存するリターデーションが無視
できる場合は、第2の位相差板をλ/4板にすることが
できる。
In particular, when the liquid crystal layer is in a vertical alignment mode or when the retardation remaining in the liquid crystal layer in a dark state can be ignored, the second retardation plate can be a λ / 4 plate.

【0021】暗状態において、液晶層に、反射モードで
はγ、透過モードではΔのリターデーションが残存して
いる場合、それ以降の層のリターデーションを{λ/4
−(Δ−γ)}にして、円偏光からずらせて液晶層に入
射させる。液晶層を通過したとき、反射モードの出射光
と広波長帯で同じ偏光状態になっているので、第3の位
相差板を通過したとき、第1の偏光手段の透過軸と直交
する直線偏光となり、透過モードにおける色付きが改善
でき、透過モードと反射モードの両用した場合でも良好
な黒表示が実現される。
In the dark state, when a retardation of γ in the reflection mode and a retardation of Δ in the transmission mode remains in the liquid crystal layer, the retardation of the subsequent layers is {λ / 4.
− (Δ−γ)}, the light is shifted from the circularly polarized light and is incident on the liquid crystal layer. When the light passes through the liquid crystal layer, it is in the same polarization state in the wide wavelength band as the light emitted in the reflection mode. Therefore, when it passes through the third retardation plate, it is linearly polarized light orthogonal to the transmission axis of the first polarizing means. Thus, coloring in the transmission mode can be improved, and excellent black display can be realized even when both the transmission mode and the reflection mode are used.

【0022】本発明の請求項5に記載の液晶表示装置に
よれば、位相差板の遅相軸を直交させることで、位相差
板の屈折率異方性の波長依存性を、他方の位相差板の屈
折率異方性の波長依存性で相殺することができ、暗表示
の色づきを改善できる。
According to the liquid crystal display device of the fifth aspect of the present invention, the wavelength dependence of the refractive index anisotropy of the phase difference plate is reduced by orthogonalizing the slow axis of the phase difference plate. The wavelength dependence of the anisotropy of the refractive index of the retardation plate can be offset, and the coloring of dark display can be improved.

【0023】本発明の請求項6に記載の液晶表示装置に
よれば、液晶層に負の誘電率異方性を有する垂直配向液
晶材料を用いることで、液晶層のリターデションがほぼ
0である状態が実現されるので、暗状態がより暗くなる
ので、コントラストが高くなる。
According to the liquid crystal display device of the present invention, the retardation of the liquid crystal layer is substantially zero by using a vertically aligned liquid crystal material having a negative dielectric anisotropy for the liquid crystal layer. Since the state is realized, the dark state is darker, so that the contrast is high.

【0024】例えば、液晶層に平行配向液晶を用いる
と、電圧を印加して液晶分子の長軸を電極と垂直方向に
向けることで液晶層のリターデションを0にしようとし
ても、残留リターデションが発生するため液晶層のリタ
ーデションは0にはならない。本発明の請求項7に記載
の液晶表示装置によれば、ノーマリブラック(以下NB
という)ではセルギャップ変化によるコントラスト比の
変化はほとんど発生せず、生産性の点でセルギャップ制
御に対するある程度の余裕がとれる。
For example, when a parallel alignment liquid crystal is used for the liquid crystal layer, the residual retardation does not increase even if the voltage is applied to direct the long axis of the liquid crystal molecules in a direction perpendicular to the electrodes to make the retardation of the liquid crystal layer zero. Therefore, the retardation of the liquid crystal layer does not become zero. According to the liquid crystal display device of the present invention, normally black (NB)
), The change in the contrast ratio due to the change in the cell gap hardly occurs, and a certain margin for the cell gap control can be secured in terms of productivity.

【0025】液晶層に電圧無印加時に白表示を、電圧印
加時に黒表示を行なうノーマリホワイト(以下NWとい
う)ではセルギャップ変化に対して黒になる液晶層への
印加電圧が変化するのに対して、液晶層に電圧無印加時
に黒表示を、電圧印加時に白表示を行なうNBではセル
ギャップ変化に対して白になる液晶層への印加電圧が変
化する。そのため、NWではセルギャップ変化によりコ
ンラスト比が著しく変化するため、高精度のセルギャッ
プ制御が必要となる。また、NWでは輝点となっていた
点欠陥が、NBでは黒点となるため、製造上の良品率向
上が見込まれ、輝点フリーの高品位表示パネルが実現で
きる。これらのことからも、NWに比べてNBの方があ
らゆる環境下で使用可能な液晶表示装置の表示モードと
して優れている。
In normally white (hereinafter referred to as NW), in which white display is performed when no voltage is applied to the liquid crystal layer and black display is performed when a voltage is applied, the voltage applied to the liquid crystal layer becomes black when the cell gap changes. On the other hand, in an NB that performs black display when no voltage is applied to the liquid crystal layer and white display when a voltage is applied, the voltage applied to the liquid crystal layer changes to white when the cell gap changes. Therefore, in the NW, since the contrast ratio changes significantly due to a change in the cell gap, high-precision cell gap control is required. In addition, since the point defect that was a bright point in the NW becomes a black point in the NB, an improvement in the non-defective product rate in manufacturing is expected, and a bright spot-free high-quality display panel can be realized. From these facts, NB is superior to NW as a display mode of a liquid crystal display device that can be used in any environment.

【0026】[0026]

【発明の実施の形態】(実施形態1)実施形態1の液晶
表示装置について図1を用いて説明する。基板1にA
l、Ta等の反射率の高い材料で形成された反射電極3
とITO等の透過率の高い材料で形成された透明電極8
とが設けられ、基板2に対向電極4が設けられ、反射電
極3及び透明電極8と対向電極4との間に負の誘電異方
性を示す液晶材料からなる液晶層5が挟持されている。
(Embodiment 1) A liquid crystal display device of Embodiment 1 will be described with reference to FIG. A on substrate 1
Reflective electrode 3 formed of a material having a high reflectivity such as 1 or Ta
And transparent electrode 8 formed of a material having high transmittance such as ITO
And a counter electrode 4 is provided on the substrate 2, and a liquid crystal layer 5 made of a liquid crystal material having a negative dielectric anisotropy is sandwiched between the reflection electrode 3 and the transparent electrode 8 and the counter electrode 4. .

【0027】反射電極3、透明電極8及び対向電極4の
液晶層5と接する面にはそれぞれ垂直配向性の配向膜
(図示せず)が形成されており、配向膜の塗布後、少な
くとも一方の配向膜にラビング等の配向処理を行なって
いる。これは、ラビングを用いなくても、光配向や電極
形状等で配向を規制しても良い。液晶層5の液晶分子
は、垂直配向性の配向膜に対するラビング等の配向処理
により、基板面の垂直方向に対して、概ね0度または
0.1度から5度程度のティルト角を持つ。
A vertical alignment film (not shown) is formed on each of the surfaces of the reflective electrode 3, the transparent electrode 8 and the counter electrode 4 which are in contact with the liquid crystal layer 5, and after the alignment film is applied, at least one of the alignment films is formed. The alignment film is subjected to an alignment treatment such as rubbing. In this case, without using rubbing, the orientation may be regulated by optical orientation, electrode shape, or the like. The liquid crystal molecules of the liquid crystal layer 5 have a tilt angle of about 0 degree or about 0.1 to 5 degrees with respect to the vertical direction of the substrate surface due to an alignment treatment such as rubbing of the vertical alignment film.

【0028】ここで、反射電極3は液晶層に電圧を印加
する電極として用いられるが、反射電極を電極として使
わずに反射板として用いて、透明電極8を反射板の上ま
で延ばして反射領域での液晶層5に電圧を印加する電極
としても良い。液晶層5の液晶材料として、実施形態1
と同じNe=1.5546、No=1.4773の屈折
率異方性を有する液晶材料を用いた。
Here, the reflective electrode 3 is used as an electrode for applying a voltage to the liquid crystal layer. However, the reflective electrode is not used as an electrode but is used as a reflective plate, and the transparent electrode 8 is extended above the reflective plate to form a reflective area. May be used as an electrode for applying a voltage to the liquid crystal layer 5 at the time. Embodiment 1 As a liquid crystal material of the liquid crystal layer 5, Embodiment 1
A liquid crystal material having the same refractive index anisotropy as Ne = 1.5546 and No = 1.4773 was used.

【0029】基板2の対向電極4が形成された側の反対
面にλ/4板7が配置され、さらに基板1の反射電極3
及び透明電極8が形成された側の反対面にλ/4板10
が配置され、λ/4板10の遅相軸はλ/4板7の遅相
軸と直交するように設定されている。
A λ / 4 plate 7 is arranged on the surface of the substrate 2 opposite to the side on which the counter electrode 4 is formed.
And a λ / 4 plate 10 on the surface opposite to the side where the transparent electrode 8 is formed.
And the slow axis of the λ / 4 plate 10 is set to be orthogonal to the slow axis of the λ / 4 plate 7.

【0030】λ/4板7の基板2とは反対側の面にλ/
2板11が、λ/4板10の基板1とは反対側の面にλ
/2板12がそれぞれ設けられており、λ/2板11の
遅相軸はλ/4板7の遅相軸に対して60度、λ/2板
12の遅相軸はλ/4板10の遅相軸に対して60度傾
むくように、またλ/2板12の遅相軸はλ/2板11
の遅相軸と直交するように設定されている。
The λ / 4 plate 7 has λ /
The two plates 11 are provided with λ / 4 plates on the surface of the λ / 4 plate 10 opposite to the substrate 1.
The slow axis of the λ / 2 plate 11 is 60 degrees with respect to the slow axis of the λ / 4 plate 7, and the slow axis of the λ / 2 plate 12 is the λ / 4 plate. The slow axis of the λ / 2 plate 12 is tilted by 60 degrees with respect to the slow axis of the λ / 2 plate 11.
Are set so as to be orthogonal to the slow axis.

【0031】λ/2板11の基板2とは反対側の面に偏
光板6が、λ/2板12の基板1とは反対側の面に偏光
板9がそれぞれ設けられており、偏光板6の透過軸はλ
/4板7の遅相軸に対してλ/2板11の遅相軸を挟む
方向に75度、λ/2板11の遅相軸に対して15度、
偏光板9の透過軸はλ/4板10の遅相軸に対してλ/
2板12の遅相軸を挟む方向に75度、λ/2板12の
遅相軸に対して15度傾むくように、また偏光板6の透
過軸は偏光板9の透過軸に対して直交するように設定さ
れている。
A polarizing plate 6 is provided on a surface of the λ / 2 plate 11 opposite to the substrate 2, and a polarizing plate 9 is provided on a surface of the λ / 2 plate 12 opposite to the substrate 1. The transmission axis of 6 is λ
75 degrees with respect to the slow axis of the λ / 2 plate 11 with respect to the slow axis of the / 4 plate 7, 15 degrees with respect to the slow axis of the λ / 2 plate 11,
The transmission axis of the polarizing plate 9 is λ / λ with respect to the slow axis of the λ / 4 plate 10.
The transmission axis of the polarizing plate 6 is inclined with respect to the transmission axis of the polarizing plate 9 so as to be inclined at 75 degrees in the direction sandwiching the slow axis of the two plates 12 and 15 degrees with respect to the slow axis of the λ / 2 plate 12. They are set to be orthogonal.

【0032】図2(a)は本発明の実施形態1のアクテ
ィブマトリクス基板の平面概略図を示し、図2(b)は
図2(a)のA−A断面図を示す。アクティブマトリク
ス基板は、ゲート配線21、データ配線22、駆動素子
23、ドレイン電極24、補助容量電極25、ゲート絶
縁膜26、絶縁性基板27、コンタクトホール28、層
間絶縁膜29。反射用絵素電極30と透過用絵素電極3
1を備えている。
FIG. 2A is a schematic plan view of the active matrix substrate according to the first embodiment of the present invention, and FIG. 2B is a cross-sectional view taken along the line AA in FIG. The active matrix substrate includes a gate wiring 21, a data wiring 22, a driving element 23, a drain electrode 24, an auxiliary capacitance electrode 25, a gate insulating film 26, an insulating substrate 27, a contact hole 28, and an interlayer insulating film 29. Reflection picture element electrode 30 and transmission picture element electrode 3
1 is provided.

【0033】補助容量電極25は、ドレイン電極24と
電気的に接続されており、ゲート絶縁膜26を介してゲ
ート配線21と重畳し補助容量を形成している。コンタ
クトホール28は、透過用絵素電極31と補助容量電極
25を接続するために層間絶縁膜29に設けられてい
る。
The auxiliary capacitance electrode 25 is electrically connected to the drain electrode 24 and overlaps with the gate wiring 21 via the gate insulating film 26 to form an auxiliary capacitance. The contact hole 28 is provided in the interlayer insulating film 29 to connect the transmission picture element electrode 31 and the auxiliary capacitance electrode 25.

【0034】このアクティブマトリクス基板は一つの絵
素の中に反射用絵素電極30と透過用絵素電極31を備
えており、一つの絵素の中に外部からの光を反射する反
射用絵素電極30部分とバックライトの光を透過する透
過用絵素電極31部分を形成している。ここで、図2
(b)では反射用絵素電極30の表面形状を平面として
図示しているが、反射特性を向上するために表面形状を
凹凸にしても良い。また、絵素電極を反射用絵素電極3
0と透過用絵素電極31に分割しているが、分割せずに
半透過電極を用いても良い。
This active matrix substrate is provided with a reflection picture element electrode 30 and a transmission picture element electrode 31 in one picture element, and a reflection picture element for reflecting external light in one picture element. The pixel electrode 30 and the transmissive picture element electrode 31 that transmits light of the backlight are formed. Here, FIG.
In (b), the surface shape of the reflective picture element electrode 30 is shown as a plane, but the surface shape may be made uneven to improve the reflection characteristics. Further, the pixel electrode is replaced with the reflective pixel electrode 3.
Although it is divided into 0 and the transmission picture element electrode 31, a semi-transmission electrode may be used without division.

【0035】図3、図4を用いて実施形態1の液晶表示
装置における反射モード及び透過モードの光の透過状態
を説明する。図3(a)は反射モードの液晶層に電圧が
印加されていない暗表示の場合を示し、図3(b)は反
射モードの液晶層に電圧が印加された白表示の場合を示
している。また、図4(a)は透過モードの液晶層に電
圧が印加されていない暗表示の場合を示し、図4(b)
は透過モードの液晶層に電圧が印加された白表示の場合
を示している。
The transmission state of light in the reflection mode and the transmission mode in the liquid crystal display device of the first embodiment will be described with reference to FIGS. FIG. 3A shows a case of a dark display in which no voltage is applied to the liquid crystal layer in the reflection mode, and FIG. 3B shows a case of a white display in which a voltage is applied to the liquid crystal layer in the reflection mode. . FIG. 4A shows a case of dark display in which no voltage is applied to the liquid crystal layer in the transmission mode, and FIG.
Indicates a white display in which a voltage is applied to the liquid crystal layer in the transmission mode.

【0036】図3(a)によって反射モードの暗表示を
説明する。図3(a)の上側から偏光板6表面から入っ
た入射光は、偏光板6を通った後偏光軸が偏光板の透過
軸に一致した直線偏光となり、λ/2板11に入射され
る。λ/2板11は、偏光板6の透過軸方向とλ/2板
11の遅相軸方向が15度になるように配置されてお
り、λ/2板11を通過した光は偏光板6の透過軸方向
に対してλ/2板11の遅相軸方向を挟んで30度の偏
光方向の直線偏光になり、λ/4板7に入射される。
The dark display in the reflection mode will be described with reference to FIG. The incident light entering from the surface of the polarizing plate 6 from above in FIG. 3A becomes linearly polarized light whose polarization axis coincides with the transmission axis of the polarizing plate after passing through the polarizing plate 6 and is incident on the λ / 2 plate 11. . The λ / 2 plate 11 is disposed so that the transmission axis direction of the polarizing plate 6 and the slow axis direction of the λ / 2 plate 11 are at 15 degrees. Becomes a linearly polarized light having a polarization direction of 30 degrees with respect to the slow axis direction of the λ / 2 plate 11 with respect to the transmission axis direction of the λ / 2 plate 11 and enters the λ / 4 plate 7.

【0037】λ/4板7は、偏光板6の透過軸方向に対
してλ/2板11の遅相軸方向を挟んでλ/4板7の遅
相軸方向が75度になるように配置されている。つま
り、λ/2板11を通過した直線偏光の偏光方向に対し
て、λ/4板7の遅相軸方向は45度になるように配置
されており、λ/4板7を通過した光は円偏光になる。
The λ / 4 plate 7 is set so that the slow axis direction of the λ / 4 plate 7 is 75 degrees with respect to the transmission axis direction of the polarizing plate 6 with respect to the slow axis direction of the λ / 2 plate 11. Are located. That is, the slow axis direction of the λ / 4 plate 7 is arranged to be 45 degrees with respect to the polarization direction of the linearly polarized light that has passed through the λ / 2 plate 11, and the light that has passed through the λ / 4 plate 7 Becomes circularly polarized light.

【0038】液晶層5に電界を印加していない場合は、
負の誘電異方性を示す液晶材料を用いた液晶層5は液晶
分子が基板面からほぼ垂直に配向しており、入射する光
に対する液晶層5の屈折率異方性は極わずかであり、光
が液晶層5を透過することによって生じる位相差はほぼ
0である。従って、λ/4板7を通過した円偏光の光線
は、円偏光をほとんど崩さずに液晶層5を透過し、一方
の基板1上にある反射電極3にて反射される。
When no electric field is applied to the liquid crystal layer 5,
In the liquid crystal layer 5 using a liquid crystal material exhibiting a negative dielectric anisotropy, liquid crystal molecules are oriented almost perpendicular to the substrate surface, and the liquid crystal layer 5 has a very small refractive index anisotropy with respect to incident light. The phase difference caused by the transmission of light through the liquid crystal layer 5 is almost zero. Therefore, the circularly-polarized light beam that has passed through the λ / 4 plate 7 passes through the liquid crystal layer 5 without substantially breaking the circularly-polarized light, and is reflected by the reflective electrode 3 on one substrate 1.

【0039】反射された光線は回転方向が逆転した円偏
光となり、λ/4板7を通過してλ/4板7入射時と直
交する直線偏光となり、λ/2板11に入射される。λ
/2板11を通過した直線偏光は、偏光板6の透過軸と
直交する方向の直線偏光であり、偏光板6で吸収され透
過しない。この様に、液晶層5に電圧を印加しない場合
は暗表示となる。
The reflected light becomes circularly polarized light whose rotation direction is reversed, passes through the λ / 4 plate 7, becomes linearly polarized light orthogonal to the time when the λ / 4 plate 7 is incident, and is incident on the λ / 2 plate 11. λ
The linearly polarized light that has passed through the / 2 plate 11 is linearly polarized light in a direction orthogonal to the transmission axis of the polarizing plate 6, and is absorbed by the polarizing plate 6 and is not transmitted. Thus, when no voltage is applied to the liquid crystal layer 5, a dark display is obtained.

【0040】次に図3(b)によって反射モードの白表
示を説明する。図3(b)は、液晶層5に電圧を印加す
る場合であり、λ/4板7を通過するまでは図3(a)
と同一であり説明は省略する。
Next, white display in the reflection mode will be described with reference to FIG. FIG. 3B shows a case in which a voltage is applied to the liquid crystal layer 5, and FIG.
And the description is omitted.

【0041】液晶層5に電圧を印加すると、基板面から
垂直方向に配向していた液晶分子は基板面と水平方向に
幾分傾き、液晶層5に入射したλ/4板7からの円偏光
は、液晶分子の複屈折により楕円偏光になり、反射電極
3で反射された後さらに液晶層5で液晶分子の複屈折の
影響を受け、λ/4板7、λ/2板11を通過した後に
は偏光板6の透過軸と直交する直線偏光にはならず、偏
光板6を幾分通過する。こうして、液晶層に印加される
電圧を調整することで、反射した後に偏光板6を透過で
きる光量を調節することができ、階調表示が可能にな
る。
When a voltage is applied to the liquid crystal layer 5, the liquid crystal molecules oriented vertically from the substrate surface are slightly inclined in the horizontal direction with respect to the substrate surface, and the circularly polarized light from the λ / 4 plate 7 incident on the liquid crystal layer 5. Becomes elliptically polarized light due to the birefringence of the liquid crystal molecules. Thereafter, the light does not become linearly polarized light orthogonal to the transmission axis of the polarizing plate 6 but passes through the polarizing plate 6 to some extent. In this manner, by adjusting the voltage applied to the liquid crystal layer, the amount of light that can be transmitted through the polarizing plate 6 after being reflected can be adjusted, and gradation display can be performed.

【0042】また、反射電極3と対向電極4から液晶層
5に電圧を印加し、液晶層5の位相差が1/4波長条件
になるように液晶分子の配向状態を変化させると、λ/
4板7を通過した後の円偏光は液晶層5を通過して反射
電極3に達したときに偏光板6の透過軸と直交する直線
偏光になり、再び液晶層5を通過して円偏光になった後
にλ/4板7、λ/2板11を通過し、偏光板6の透過
軸と平行な直線偏光になり、偏光板6を通過する反射光
は最大になる。
When a voltage is applied from the reflective electrode 3 and the counter electrode 4 to the liquid crystal layer 5 to change the alignment state of the liquid crystal molecules so that the phase difference of the liquid crystal layer 5 becomes a 条件 wavelength condition, λ /
The circularly polarized light after passing through the four plates 7 becomes linearly polarized light orthogonal to the transmission axis of the polarizing plate 6 when passing through the liquid crystal layer 5 and reaching the reflective electrode 3, and passes through the liquid crystal layer 5 again and becomes circularly polarized light. After that, the light passes through the λ / 4 plate 7 and the λ / 2 plate 11, becomes linearly polarized light parallel to the transmission axis of the polarizing plate 6, and the reflected light passing through the polarizing plate 6 is maximized.

【0043】図3(b)には、反射電極3で反射された
光が最も偏光板6を透過する液晶層5のリタデーション
条件で図示しており、反射電極3上で偏光板6の透過軸
と直交する方向の直線偏光となっている。
FIG. 3B shows the retardation condition of the liquid crystal layer 5 in which the light reflected by the reflective electrode 3 passes through the polarizer 6 most, and the transmission axis of the polarizer 6 on the reflective electrode 3. It is linearly polarized light in a direction orthogonal to.

【0044】従って、液晶層5に電圧が印加されてない
ときは、液晶層5に複屈折はほとんど無く暗表示が得ら
れ、液晶層5に電圧が印加するとその印加電圧によって
光の透過率が変化し階調表示が可能になる。
Therefore, when no voltage is applied to the liquid crystal layer 5, a dark display is obtained with almost no birefringence in the liquid crystal layer 5, and when a voltage is applied to the liquid crystal layer 5, the light transmittance is reduced by the applied voltage. It changes and gray scale display becomes possible.

【0045】図4(a)によって透過モードの暗表示を
説明する。図4(a)の下側から光源(図示せず)によ
って出射された光は偏光板9通過後、偏光板9の透過軸
に一致した直線偏光になる。
The dark display in the transmission mode will be described with reference to FIG. The light emitted from the lower side of FIG. 4A by a light source (not shown) passes through the polarizing plate 9 and becomes linearly polarized light that matches the transmission axis of the polarizing plate 9.

【0046】λ/2板12は、偏光板9の透過軸方向と
λ/2板11の遅相軸方向が15度になるように、また
λ/2板11の遅相軸方向に対して直交するように配置
されており、λ/2板12を通過した光は偏光板9の透
過軸方向に対してλ/2板12の遅相軸方向を挟んで3
0度の偏光方向の直線偏光になり、λ/4板10に入射
される。
The λ / 2 plate 12 is oriented such that the transmission axis direction of the polarizing plate 9 and the slow axis direction of the λ / 2 plate 11 are at 15 degrees, and the λ / 2 plate 11 is The light passing through the λ / 2 plate 12 is disposed orthogonally to the transmission axis direction of the polarizing plate 9 with the slow axis direction of the λ / 2 plate 12 interposed therebetween.
The light becomes linearly polarized light having a polarization direction of 0 degrees and is incident on the λ / 4 plate 10.

【0047】λ/4板10は、偏光板9の透過軸方向に
対してλ/2板12の遅相軸方向を挟んでλ/4板10
の遅相軸方向が75度になるように配置されている。つ
まり、λ/2板12を通過した直線偏光の偏光方向に対
して、λ/4板10の遅相軸方向は45度になるように
配置されており、λ/4板10を通過した光は円偏光に
なる。
The λ / 4 plate 10 is located between the λ / 2 plate 12 and the slow axis direction of the λ / 2 plate 12 with respect to the transmission axis direction of the polarizing plate 9.
Are arranged such that the slow axis direction is 75 degrees. That is, the slow axis direction of the λ / 4 plate 10 is arranged to be 45 degrees with respect to the polarization direction of the linearly polarized light that has passed through the λ / 2 plate 12, and the light that has passed through the λ / 4 plate 10 Becomes circularly polarized light.

【0048】液晶層5に電界が発生していない場合は、
負の誘電異方性を示す液晶材料を用いた液晶層5は液晶
分子が基板面からほぼ垂直に配向しており、入射する光
に対する液晶層5の屈折率異方性は極わずかであり、光
が液晶層5を通過することによって生じる位相差はほぼ
0である。従って、λ/4板10から出射される円偏光
は、円偏光を崩さずに液晶層5を通過し、λ/4板7に
入射する。
When no electric field is generated in the liquid crystal layer 5,
In the liquid crystal layer 5 using a liquid crystal material exhibiting a negative dielectric anisotropy, liquid crystal molecules are oriented almost perpendicular to the substrate surface, and the liquid crystal layer 5 has a very small refractive index anisotropy with respect to incident light. The phase difference caused by the light passing through the liquid crystal layer 5 is almost zero. Therefore, the circularly polarized light emitted from the λ / 4 plate 10 passes through the liquid crystal layer 5 without breaking the circularly polarized light and enters the λ / 4 plate 7.

【0049】λ/4板10の遅相軸方向とλ/4板7の
遅相軸方向は直交しており、λ/4板7に入射した円偏
光は、偏光板9の透過軸方向と直交する方向の直線偏光
になり、λ/2板11に入射される。λ/2板11を通
過した直線偏光は、偏光板6の透過軸と直交する方向の
直線偏光であり、偏光板6で吸収され透過しない。この
様に、液晶層5に電圧を印加しない場合は暗表示とな
る。
The slow axis direction of the λ / 4 plate 10 and the slow axis direction of the λ / 4 plate 7 are orthogonal to each other, and the circularly polarized light incident on the λ / 4 plate 7 The light becomes linearly polarized light in the orthogonal direction, and is incident on the λ / 2 plate 11. The linearly polarized light that has passed through the λ / 2 plate 11 is linearly polarized light in a direction orthogonal to the transmission axis of the polarizing plate 6, and is absorbed by the polarizing plate 6 and not transmitted. Thus, when no voltage is applied to the liquid crystal layer 5, a dark display is obtained.

【0050】次に図4(b)によって透過モードの明表
示を説明する。図4(b)は液晶層に電圧を印加する場
合でありλ/4板10を光が通過するまでは図4(a)
と同一であり説明は省略する。
Next, the bright display in the transmission mode will be described with reference to FIG. FIG. 4B shows a case where a voltage is applied to the liquid crystal layer, and FIG. 4A shows a state until light passes through the λ / 4 plate 10.
And the description is omitted.

【0051】液晶層5に電圧を印加すると、基板面から
垂直方向に配向していた液晶分子は基板面と水平方向に
幾分傾き、液晶層5に入射したλ/4板10からの円偏
光は、液晶分子の複屈折により楕円偏光になり、λ/4
板7、λ/2板11を通過した後には偏光板6の透過軸
と直交する直線偏光にはならず、偏光板6を幾分通過す
る。こうして、液晶層に印加される電圧を調整すること
で、反射した後に偏光板6を透過できる光量を調節する
ことができ、階調表示が可能になる。
When a voltage is applied to the liquid crystal layer 5, the liquid crystal molecules oriented vertically from the substrate surface are slightly inclined in the horizontal direction with respect to the substrate surface, and the circularly polarized light from the λ / 4 plate 10 incident on the liquid crystal layer 5. Becomes elliptically polarized light due to birefringence of liquid crystal molecules, and λ / 4
After passing through the plate 7 and the λ / 2 plate 11, the light does not become linearly polarized light orthogonal to the transmission axis of the polarizing plate 6 but passes through the polarizing plate 6 to some extent. In this manner, by adjusting the voltage applied to the liquid crystal layer, the amount of light that can be transmitted through the polarizing plate 6 after being reflected can be adjusted, and gradation display can be performed.

【0052】また、反射電極3と対向電極4から液晶層
5に電圧を印加し、液晶層5の位相差が1/2波長条件
になるように液晶分子の配向状態を変化させると、λ/
4板7を通過した後の円偏光は液晶層5のセル厚の半分
の地点で直線偏光になり、残りの液晶層5を通過すると
円偏光になる。液晶層5から出射される円偏光はλ/4
板7、λ/2板11を通過すると、偏光板6の透過軸と
平行な直線偏光になり、偏光板6を通過する反射光は最
大になる。
When a voltage is applied from the reflective electrode 3 and the counter electrode 4 to the liquid crystal layer 5 to change the alignment state of the liquid crystal molecules so that the phase difference of the liquid crystal layer 5 becomes a half wavelength condition, λ /
The circularly polarized light after passing through the four plates 7 becomes linearly polarized light at a half point of the cell thickness of the liquid crystal layer 5 and becomes circularly polarized light when passing through the remaining liquid crystal layer 5. The circularly polarized light emitted from the liquid crystal layer 5 is λ / 4
After passing through the plate 7 and the λ / 2 plate 11, the light becomes linearly polarized light parallel to the transmission axis of the polarizing plate 6, and the reflected light passing through the polarizing plate 6 becomes maximum.

【0053】図4(b)には、偏光板9を通過した光が
最も偏光板6を透過する液晶層5のリタデーション条件
で図示している。従って、液晶層5に電圧が印加されて
ないときは、液晶層5に複屈折はほとんど無く暗表示が
得られ、液晶層5に電圧が印加するとその印加電圧によ
って光の透過率が変化し階調表示が可能になる。
FIG. 4B shows the retardation condition of the liquid crystal layer 5 in which the light passing through the polarizing plate 9 passes through the polarizing plate 6 the most. Therefore, when a voltage is not applied to the liquid crystal layer 5, the liquid crystal layer 5 has almost no birefringence and a dark display is obtained. Key display becomes possible.

【0054】ここで、反射モードの明状態で反射率が最
大となる液晶層5の位相差はλ/4であり、透過モード
の明状態で透過率が最大となる液晶層5の位相差はλ/
2であることから、反射モードとして用いる領域の液晶
層と透過モードとして用いる領域の液晶層の厚みが等し
い場合には、反射モードとして用いる領域の液晶層5の
位相差をλ/4、透過モードとして用いる領域の液晶層
5の位相差をλ/2という位相差を同時に満たすことは
できない。
Here, the phase difference of the liquid crystal layer 5 having the maximum reflectance in the bright state in the reflection mode is λ / 4, and the phase difference of the liquid crystal layer 5 having the maximum transmittance in the bright state of the transmission mode is λ / 4. λ /
2, when the thickness of the liquid crystal layer in the region used as the reflection mode is equal to the thickness of the liquid crystal layer in the region used as the transmission mode, the phase difference between the liquid crystal layer 5 in the region used as the reflection mode is λ / 4, The phase difference of the liquid crystal layer 5 in the region used as the above cannot satisfy the phase difference of λ / 2 at the same time.

【0055】つまり、反射モードとして用いる領域の液
晶層5の位相差が0からλ/4に変化することで階調表
示を行なう場合は、透過モードとして用いる領域の液晶
層5の位相差も0からλ/4までしか変化しないため
に、透過モードは効率良く光を利用することができな
い。
That is, when gradation display is performed by changing the phase difference of the liquid crystal layer 5 in the region used as the reflection mode from 0 to λ / 4, the phase difference of the liquid crystal layer 5 in the region used as the transmission mode is also 0. Λ to λ / 4, the transmission mode cannot use light efficiently.

【0056】よって、反射モードとして用いる領域の液
晶層と透過モードとして用いる領域の液晶層の厚みを変
えるか、反射モードとして用いる領域の液晶層と透過モ
ードとして用いる領域の液晶層に印加する電圧を変える
ことで、反射モード、透過モード共に効率良く光を利用
することができる。ここで、反射モードとして用いる領
域の液晶層と透過モードとして用いる領域の液晶層の厚
みを変える際に、透過モードとして用いる領域の液晶層
の厚みを反射モードとして用いる領域の液晶層の厚みの
2倍にすると、反射モードとして用いる領域の液晶層5
の位相差をλ/4、透過モードとして用いる領域の液晶
層5の位相差をλ/2という位相差を同時に満たすこと
ができるが、透過モードとして用いる領域の液晶層の厚
みを反射モードとして用いる領域の液晶層の厚みの2倍
にしなくても、透過モードとして用いる領域の液晶層の
厚みを反射モードとして用いる領域の液晶層の厚みの2
倍を超えない範囲で、透過モードとして用いる領域の液
晶層の厚みを反射モードとして用いる領域の液晶層の厚
みより大きくすることで、光の利用効率は向上する。
Therefore, the thickness of the liquid crystal layer in the region used as the reflection mode and the thickness of the liquid crystal layer in the region used as the transmission mode are changed, or the voltage applied to the liquid crystal layer in the region used as the reflection mode and the liquid crystal layer in the region used as the transmission mode are changed. By changing, the light can be efficiently used in both the reflection mode and the transmission mode. Here, when changing the thickness of the liquid crystal layer in the area used as the reflection mode and the thickness of the liquid crystal layer in the area used as the transmission mode, the thickness of the liquid crystal layer in the area used as the transmission mode is 2 times the thickness of the liquid crystal layer in the area used as the reflection mode. If it is doubled, the liquid crystal layer 5 in the region used as the reflection mode
Of the liquid crystal layer 5 in the region used as the transmission mode can be simultaneously satisfied with the phase difference of λ / 2, but the thickness of the liquid crystal layer in the region used as the transmission mode is used as the reflection mode. Even if the thickness of the liquid crystal layer in the region used as the transmission mode is not set to twice the thickness of the liquid crystal layer in the region, the thickness of the liquid crystal layer in the region used as the reflection mode is set to 2 times the thickness of the liquid crystal layer in the region used as the reflection mode.
By making the thickness of the liquid crystal layer in the region used as the transmission mode larger than the thickness of the liquid crystal layer in the region used as the reflection mode within a range not exceeding twice, light use efficiency is improved.

【0057】実施形態1ではλ/4板10の遅相軸はλ
/4板7の遅相軸と直交するように、λ/2板12の遅
相軸はλ/2板11の遅相軸と直交するように、また偏
光板6の透過軸は偏光板9の透過軸に対して直交するよ
うに設定されているが、透過モード時に液晶層にリタデ
ーションが無い状態で偏光板9を通過した直線偏光が、
偏光板6の透過軸に直角の直線偏光で偏光板6に入射す
れば、暗表示ができる。
In the first embodiment, the slow axis of the λ / 4 plate 10 is λ
The slow axis of the λ / 2 plate 12 is orthogonal to the slow axis of the λ / 2 plate 11, and the transmission axis of the polarizing plate 6 is orthogonal to the slow axis of the λ / 2 plate 11. Is set so as to be orthogonal to the transmission axis, but linearly polarized light that has passed through the polarizing plate 9 in a state where there is no retardation in the liquid crystal layer in the transmission mode is
If linearly polarized light perpendicular to the transmission axis of the polarizing plate 6 is incident on the polarizing plate 6, dark display can be achieved.

【0058】つまり、偏光板6の透過軸とλ/4板7の
遅相軸とのなす角度が、偏光板6の透過軸とλ/2板1
1の遅相軸とのなす角度をαとした場合、概ね(2α+
45)度に、偏光板9の透過軸とλ/4板10の遅相軸
とのなす角度が、偏光板9の透過軸とλ/2板12の遅
相軸とのなす角度をαとした場合、概ね(2α+45)
度に設置され、かつ透過モード時に液晶層にリタデーシ
ョンが無い状態で偏光板9を通過した直線偏光が、偏光
板6の透過軸に直角の直線偏光で偏光板6に入射するよ
うな組み合わせであれば、λ/4板10の遅相軸はλ/
4板7の遅相軸と直交してなくても、λ/2板12の遅
相軸はλ/2板11の遅相軸と直交してなくても、また
偏光板6の透過軸は偏光板9の透過軸に対して直交しな
くても、液晶層5に電圧が印加されてないときは、液晶
層5に複屈折はほとんど無く暗表示が得られ、液晶層5
に電圧が印加するとその印加電圧によって光の透過率が
変化し階調表示が可能である。
That is, the angle between the transmission axis of the polarizing plate 6 and the slow axis of the λ / 4 plate 7 is equal to the transmission axis of the polarizing plate 6 and the λ / 2 plate 1.
Assuming that the angle between the first axis and the slow axis is α, approximately (2α +
45) At each angle, the angle between the transmission axis of the polarizing plate 9 and the slow axis of the λ / 4 plate 10 is α, and the angle between the transmission axis of the polarizing plate 9 and the slow axis of the λ / 2 plate 12 is α. If you do, approximately (2α + 45)
In this case, the linearly-polarized light that has been installed at an angle and that has passed through the polarizing plate 9 in a state where there is no retardation in the liquid crystal layer in the transmission mode enters the polarizing plate 6 as linearly-polarized light perpendicular to the transmission axis of the polarizing plate 6. For example, the slow axis of the λ / 4 plate 10 is λ /
Even if it is not orthogonal to the slow axis of the four plates 7, the slow axis of the λ / 2 plate 12 is not orthogonal to the slow axis of the λ / 2 plate 11, and the transmission axis of the polarizing plate 6 is Even if the liquid crystal layer 5 is not perpendicular to the transmission axis of the polarizing plate 9, when no voltage is applied to the liquid crystal layer 5, the liquid crystal layer 5 has almost no birefringence and a dark display is obtained.
When a voltage is applied to the device, the light transmittance changes according to the applied voltage, and a gray scale display is possible.

【0059】ここで、λ/4板7、10、λ/2板1
1、12を構成する複屈折性材料の常光及び異常光の両
者に対する屈折率は波長に強く依存しているため、特定
の厚さの波長板内で蓄積された位相遅れもまた波長に依
存する。つまり、λ/4の位相遅れを入射光の直線偏光
面に与えるには、波長を特定した単波長の光線を入射さ
せた場合のみに完全に達成できる。よって、λ/4板
7、10を構成する複屈折性材料の屈折率異方性の波長
依存性により、λ/4の位相遅れが達成できない波長域
で偏光板6で遮光されずに透過する光が発生し、暗表示
に色づきが生じるが、λ/4板7とλ/2板11及びλ
/4板10とλ/2板12を組み合わせることで、λ/
4板7、10を構成する複屈折性材料の屈折率異方性の
波長依存性をある程度相殺することができ、比較的広波
長帯でλ/4条件を満たすようになる。
Here, the λ / 4 plates 7, 10 and the λ / 2 plate 1
Since the refractive indices of the birefringent materials 1 and 12 for both ordinary light and extraordinary light strongly depend on the wavelength, the phase delay accumulated in the wave plate having a specific thickness also depends on the wavelength. . In other words, providing a phase delay of λ / 4 to the linear polarization plane of the incident light can be completely achieved only when a single-wavelength light beam having a specified wavelength is incident. Therefore, due to the wavelength dependence of the refractive index anisotropy of the birefringent materials constituting the λ / 4 plates 7 and 10, the light is transmitted without being shielded by the polarizing plate 6 in a wavelength range where the phase delay of λ / 4 cannot be achieved. Although light is generated and coloring occurs in dark display, the λ / 4 plate 7, the λ / 2 plate 11,
By combining the / 4 plate 10 and the λ / 2 plate 12, λ /
The wavelength dependence of the refractive index anisotropy of the birefringent materials constituting the four plates 7 and 10 can be offset to some extent, and the λ / 4 condition can be satisfied in a relatively wide wavelength band.

【0060】このため実施形態1と比較して反射モード
の暗表示の色づきを改善できる。もちろん、透過モード
の暗表示の色づきも、λ/4板10の遅相軸はλ/4板
7の遅相軸と直交するように、λ/2板12の遅相軸は
λ/2板11の遅相軸と直交するようにしなくても改善
される。また、実施形態1ではα=15度としたが、α
を変化することで明表示の色味を変化させることができ
るため、希望する色味に応じてαを変えても良い。ま
た、透過モードの暗表示の色づきは悪くなるが、λ/2
板12を省略し原価力向上を図ることも可能である。但
し、透過モード時に液晶層にリタデーションが無い状態
で偏光板9を通過した直線偏光が、偏光板6の透過軸に
直角の直線偏光で偏光板6に入射するようにλ/4板1
0の遅相軸と偏光板9の透過軸を設定する必要が有る。
Therefore, the coloring of the dark display in the reflection mode can be improved as compared with the first embodiment. Of course, the coloring of the dark display in the transmission mode is also performed such that the slow axis of the λ / 4 plate 10 is orthogonal to the slow axis of the λ / 4 plate 7 and the slow axis of the λ / 2 plate 12 is the λ / 2 plate. It is improved even if it is not orthogonal to the eleven slow axes. In the first embodiment, α = 15 degrees.
Can be changed by changing .alpha., .Alpha. May be changed according to the desired color. Further, the coloring of the dark display in the transmission mode is deteriorated, but λ / 2
It is also possible to omit the plate 12 to improve cost performance. However, in the transmission mode, the λ / 4 plate 1 is set so that the linearly polarized light that has passed through the polarizing plate 9 in a state where there is no retardation in the liquid crystal layer enters the polarizing plate 6 as linearly polarized light perpendicular to the transmission axis of the polarizing plate 6.
It is necessary to set a slow axis of 0 and a transmission axis of the polarizing plate 9.

【0061】ここで、λ/4板10の遅相軸はλ/4板
7の遅相軸と直交するように、λ/2板12の遅相軸は
λ/2板11の遅相軸と直交するように、また偏光板6
の透過軸は偏光板9の透過軸に対して直交するように設
定することで、透過モードにおいて、λ/4板10の屈
折率異方性の波長依存性を、λ/4板7の屈折率異方性
の波長依存性で相殺することができ、さらにλ/2板1
2の屈折率異方性の波長依存性を、λ/2板11の屈折
率異方性の波長依存性で相殺することができ、暗表示の
色づきをさらに改善できる。
Here, the slow axis of the λ / 2 plate 12 is set so that the slow axis of the λ / 4 plate 10 is orthogonal to the slow axis of the λ / 4 plate 7. And the polarizing plate 6
Is set so as to be orthogonal to the transmission axis of the polarizing plate 9, the wavelength dependence of the refractive index anisotropy of the λ / 4 plate 10 in the transmission mode is reduced. Can be offset by the wavelength dependency of the anisotropy, and the λ / 2 plate 1
2 can be offset by the wavelength dependence of the refractive index anisotropy of the λ / 2 plate 11, and the coloring of dark display can be further improved.

【0062】さらに、液晶層5の視角特性を改善させる
ため、偏光板6と液晶層5の間と偏光板9と液晶層5の
間の少なくとも一方に、別の位相差板を設置させること
で、広い視角範囲で良好な表示が実現される。また、実
施形態1では液晶層5に垂直配向性液晶を用いている
が、基板表面近傍の液晶分子の配向が基板面の垂直方向
に対してある程度のティルト角を持つ場合には、液晶層
5に電圧無印加時でも完全にリタデーションは0にはな
らなくて、反射モードではγのリターデーションが残存
する場合、その分を補償し0に近付けるように偏光板6
と液晶層5の間と偏光板9と液晶層5の間の少なくとも
一方に、別の位相差板を設置すればより良好な暗表示が
得られる。
Further, in order to improve the viewing angle characteristics of the liquid crystal layer 5, another retardation plate is provided at least between the polarizing plate 6 and the liquid crystal layer 5 and between the polarizing plate 9 and the liquid crystal layer 5. Good display is realized in a wide viewing angle range. Further, in the first embodiment, the vertically aligned liquid crystal is used for the liquid crystal layer 5. However, when the orientation of the liquid crystal molecules near the substrate surface has a certain tilt angle with respect to the vertical direction of the substrate surface, the liquid crystal layer 5 may be used. When no voltage is applied to the polarizing plate, the retardation does not completely become 0, and when the retardation of γ remains in the reflection mode, the polarizing plate 6 is compensated for the retardation and approaches the zero.
A better dark display can be obtained by providing another retardation plate between at least one of between the liquid crystal layer 5 and at least one between the polarizing plate 9 and the liquid crystal layer 5.

【0063】液晶分子が概ね基板面の垂直方向に向いて
いる状態の液晶層において、反射モードではγのリター
デーションが残存している場合、λ/4板7に代えて、
(λ/4−γ)のリターデーションをもつ位相差板を配
置すればよい。
When the retardation of γ remains in the reflection mode in the liquid crystal layer in which the liquid crystal molecules are oriented substantially in the direction perpendicular to the substrate surface, instead of the λ / 4 plate 7,
A retardation plate having a retardation of (λ / 4−γ) may be provided.

【0064】反射モードでは、液晶層には、円偏光から
液晶層の残存しているリターデーション分ずれた楕円偏
光が入射する。液晶層を通過し、反射機能を有する領域
で円偏光となり、反射して回転方向が逆転した円偏光と
なる。液晶層を通過して液晶層から出射するとき、円偏
光からずれた楕円偏光となる。このときの楕円偏光は、
入射時位相が90度ずれた状態にある。位相差板を通過
すると偏光板6の透過軸と直交する直線偏光となる。
In the reflection mode, elliptically polarized light is incident on the liquid crystal layer, which is shifted from the circularly polarized light by the remaining retardation of the liquid crystal layer. The light passes through the liquid crystal layer and becomes circularly polarized light in a region having a reflection function, and is reflected and becomes circularly polarized light whose rotation direction is reversed. When the light passes through the liquid crystal layer and exits from the liquid crystal layer, the light becomes elliptically polarized light deviated from circularly polarized light. The elliptically polarized light at this time is
At the time of incidence, the phase is shifted by 90 degrees. After passing through the phase difference plate, the light becomes linearly polarized light orthogonal to the transmission axis of the polarizing plate 6.

【0065】反射用絵素電極が透過用絵素電極より大き
い場合など、反射型表示がメインとなる場合は透過モー
ドの表示に用いているλ/4板10はそのままでもよ
い。従って、液晶分子が基板面の垂直方向に向いている
状態の液晶層に残存するリターデーションが無視できな
い場合でも、そのリターデーションを考慮した位相差板
を配置することにより反射モードでコントラストの高い
表示が実現できる。
When the reflection type display is mainly used, for example, when the reflection picture element electrode is larger than the transmission picture element electrode, the λ / 4 plate 10 used for transmission mode display may be left as it is. Therefore, even when the retardation remaining in the liquid crystal layer in a state where the liquid crystal molecules are oriented in the direction perpendicular to the substrate surface cannot be ignored, a display having a high contrast in the reflection mode can be obtained by arranging the retardation plate in consideration of the retardation. Can be realized.

【0066】更に、液晶層に反射モードではγ、透過モ
ードでは△のリターデーションが残存している場合、λ
/4板7に代えて(λ/4−γ)のリターデーションを
もつ位相差板、λ/4板10に代えて(λ/4−(△−
γ))のリターデーションをもつ位相差板を配置すれば
よい。
Further, when the retardation of 液晶 remains in the liquid crystal layer in the reflection mode and △ in the transmission mode,
A phase difference plate having a retardation of (λ / 4−γ) in place of the / 4 plate 7 and (λ / 4− (△ −) in place of the λ / 4 plate 10
What is necessary is just to arrange | position the retardation film which has the retardation of (gamma))).

【0067】透過機能を有する領域の透過光で表示を行
う透過モードでは、液晶分子が基板面の垂直方向に向い
ている状態では、液晶層を出射したとき反射モードの出
射光と同じ状態の楕円偏光となるように上記(λ/4−
(△−γ))のリターデーションをもつ位相差板が設定
され、その位相差を有した楕円偏光が上記(λ/4−
γ)のリターデーションをもつ位相差板に入射するの
で、上記(λ/4−γ)のリターデーションをもつ位相
差板を通過したとき、偏光板6の透過軸と直交する直線
偏光となり光漏れの少ない暗表示となる。
In the transmission mode in which the display is performed by the transmitted light in the region having the transmission function, in a state where the liquid crystal molecules are oriented in the direction perpendicular to the substrate surface, when the liquid crystal layer is emitted, the ellipse has the same state as the emitted light in the reflection mode when emitted from the liquid crystal layer. (Λ / 4-
A retardation plate having a retardation of (△ -γ)) is set, and the elliptically polarized light having the retardation is set to the above (λ / 4−).
γ) is incident on the retardation plate having the retardation, and when passing through the retardation plate having the retardation of (λ / 4−γ), the light becomes linearly polarized light orthogonal to the transmission axis of the polarizing plate 6 and light leakage occurs. And a dark display with less noise.

【0068】従って、液晶分子が基板面の垂直方向に向
いている状態の液晶層に残存するリターデーションが無
視できない場合でも、そのリターデーションを考慮した
位相差板を配置することにより反射モードでコントラス
トの高い表示が実現できる。
Therefore, even when the retardation remaining in the liquid crystal layer in a state where the liquid crystal molecules are oriented in the direction perpendicular to the substrate surface cannot be ignored, the contrast in the reflection mode can be obtained by arranging the retardation plate in consideration of the retardation. Display can be realized.

【0069】また、実施形態1では液晶層5に垂直配向
性液晶を用いているが、平行配向性液晶を用いても同様
の原理で表示が可能である。但し、平行配向性液晶を用
いると電圧印加につれて液晶層5のリタデーションが小
さくなるが、電圧印加時に基板近傍以外の液晶分子が概
ね基板面の垂直方向に向いている状態でも、基板近傍の
液晶分子は電界によりほとんど動かないため、基板近傍
の液晶分子による残留リタデーションが生じる。そのた
め、垂直配向性液晶を用いた場合よりも平行配向性液晶
を用いると残留リタデーションの影響分、暗表示時に黒
レベルが浮くことになりコントラスト低下が発生する。
そのため、平行配向性液晶を用いて垂直配向性液晶同様
の黒レベルを表示するには、残留リタデーションを補償
するように上下基板それぞれの近傍の液晶分子による残
留リタデーションを打ち消すように上下基板に液晶分子
を配向させるか、位相差板を追加する必要が有る。
Further, in the first embodiment, the liquid crystal layer 5 is formed of a vertically oriented liquid crystal, but a display can be performed on the same principle by using a parallel oriented liquid crystal. However, when the parallel alignment liquid crystal is used, the retardation of the liquid crystal layer 5 decreases as the voltage is applied. However, even when the liquid crystal molecules other than the vicinity of the substrate are substantially oriented in the vertical direction of the substrate surface when the voltage is applied, the liquid crystal molecules near the substrate are not affected. Is hardly moved by an electric field, so that residual retardation occurs due to liquid crystal molecules near the substrate. Therefore, when the parallel alignment liquid crystal is used as compared with the case where the vertical alignment liquid crystal is used, the black level floats at the time of dark display due to the influence of the residual retardation, and the contrast is reduced.
Therefore, in order to display the same black level as vertical alignment liquid crystal using parallel alignment liquid crystal, liquid crystal molecules are placed on upper and lower substrates so as to cancel residual retardation due to liquid crystal molecules near each of the upper and lower substrates so as to compensate for residual retardation. Or a retardation plate needs to be added.

【0070】図5は、本実施形態の透過領域において、
λ/4板10とλ/4板7の遅相軸を平行とし、λ/2
板11とλ/2板12の遅相軸を平行とした場合と、比
較例としてλ/4板10とλ/4板7の遅相軸を平行と
し、λ/2板は設けない場合に黒表示のときの光の波長
と透過率の関係を示す図である。従って、図5に示すよ
うに、λ/2板を設けることに、黒表示のときに光もれ
の少ない表示を得ることができる。
FIG. 5 shows the transmission region of this embodiment.
The slow axes of the λ / 4 plate 10 and the λ / 4 plate 7 are set to be parallel, and λ / 2
The case where the slow axes of the plate 11 and the λ / 2 plate 12 are parallel and the case where the slow axes of the λ / 4 plate 10 and the λ / 4 plate 7 are parallel and the λ / 2 plate is not provided as a comparative example. FIG. 6 is a diagram illustrating a relationship between the wavelength of light and the transmittance during black display. Therefore, as shown in FIG. 5, by providing the λ / 2 plate, it is possible to obtain a display with little light leakage in black display.

【0071】図6は、本実施形態の透過領域において、
λ/4板10とλ/4板7の遅相軸を平行とし、λ/2
板11とλ/2板12の遅相軸を平行とした場合と、λ
/4板10とλ/4板7の遅相軸を直交とし、λ/2板
11とλ/2板12の遅相軸を直交とした場合に、黒表
示のときの光の波長と透過率の関係を示す図である。従
って、図6に示すように、λ/4板及びλ/2板をそれ
ぞれ直交に配置することにより、黒表示のときに光もれ
の少ない表示を得ることができる。
FIG. 6 shows the transmission region of this embodiment.
The slow axes of the λ / 4 plate 10 and the λ / 4 plate 7 are set to be parallel, and λ / 2
When the slow axes of the plate 11 and the λ / 2 plate 12 are parallel,
When the slow axes of the / 4 plate 10 and the λ / 4 plate 7 are orthogonal and the slow axes of the λ / 2 plate 11 and the λ / 2 plate 12 are orthogonal, the wavelength and transmission of light during black display It is a figure which shows the relationship of a rate. Therefore, as shown in FIG. 6, by arranging the λ / 4 plate and the λ / 2 plate at right angles, it is possible to obtain a display with little light leakage in black display.

【0072】[0072]

【発明の効果】本発明の請求項1に記載の液晶表示装置
によれば、反射モードにおいて、広波長帯で偏光状態の
ばらつきがなくなり、ほぼ円偏光にすることができる。
このため、暗表示の反射モードにおける色づきが改善で
きる。請求項2の発明によれば、第1の位相差板の屈折
率異方性の波長依存性を最適に補償することができる。
According to the liquid crystal display device of the first aspect of the present invention, in the reflection mode, there is no variation in the polarization state in a wide wavelength band, and almost circular polarization can be achieved.
For this reason, coloring in the reflection mode of dark display can be improved. According to the second aspect of the present invention, the wavelength dependence of the refractive index anisotropy of the first retardation plate can be optimally compensated.

【0073】請求項3の発明によれば、透過モードにお
いて、広波長帯で偏光状態のばらつきがなくなり、ほぼ
円偏光にすることができる。このため、反射モードだけ
でなく、暗表示の透過モードにおける色づきが改善で
き、反射モードと透過モードとを両用した場合でも、良
好な黒表示が実現される。請求項4の発明によれば、第
2の位相差板の屈折率異方性の波長依存性を最適に補償
することができる。
According to the third aspect of the present invention, in the transmission mode, there is no variation in the polarization state in a wide wavelength band, and almost circular polarization can be achieved. For this reason, coloring can be improved not only in the reflection mode but also in the transmission mode of dark display, and a good black display is realized even when both the reflection mode and the transmission mode are used. According to the invention of claim 4, the wavelength dependence of the refractive index anisotropy of the second retardation plate can be optimally compensated.

【0074】請求項5の発明によれば、液晶層に負の誘
電率異方性を有する垂直配向液晶材料を用いることで、
液晶層のリターデションがほぼ0である状態が実現され
るので、暗状態がより暗くなるので、コントラストが高
くなる。請求項6の発明によれば、ノーマリブラック
(以下NBという)ではセルギャップ変化によるコント
ラスト比の変化はほとんど発生せず、生産性の点でセル
ギャップ制御に対するある程度の余裕がとれる。
According to the fifth aspect of the invention, by using a vertically aligned liquid crystal material having a negative dielectric anisotropy for the liquid crystal layer,
Since the state where the retardation of the liquid crystal layer is almost 0 is realized, the dark state becomes darker, and the contrast is increased. According to the invention of claim 6, in normally black (hereinafter referred to as NB), a change in the contrast ratio due to a change in the cell gap hardly occurs, and a certain margin for the cell gap control can be secured in terms of productivity.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態1の液晶表示装置の断面模式
図である。
FIG. 1 is a schematic cross-sectional view of a liquid crystal display device according to a first embodiment of the present invention.

【図2】本発明の実施形態1の液晶表示装置の平面図で
ある。
FIG. 2 is a plan view of the liquid crystal display device according to the first embodiment of the present invention.

【図3】本発明の実施形態1の液晶表示装置の反射領域
での光の透過状態を示す図である。
FIG. 3 is a diagram illustrating a light transmission state in a reflection region of the liquid crystal display device according to the first embodiment of the present invention.

【図4】本発明の実施形態1の液晶表示装置の透過領域
での光の透過状態を示す図である。
FIG. 4 is a diagram illustrating a light transmission state in a transmission region of the liquid crystal display device according to the first embodiment of the present invention.

【図5】透過領域において黒表示をおこなうときの光の
波長と透過率の関係を示す図である。
FIG. 5 is a diagram showing the relationship between the wavelength of light and transmittance when black display is performed in a transmission region.

【図6】透過領域において黒表示をおこなうときの光の
波長と透過率の関係を示す図である。
FIG. 6 is a diagram showing the relationship between the wavelength of light and transmittance when black display is performed in a transmission region.

【符号の説明】[Explanation of symbols]

1、2 基板 3 反射電極 4 対向電極 5 液晶層 6、9 偏光板 7、10 λ/4板 8 透明電極 11、12 λ/2板 1, 2 substrate 3 reflective electrode 4 counter electrode 5 liquid crystal layer 6, 9 polarizing plate 7, 10 λ / 4 plate 8 transparent electrode 11, 12 λ / 2 plate

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤岡 正悟 大阪府大阪市阿倍野区長池町22番22号 シ ャープ株式会社内 Fターム(参考) 2H091 FA08X FA08Z FA11X FA11Z FA14Y FA15Y FD06 GA03 GA06 GA11 KA02 LA03 LA16 LA17  ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Shogo Fujioka 22-22 Nagaikecho, Abeno-ku, Osaka-shi, Osaka F-term (in reference) 2H091 FA08X FA08Z FA11X FA11Z FA14Y FA15Y FD06 GA03 GA06 GA11 KA02 LA03 LA16 LA17

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 反射機能を有する領域と透過機能を有す
る領域とが形成された一方基板と、対向電極が形成され
た他方基板を有し、前記一方基板と前記他方基板の間に
液晶層が挟持された液晶表示装置において、 前記他方基板の前記液晶層とは反対の面に設けられた第
1の偏光手段と、 前記一方基板の前記液晶層とは反対の面に設けられた第
2の偏光手段と、 前記第1の偏光手段と前記液晶層との間に設けられ、前
記第1の偏光手段からの直線偏光を円偏光とする第1の
位相差板と、 前記第2の偏光手段と前記液晶層との間に設けられ、前
記第2の偏光手段からの直線偏光を円偏光とする第2の
位相差板と、 前記第1の偏光手段と前記液晶層との間に設けられ、前
記第1の位相差板の屈折率異方性の波長依存性を補償す
る第3の位相差板とを有することを特徴とする液晶表示
装置。
A first substrate on which a region having a reflection function and a region having a transmission function are formed; and a second substrate on which a counter electrode is formed, and a liquid crystal layer is interposed between the one substrate and the other substrate. In the sandwiched liquid crystal display device, a first polarizing unit provided on a surface of the other substrate opposite to the liquid crystal layer, and a second polarizing unit provided on a surface of the one substrate opposite to the liquid crystal layer. A polarizing means; a first retardation plate provided between the first polarizing means and the liquid crystal layer, for converting linearly polarized light from the first polarizing means to circularly polarized light; and the second polarizing means. And a second retardation plate provided between the first polarizing means and the liquid crystal layer, the second retardation plate being configured to make the linearly polarized light from the second polarizing means circularly polarized light, and provided between the first polarizing means and the liquid crystal layer. A third retardation plate for compensating for the wavelength dependence of the refractive index anisotropy of the first retardation plate; The liquid crystal display device characterized in that it comprises.
【請求項2】 前記第1の偏光手段と第1の位相差板の
間に配置された前記第3の位相差板がλ/2板であり、
前記第1の偏光手段の透過軸と前記第3の位相差板の遅
相軸とのなす角度がαのとき、前記第1の偏光手段の透
過軸と第1の位相差板の遅相軸とのなす角度が2α+4
5度であることを特徴とする請求項1に記載の液晶表示
装置。
2. The third retardation plate disposed between the first polarizing means and the first retardation plate is a λ / 2 plate,
When the angle between the transmission axis of the first polarizing means and the slow axis of the third retardation plate is α, the transmission axis of the first polarizing means and the slow axis of the first retardation plate Angle with 2α + 4
The liquid crystal display device according to claim 1, wherein the angle is 5 degrees.
【請求項3】 前記第2の偏光手段と前記液晶層との間
に設けられ、前記第2の位相差板の屈折率異方性の波長
依存性を補償する第4の位相差板を有することを特徴と
する請求項1又は請求項2に記載の液晶表示装置。
3. A fourth retardation plate provided between the second polarizing means and the liquid crystal layer, the fourth retardation plate compensating for the wavelength dependence of the refractive index anisotropy of the second retardation plate. The liquid crystal display device according to claim 1 or 2, wherein:
【請求項4】 前記第2の偏光板と第2の位相差板の間
に配置された前記第4に位相差板がλ/2板であり、前
記第2の偏光手段の透過軸と前記第4の位相差板の遅相
軸とのなす角度がαのとき、前記第2の偏光手段の透過
軸と第2の位相差板の遅相軸とのなす角度が2α+45
度であることを特徴とする請求項1乃至請求項3に記載
の液晶表示装置。
4. The fourth retardation plate disposed between the second polarizing plate and the second retardation plate is a λ / 2 plate, and the transmission axis of the second polarizing means and the fourth retardation plate are connected to each other. When the angle between the retardation plate and the slow axis of the second retardation plate is α, the angle between the transmission axis of the second polarizing means and the slow axis of the second retardation plate is 2α + 45.
The liquid crystal display device according to claim 1, wherein the liquid crystal display device has a degree.
【請求項5】 前記第1の偏光手段の透過軸と前記第2
の偏光手段の透過軸とが直交し、前記第1の位相差板と
前記第2の位相差板の遅相軸とが直交し、前記第3の位
相差板と前記第4の位相差板の遅相軸とが直交している
ことを特徴とする請求項3又は請求項4に記載の液晶表
示装置。
5. The transmission axis of said first polarizing means and said second axis.
Are perpendicular to the transmission axis of the polarization means, the slow axes of the first and second retardation plates are perpendicular to each other, and the third and fourth retardation plates are orthogonal to each other. The liquid crystal display device according to claim 3, wherein the slow axis is orthogonal to the slow axis.
【請求項6】 前記液晶層が負の誘電率異方性を有する
垂直配向液晶材料であることを特徴とする請求項1乃至
請求項5に記載の液晶表示装置。
6. The liquid crystal display device according to claim 1, wherein the liquid crystal layer is a vertical alignment liquid crystal material having a negative dielectric anisotropy.
【請求項7】 前記液晶表示装置をノーマリブラックの
表示モードとすることを特徴とする請求項1乃至請求項
6に記載の液晶表示装置。
7. The liquid crystal display device according to claim 1, wherein the liquid crystal display device is set to a normally black display mode.
JP20139298A 1997-12-26 1998-07-16 Liquid crystal display Expired - Lifetime JP3410666B2 (en)

Priority Applications (12)

Application Number Priority Date Filing Date Title
JP20139298A JP3410666B2 (en) 1998-07-16 1998-07-16 Liquid crystal display
KR1019980060504A KR100283275B1 (en) 1997-12-26 1998-12-26 Liquid crystal display device
US09/220,792 US6295109B1 (en) 1997-12-26 1998-12-28 LCD with plurality of pixels having reflective and transmissive regions
US09/927,547 US6819379B2 (en) 1997-12-26 2001-08-13 Liquid crystal display device with light transmission and reflection regions
US10/922,020 US6950159B2 (en) 1997-12-26 2004-08-20 Transflective LCD device having less distance between transmission region and first bus line than transmission region and second bus line
US11/196,749 US7151581B2 (en) 1997-12-26 2005-08-04 Liquid crystal display with light transmission regions and light reflection regions
US11/507,597 US7663717B2 (en) 1997-12-26 2006-08-22 Liquid crystal display device
US11/507,671 US7468768B2 (en) 1997-12-26 2006-08-22 Liquid crystal display device
US11/507,514 US7535528B2 (en) 1997-12-26 2006-08-22 Liquid crystal display device
US12/654,805 US8054423B2 (en) 1997-12-26 2010-01-05 Liquid crystal display device
US12/805,163 US7952667B2 (en) 1997-12-26 2010-07-15 Liquid crystal display device
US13/137,885 US8228469B2 (en) 1997-12-26 2011-09-20 Liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20139298A JP3410666B2 (en) 1998-07-16 1998-07-16 Liquid crystal display

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2002262212A Division JP3619508B2 (en) 2002-09-09 2002-09-09 Liquid crystal display

Publications (2)

Publication Number Publication Date
JP2000035570A true JP2000035570A (en) 2000-02-02
JP3410666B2 JP3410666B2 (en) 2003-05-26

Family

ID=16440337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20139298A Expired - Lifetime JP3410666B2 (en) 1997-12-26 1998-07-16 Liquid crystal display

Country Status (1)

Country Link
JP (1) JP3410666B2 (en)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001343908A (en) * 2000-05-31 2001-12-14 Nitto Denko Corp Touch type el display device and method for detecting input
EP1255154A2 (en) * 2001-04-27 2002-11-06 Nec Corporation Liquid crystal display device and method of fabricating the same
JP2003014936A (en) * 2001-04-16 2003-01-15 Nitto Denko Corp Optical member and liquid crystal display device
JP2003029039A (en) * 2001-07-17 2003-01-29 Nitto Denko Corp Circularly polarizing plate and liquid crystal display device
JP2005018090A (en) * 2000-02-25 2005-01-20 Sharp Corp Liquid crystal display device
JP2005157373A (en) * 2003-11-27 2005-06-16 Samsung Electronics Co Ltd Liquid crystal display panel and liquid crystal display having same
US6967702B2 (en) 2002-08-01 2005-11-22 Nec Lcd Technologies, Ltd. Liquid crystal display device
JP2006085203A (en) * 2000-05-31 2006-03-30 Sharp Corp Liquid crystal display
JP2006512599A (en) * 2002-12-12 2006-04-13 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Liquid crystal display
JP2006106799A (en) * 2002-11-08 2006-04-20 Seiko Epson Corp Liquid crystal display device and electronic device
JP2006309105A (en) * 2005-03-30 2006-11-09 Casio Comput Co Ltd Liquid crystal display device
WO2006132316A1 (en) * 2005-06-10 2006-12-14 Tpo Hong Kong Holding Limited Liquid crystal display element
KR100708795B1 (en) * 2005-01-17 2007-04-18 도시바 마쯔시따 디스플레이 테크놀로지 컴퍼니, 리미티드 Liquid crystal display device
KR100722458B1 (en) * 2002-05-01 2007-05-28 가부시끼가이샤 도시바 Liquid crystal display device
CN1324364C (en) * 2003-06-20 2007-07-04 统宝光电股份有限公司 Half reflecting and half penetrating LCD
US7274419B2 (en) 2002-11-15 2007-09-25 Sharp Kabushiki Kaisha Liquid crystal display device
US7324180B2 (en) 2002-09-06 2008-01-29 Dai Nippon Printing Co., Ltd. Laminated retardation optical element, process of producing the same, and liquid crystal display
KR100849292B1 (en) 2003-03-31 2008-07-29 샤프 가부시키가이샤 Liquid crstal display and method of fabricating the same
WO2008126421A1 (en) * 2007-04-11 2008-10-23 Fujifilm Corporation Optical anisotropic film and liquid crystal display device
US7538836B2 (en) 2004-04-16 2009-05-26 Sharp Kabushiki Kaisha Circularly polarizing plate and liquid crystal display device
WO2009090778A1 (en) 2008-01-16 2009-07-23 Sharp Kabushiki Kaisha Liquid crystal display
US7576820B2 (en) 2000-05-31 2009-08-18 Sharp Kabushiki Kaisha Liquid crystal display apparatus with phase difference layers
JP2009230149A (en) * 2002-05-09 2009-10-08 Samsung Electronics Co Ltd Gray scale voltage generator, method of generating gray scale voltage, and transmissive and reflective type liquid crystal display device using the same
JP2010009045A (en) * 2008-06-24 2010-01-14 Samsung Electronics Co Ltd Method for driving liquid crystal display, array substrate, method of manufacturing array substrate and liquid crystal display having array substrate
JP2010072666A (en) * 1999-05-28 2010-04-02 Samsung Electronics Co Ltd Liquid crystal display
US7936425B2 (en) 2004-12-07 2011-05-03 Nec Lcd Technologies, Ltd. Transflective liquid crystal display device including liquid crystal film with a nematic hybrid orientation formed on a substrate
CN102043283A (en) * 2009-10-20 2011-05-04 乐金显示有限公司 Liquid crystal display
US7961276B2 (en) 2006-07-18 2011-06-14 Nec Lcd Technologies, Ltd. Circular polarizer, liquid crystal display device, and terminal device
US8174650B2 (en) 2008-04-07 2012-05-08 Sharp Kabushiki Kaisha Liquid crystal display device having first and second birefringent layers and first and second quarter-wave plates
WO2020084845A1 (en) * 2018-10-25 2020-04-30 京セラ株式会社 Liquid crystal display device

Cited By (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010072666A (en) * 1999-05-28 2010-04-02 Samsung Electronics Co Ltd Liquid crystal display
JP2005018090A (en) * 2000-02-25 2005-01-20 Sharp Corp Liquid crystal display device
JP2001343908A (en) * 2000-05-31 2001-12-14 Nitto Denko Corp Touch type el display device and method for detecting input
JP4675767B2 (en) * 2000-05-31 2011-04-27 シャープ株式会社 Liquid crystal display device
US7576820B2 (en) 2000-05-31 2009-08-18 Sharp Kabushiki Kaisha Liquid crystal display apparatus with phase difference layers
JP2006085203A (en) * 2000-05-31 2006-03-30 Sharp Corp Liquid crystal display
JP2003014936A (en) * 2001-04-16 2003-01-15 Nitto Denko Corp Optical member and liquid crystal display device
JP2002328370A (en) * 2001-04-27 2002-11-15 Nec Corp Liquid crystal display device
EP1255154A3 (en) * 2001-04-27 2002-12-04 Nec Corporation Liquid crystal display device and method of fabricating the same
US7894028B2 (en) 2001-04-27 2011-02-22 Nec Lcd Technologies Liquid crystal display device and method of fabricating the same
EP1255154A2 (en) * 2001-04-27 2002-11-06 Nec Corporation Liquid crystal display device and method of fabricating the same
US8755011B2 (en) 2001-04-27 2014-06-17 Nlt Technologies, Ltd. Liquid crystal display device and method of fabricating the same
JP2003029039A (en) * 2001-07-17 2003-01-29 Nitto Denko Corp Circularly polarizing plate and liquid crystal display device
US7250997B2 (en) 2002-05-01 2007-07-31 Kabushiki Kaisha Toshiba Liquid crystal display device
KR100722458B1 (en) * 2002-05-01 2007-05-28 가부시끼가이샤 도시바 Liquid crystal display device
JP2009230149A (en) * 2002-05-09 2009-10-08 Samsung Electronics Co Ltd Gray scale voltage generator, method of generating gray scale voltage, and transmissive and reflective type liquid crystal display device using the same
US6967702B2 (en) 2002-08-01 2005-11-22 Nec Lcd Technologies, Ltd. Liquid crystal display device
CN1325974C (en) * 2002-08-01 2007-07-11 Nec液晶技术株式会社 LCD device
US7324180B2 (en) 2002-09-06 2008-01-29 Dai Nippon Printing Co., Ltd. Laminated retardation optical element, process of producing the same, and liquid crystal display
US7405786B2 (en) 2002-09-06 2008-07-29 Dai Nippon Printing Co., Ltd Laminated retardation optical element, process of producing the same, and liquid crystal display
JP2006106799A (en) * 2002-11-08 2006-04-20 Seiko Epson Corp Liquid crystal display device and electronic device
JP4539563B2 (en) * 2002-11-08 2010-09-08 セイコーエプソン株式会社 Liquid crystal display device and electronic device
US7274419B2 (en) 2002-11-15 2007-09-25 Sharp Kabushiki Kaisha Liquid crystal display device
US7719646B2 (en) 2002-11-15 2010-05-18 Sharp Kabushiki Kaisha Liquid crystal display device
US7630039B2 (en) 2002-11-15 2009-12-08 Sharp Kabushiki Kaisha Liquid crystal display device
JP2006512599A (en) * 2002-12-12 2006-04-13 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Liquid crystal display
KR100849292B1 (en) 2003-03-31 2008-07-29 샤프 가부시키가이샤 Liquid crstal display and method of fabricating the same
CN1324364C (en) * 2003-06-20 2007-07-04 统宝光电股份有限公司 Half reflecting and half penetrating LCD
JP4733967B2 (en) * 2003-11-27 2011-07-27 三星電子株式会社 Liquid crystal display panel and liquid crystal display device having the same.
JP2005157373A (en) * 2003-11-27 2005-06-16 Samsung Electronics Co Ltd Liquid crystal display panel and liquid crystal display having same
US7538836B2 (en) 2004-04-16 2009-05-26 Sharp Kabushiki Kaisha Circularly polarizing plate and liquid crystal display device
US7936425B2 (en) 2004-12-07 2011-05-03 Nec Lcd Technologies, Ltd. Transflective liquid crystal display device including liquid crystal film with a nematic hybrid orientation formed on a substrate
US8294859B2 (en) 2004-12-07 2012-10-23 Nlt Technologies, Ltd. Transflective liquid crystal display device
KR100708795B1 (en) * 2005-01-17 2007-04-18 도시바 마쯔시따 디스플레이 테크놀로지 컴퍼니, 리미티드 Liquid crystal display device
JP2006309105A (en) * 2005-03-30 2006-11-09 Casio Comput Co Ltd Liquid crystal display device
USRE43217E1 (en) 2005-03-30 2012-02-28 Casio Computer Co., Ltd. Homeotropic alignment type liquid crystal display device
WO2006132316A1 (en) * 2005-06-10 2006-12-14 Tpo Hong Kong Holding Limited Liquid crystal display element
US8023081B2 (en) 2005-06-10 2011-09-20 Tpo Hong Kong Holding Limited Liquid crystal display device
US7961276B2 (en) 2006-07-18 2011-06-14 Nec Lcd Technologies, Ltd. Circular polarizer, liquid crystal display device, and terminal device
US8363184B2 (en) 2006-07-18 2013-01-29 Nec Corporation Circular polarizer, liquid crystal display device, and terminal device
WO2008126421A1 (en) * 2007-04-11 2008-10-23 Fujifilm Corporation Optical anisotropic film and liquid crystal display device
US8259259B2 (en) 2007-04-11 2012-09-04 Fujifilm Corporation Liquid crystal display device comprising an optically anisotropic film having at least one species of liquid crystal compound which exhibits a nematic phase or a smectic phase
WO2009090778A1 (en) 2008-01-16 2009-07-23 Sharp Kabushiki Kaisha Liquid crystal display
US8174650B2 (en) 2008-04-07 2012-05-08 Sharp Kabushiki Kaisha Liquid crystal display device having first and second birefringent layers and first and second quarter-wave plates
JP2010009045A (en) * 2008-06-24 2010-01-14 Samsung Electronics Co Ltd Method for driving liquid crystal display, array substrate, method of manufacturing array substrate and liquid crystal display having array substrate
KR101495203B1 (en) * 2008-06-24 2015-02-25 삼성디스플레이 주식회사 Method of driving a liquid crystal display apparatus, array substrate, method of manufacturing the array substrate and liquid crystal display apparatus having the same
US9147366B2 (en) 2008-06-24 2015-09-29 Samsung Display Co., Ltd. Method for driving a liquid crystal display device, an array substrate, method of manufacturing the array substrate and liquid crystal display device having the same
CN102043283A (en) * 2009-10-20 2011-05-04 乐金显示有限公司 Liquid crystal display
WO2020084845A1 (en) * 2018-10-25 2020-04-30 京セラ株式会社 Liquid crystal display device
CN112888995A (en) * 2018-10-25 2021-06-01 京瓷株式会社 Liquid crystal display device having a plurality of pixel electrodes
JPWO2020084845A1 (en) * 2018-10-25 2021-09-16 京セラ株式会社 Liquid crystal display
JP7048759B2 (en) 2018-10-25 2022-04-05 京セラ株式会社 Liquid crystal display device
CN112888995B (en) * 2018-10-25 2023-11-07 京瓷株式会社 Liquid crystal display device having a light shielding layer

Also Published As

Publication number Publication date
JP3410666B2 (en) 2003-05-26

Similar Documents

Publication Publication Date Title
JP3410666B2 (en) Liquid crystal display
US6341002B1 (en) Liquid crystal display device
US7599022B2 (en) Liquid crystal display
JP3410663B2 (en) Liquid crystal display
US6961104B2 (en) Transflective liquid crystal display device and fabricating method thereof
JP5252335B2 (en) Liquid crystal display device and terminal device
KR100722458B1 (en) Liquid crystal display device
JP3827587B2 (en) Reflective or transflective liquid crystal display device
US8085370B2 (en) Single-polarizer reflective bistable twisted nematic (BTN) liquid crystal display device
KR19990063559A (en) Liquid crystal display device
JP3410665B2 (en) Liquid crystal display
JP3619508B2 (en) Liquid crystal display
JP3619506B2 (en) Liquid crystal display
JP3022477B2 (en) Reflective liquid crystal display
JP3655903B2 (en) Liquid crystal display
JP3655911B2 (en) Liquid crystal display
JP3619507B2 (en) Liquid crystal display
JP3619518B2 (en) Liquid crystal display
JPH10232393A (en) Liquid crystal display device
JP2003114428A (en) Liquid crystal display device
JP2003098526A (en) Liquid crystal display device
JPH09218403A (en) Liquid crystal display element
JPH10239682A (en) Liquid crystal display device
JP2003131269A (en) Liquid crystal display device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080320

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090320

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100320

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100320

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110320

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120320

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120320

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130320

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140320

Year of fee payment: 11

SG99 Written request for registration of restore

Free format text: JAPANESE INTERMEDIATE CODE: R316G99

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term