JPH07203984A - Synthesis of protein - Google Patents

Synthesis of protein

Info

Publication number
JPH07203984A
JPH07203984A JP713194A JP713194A JPH07203984A JP H07203984 A JPH07203984 A JP H07203984A JP 713194 A JP713194 A JP 713194A JP 713194 A JP713194 A JP 713194A JP H07203984 A JPH07203984 A JP H07203984A
Authority
JP
Japan
Prior art keywords
protein synthesis
cell
protein
activity
activity inhibitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP713194A
Other languages
Japanese (ja)
Other versions
JP3255784B2 (en
Inventor
Yaeta Endou
弥重太 遠藤
Shigeo Yoshinari
茂夫 吉成
Masataka Ooba
優孝 大場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP00713194A priority Critical patent/JP3255784B2/en
Publication of JPH07203984A publication Critical patent/JPH07203984A/en
Application granted granted Critical
Publication of JP3255784B2 publication Critical patent/JP3255784B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To synthesize a protein by a cell-free protein synthesis system having increased protein synthesis rate. CONSTITUTION:A protein is synthesized from a gene information in a cell-free protein synthesis system by suppressing the activation of an activity inhibiting factor which is a factor induced by cytoclasis and inhibiting the activity of nucleic acid synthesis and/or protein synthesis.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、核酸(DNAあるいは
RNA)を鋳型とする、遺伝子情報から細胞を含まない
蛋白質合成系で蛋白質を合成する方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for synthesizing a protein from a cell-free protein synthesis system using a nucleic acid (DNA or RNA) as a template from genetic information.

【0002】[0002]

【従来の技術】ニレンバーグ(Nirenberg )らによって
開発された、大腸菌抽出液を利用する無細胞蛋白質合成
系(Nirenberg,M.W., et al.,Proc.Natl.Acad.Sci.USA,
47,1588-1602 (1961) )は、蛋白質合成機構の解明に大
きな役割を果たした。その後、翻訳効率の高い無細胞蛋
白質合成系が、大腸菌の他にも、コムギ胚芽やウサギ網
状赤血球等からも調製され、現在では遺伝子翻訳産物の
同定などに、広く利用されるようになった(Wu,R., et
al.,(ed)Methods in Enzymolgy,vol.101, P.598,P.616,
P.629, P.635, P.644, P.650, P.674, P.690, Academi
c Press, New York (1983) )。
2. Description of the Related Art A cell-free protein synthesis system (Nirenberg, MW, et al., Proc. Natl. Acad. Sci. USA, developed by Nirenberg et al.
47,1588-1602 (1961)) played a major role in elucidating the mechanism of protein synthesis. After that, a cell-free protein synthesis system with high translation efficiency was prepared not only from Escherichia coli but also from wheat germ, rabbit reticulocyte, etc., and is now widely used for identifying gene translation products ( Wu, R., Et
al., (ed) Methods in Enzymolgy, vol.101, P.598, P.616,
P.629, P.635, P.644, P.650, P.674, P.690, Academi
c Press, New York (1983)).

【0003】[0003]

【発明が解決しようとする課題】しかし、上記の無細胞
蛋白質合成系における蛋白質合成量は、生細胞に比べる
と百分の一から一万分の一と極端に低いことから、蛋白
質の調製法としては利用できないという欠点がある。
However, the amount of protein synthesis in the above-mentioned cell-free protein synthesis system is extremely low, which is 1 / 10,000 to 1 / 10,000 as compared with that of living cells. Has the drawback that it cannot be used as

【0004】最近、旧ソ連のスピリン(Spirin)らは、
無細胞蛋白質合成系の効率化を目指して、連続式無細胞
蛋白質合成システム(Continuous Flow Cell-Free Tran
slation System)を開発した(Spirin,A.S., et al.,Sc
ience, 242, 1162-1164 (1988))。このシステムが従来
の無細胞蛋白質合成系と異なる点は、合成反応で消費さ
れるアミノ酸やエネルギー源などの基質を反応槽へ連続
的に供給する一方、翻訳産物は系から取り出すというも
のである。しかし彼らのシステムも、蛋白質合成反応系
としては、コムギ胚芽、ウサギ網状赤血球、あるいは大
腸菌等から従来通りの方法で調製した翻訳活性の低い細
胞抽出液を利用するものであることから、大幅な蛋白質
合成効率の改良は望めない。
Recently, the former Soviet Union's Spirin et al.
Aiming to improve the efficiency of the cell-free protein synthesis system, a continuous cell-free protein synthesis system (Continuous Flow Cell-Free Tran
slation System) (Spirin, AS, et al., Sc
ience, 242, 1162-1164 (1988)). This system differs from the conventional cell-free protein synthesis system in that the substrates such as amino acids and energy sources consumed in the synthesis reaction are continuously supplied to the reaction tank, while the translation product is taken out from the system. However, their system also uses a cell extract with low translation activity prepared by a conventional method from wheat germ, rabbit reticulocyte, Escherichia coli, etc. as a protein synthesis reaction system. No improvement in synthesis efficiency can be expected.

【0005】[0005]

【課題を解決するための手段】本発明者は、従来の技術
では注目されておらず不可避であった細胞破壊に伴って
活性化される、核酸合成および/または蛋白質合成の活
性阻害因子の活性化を抑制することにより、従来より効
率の良い無細胞蛋白質合成系を調製することができるこ
とを見い出した。本発明はこの知見に基づく下記の発明
であり、またその蛋白質合成系(蛋白質合成用組成物)
の発明である。
The present inventor has found that the activity of an activity inhibitor of nucleic acid synthesis and / or protein synthesis, which is activated in association with cell destruction, which has been inevitable and inevitable in the prior art. It was found that the cell-free protein synthesizing system can be prepared with higher efficiency than the conventional ones by suppressing the activation. The present invention is the following invention based on this finding, and its protein synthesis system (composition for protein synthesis)
Is the invention of.

【0006】細胞破壊に伴って誘発される、核酸合成お
よび/または蛋白質合成の活性阻害因子の活性化を抑制
した細胞を含まない蛋白質合成系で遺伝子情報より蛋白
質を合成することを特徴とする、蛋白質の合成方法。
[0006] It is characterized in that a protein is synthesized from gene information in a cell-free protein synthesis system that suppresses activation of an activity inhibitor of nucleic acid synthesis and / or protein synthesis that is induced by cell destruction. Method for synthesizing protein.

【0007】本発明における核酸合成および/または蛋
白質合成の活性阻害因子とは、細胞破壊に伴って誘発さ
れる因子であり、その因子は通常ポリペプチドないし蛋
白質からなる酵素であり、また核酸の場合もある。この
活性阻害因子は細胞破壊に伴うプログラム細胞死機構の
作動によって誘発されものであり、元々生物が個体ある
いは集団の生存を可能にするために個々の細胞が持って
いる因子であると考えられる。この因子が活性化される
と、例えば転写活性や翻訳活性性などが阻害されること
により核酸合成および/または蛋白質合成の活性化が阻
害されると考えられる。
The activity inhibitor of nucleic acid synthesis and / or protein synthesis in the present invention is a factor induced by cell destruction, and the factor is usually an enzyme composed of a polypeptide or protein. There is also. This activity-inhibiting factor is induced by the action of the programmed cell death mechanism associated with cell destruction, and is considered to be a factor originally possessed by individual cells to enable the organism or the population to survive. When this factor is activated, it is considered that activation of nucleic acid synthesis and / or protein synthesis is inhibited by inhibiting transcription activity or translation activity, for example.

【0008】この活性阻害因子は、通常種々のポリペプ
チドないし蛋白質からなる酵素であり、具体的な例とし
ては、リボソーム活性を阻害するリボソーム不活性化蛋
白質、リボヌクレアーゼ、リボヌクレオチドホスホリラ
ーゼなどが挙げられる。上記活性阻害因子の活性化を抑
制する手段としては、それを蛋白質合成系から除去する
ことは勿論、蛋白質合成系内でその活性化を阻害する手
段を採用することができる。特に、蛋白質合成系からこ
の活性阻害因子を選択的に除去することが困難な場合が
少なくないことより、その活性化を阻害する手段、特に
特異的阻害剤を使用する手段、を採用することが好まし
い。
This activity inhibitor is an enzyme usually composed of various polypeptides or proteins, and specific examples thereof include ribosome inactivating protein which inhibits ribosome activity, ribonuclease, ribonucleotide phosphorylase and the like. As a means for suppressing the activation of the above-mentioned activity inhibitory factor, it is possible to employ not only removing it from the protein synthesis system but also a means for inhibiting the activation in the protein synthesis system. In particular, since it is often difficult to selectively remove this activity inhibitor from the protein synthesis system, it is possible to employ a means of inhibiting its activation, particularly a means of using a specific inhibitor. preferable.

【0009】上記活性阻害因子の特異的阻害剤として
は、この活性阻害因子に特異的に結合しその活性を抑制
する抗体が好ましい。この中和抗体は活性阻害因子の酵
素活性を中和することにより、活性阻害因子の活性化を
阻害すると考えられる。抗体としては、ポリクローナル
抗体は勿論、モノクローナル抗体であってもよい。上記
活性阻害因子の特異的阻害剤としてはこれら抗体に限ら
れず、抗生物質などの種々の薬剤(蛋白質阻害剤、核酸
系阻害剤など)であってもよい。これら阻害剤は抗体を
含め2種以上併用することができる。
As the specific inhibitor of the above activity inhibitor, an antibody that specifically binds to this activity inhibitor and suppresses its activity is preferable. It is considered that this neutralizing antibody inhibits the activation of the activity inhibitor by neutralizing the enzyme activity of the activity inhibitor. The antibody may be a polyclonal antibody or a monoclonal antibody. The specific inhibitor of the above activity inhibitor is not limited to these antibodies, and various drugs such as antibiotics (protein inhibitors, nucleic acid system inhibitors, etc.) may be used. These inhibitors can be used in combination of two or more including antibodies.

【0010】抗体などの上記活性阻害因子に特異的に結
合し得る物質はまた蛋白質合成系からこの活性阻害因子
を選択的に除去する方法に使用することもできる。例え
ば、特異的に結合し得る物質を適当な高分子物質に固定
化し、この固定化担体共存下に蛋白質合成系を接触させ
て活性阻害因子を蛋白質合成系から除去することができ
る。
A substance capable of specifically binding to the above activity inhibitor such as an antibody can also be used in a method for selectively removing this activity inhibitor from a protein synthesis system. For example, a substance capable of specifically binding can be immobilized on a suitable polymer substance, and the protein synthesis system can be contacted in the presence of this immobilized carrier to remove the activity inhibitor from the protein synthesis system.

【0011】本発明における蛋白質合成系は実質的に生
きた細胞を含まないいわゆる無細胞蛋白質合成系であ
る。この蛋白質合成系は細胞破壊によって得られ、破壊
された細胞が有していた蛋白質合成能を利用するもので
ある。蛋白質合成系は細胞破壊液そのものであってもよ
いが、粗大固形分を除くなどの調製を行ったものが好ま
しい。通常は不要成分を除いた細胞抽出液に必要により
成分を追加して調製される。
The protein synthesis system in the present invention is a so-called cell-free protein synthesis system which does not substantially contain living cells. This protein synthesis system is obtained by cell disruption and utilizes the protein synthesis ability of the disrupted cells. The protein synthesis system may be the cell disruption solution itself, but is preferably prepared by removing coarse solids. Usually, it is prepared by adding components as needed to the cell extract from which unnecessary components have been removed.

【0012】無細胞蛋白質合成系を調製するための起源
の細胞(破壊する細胞)は特に限定されず、有核生物、
原核生物のいずれの細胞も使用できる。すなわち、動物
細胞、植物細胞、真菌細胞、細菌細胞などが使用でき
る。具体的には、例えば、哺乳動物細胞、昆虫細胞、高
等植物細胞、酵母細胞、放線菌細胞、大腸菌細胞などが
ある。
The cell of origin (cell to be destroyed) for preparing the cell-free protein synthesis system is not particularly limited, and may be a nucleated organism,
Any prokaryotic cell can be used. That is, animal cells, plant cells, fungal cells, bacterial cells and the like can be used. Specific examples include mammalian cells, insect cells, higher plant cells, yeast cells, actinomycetes cells, Escherichia coli cells and the like.

【0013】本発明の無細胞蛋白質合成系による蛋白質
の合成は、前記活性阻害因子の不活性化〜除去した無細
胞蛋白質合成系である点を除き従来と同様の方法で行う
ことができる。この方法は周知〜公知のバッチ法であっ
てもよく、前記したスピリンらの連続式無細胞蛋白質合
成システムなどの連続法であってもよい。
The protein synthesis by the cell-free protein synthesis system of the present invention can be carried out in the same manner as in the conventional method except that it is a cell-free protein synthesis system in which the above-mentioned activity inhibitor is inactivated and removed. This method may be a well-known batch method, or may be a continuous method such as the above-mentioned continuous cell-free protein synthesis system of Spirin et al.

【0014】本発明について、コムギ胚芽の系を用いて
行った実験により、具体例をもってさらに説明する。
The present invention will be further described with reference to specific examples through experiments conducted using a wheat germ system.

【0015】発明者らは先に、ヒマ種子に存在する細胞
毒素蛋白質であるライシン(ricin)の毒性機構を分子
レベルで解明した(Endo,Y., et al.,J.Biol.Chem.(198
7),262,5908-5912, Endo,Y., et al.,J.Biol.Chem.(198
7),262,8128-8130)。すなわち、ライシンA鎖は、リボ
ソーム大亜粒子を構成する大RNA分子(高等生物では
26−28SrRNA、大腸菌では23SrRNAにあ
たる)の進化的にその構造が保存された特定部位のN−
グリコシド結合(ネズミ肝臓の28rRNAでは5’末
端から4324番目)の加水分解を触媒する特異な酵素
で、RNA N−グリコシダーゼ(RNA N−glycos
idase )と命名した。リボソームは、この酵素活性によ
ってアデニン1分子を遊離し、その翻訳機能を完全に消
失することになる。
The present inventors have previously elucidated the toxicity mechanism of ricin, which is a cytotoxin protein present in castor seeds, at the molecular level (Endo, Y., et al., J. Biol. Chem. 198
7), 262, 5908-5912, Endo, Y., et al., J. Biol. Chem. (198
7), 262, 8128-8130). That is, the lysin A chain is an N- at a specific site in which the structure of a large RNA molecule (26-28S rRNA in higher organisms and 23S rRNA in E. coli) that constitutes ribosomal large subparticles is evolutionarily conserved.
RNA N-glycosidase (RNA N-glycosidase) is a unique enzyme that catalyzes the hydrolysis of glycoside bonds (4324 from the 5'end in rat liver 28rRNA).
oxidase). The ribosome releases one molecule of adenine by this enzymatic activity and completely loses its translation function.

【0016】その後、ライシンA鎖と同一な活性を持っ
たリボソーム不活性化蛋白質(Ribosome-Inactivating-
Protein 、以下RIPと略す)が多数の植物から単離さ
れた(Soria,M.R., et al.,in Genetically Engineered
Toxins (ed.by Frankel,A.E.),pp.193-212,Marcel Dek
ker,Inc.(1992))。また、これらRIPの多くは、抗ウ
イルス作用を有することから、植物の自己防御機構に関
与しているものと考えられているが、その実体に関して
は不明の点が多い。
Then, a ribosome inactivating protein (Ribosome-Inactivating-
Protein (hereinafter abbreviated as RIP) was isolated from many plants (Soria, MR, et al., In Genetically Engineered
Toxins (ed.by Frankel, AE), pp.193-212, Marcel Dek
ker, Inc. (1992)). Moreover, many of these RIPs are considered to be involved in the self-defense mechanism of plants because they have antiviral effects, but there are many unclear points regarding their substance.

【0017】約30年前にニレンバーグらが大腸菌から
無細胞蛋白質合成系を開発して以来、種々の生物から無
細胞蛋白質合成系が調製されている(Miller,J.S., et
al.,in Methods in Enzymology,part C,101,pp.650-67
4,Academic Press(1983) )。なかでも、コムギ胚芽、
ウサギ網状赤血球、または大腸菌などから調製された無
細胞蛋白質合成系は比較的蛋白質合成活性が高く、現在
ではそれらのキットも市販されている。しかしいずれの
系においても、翻訳反応は1〜2時間で停止し翻訳効率
が極めて低いことから、蛋白質の実用的な調製手段とし
ては利用できないという欠点を有する。
Since Nirenberg et al. Developed a cell-free protein synthesis system from E. coli approximately 30 years ago, cell-free protein synthesis systems have been prepared from various organisms (Miller, JS, et.
al., in Methods in Enzymology, part C, 101, pp.650-67
4, Academic Press (1983)). Among them, wheat germ,
The cell-free protein synthesis system prepared from rabbit reticulocytes, Escherichia coli or the like has a relatively high protein synthesis activity, and kits thereof are now commercially available. However, in any of the systems, the translation reaction is stopped within 1 to 2 hours and the translation efficiency is extremely low, so that it has a drawback that it cannot be used as a practical means for preparing a protein.

【0018】一般的に無細胞蛋白質合成系における蛋白
質の合成量は生細胞のそれに比べて百分の一から一万分
の一と見積もられているが(Mancheter,K.L.,in Mammal
ianProtein Metabolism,ed.by Munro,H.N., et al.,IV,
pp.229-298,Academic Press(1970))その原因について
は不明であった。発明者はまず、コムギ胚芽無細胞系に
おける蛋白質合成活性低下の機作について調べることか
ら無細胞蛋白質合成系の高効率の方策を検討した。
Generally, the amount of protein synthesized in a cell-free protein synthesis system is estimated to be one hundredth to tenth thousandth that of living cells (Mancheter, KL, in Mammal.
ianProtein Metabolism, ed.by Munro, HN, et al., IV,
pp.229-298, Academic Press (1970)) The cause was unknown. The inventor first investigated a high-efficiency strategy of the cell-free protein synthesis system by investigating the mechanism of reduction of protein synthesis activity in the wheat embryo cell-free system.

【0019】コムギ胚芽にはトリチン(tritin)と呼ば
れるRIPが存在し、そのRNAN−グリコシダーゼ活
性は、植物細胞リボソームをライシンA鎖と同一の機構
でこれを不活性化することが知られている(Roberts,W.
K., Biochemistry(1979),18,2615-2621 )。発明者らは
これまでの研究結果から、コムギ胚芽無細胞系における
低い翻訳活性は、この内因性トリチンによる自己リボソ
ームの不活性化に起因するのではないかと考えた。そこ
で、コムギ胚芽の無細胞蛋白質を調製し、細胞破壊に伴
うトリシンの活性化、コムギ胚芽リボソームの不活性化
を調べたところ、コムギ胚芽リボソームの28SrRN
AのN−グリコシダーゼ特異的作用部位の脱アデニンが
観察され、さらにそのN−グリコシダーゼがトリチンで
あることを抗体を用いて同定した。
RIP called tritin exists in wheat germ, and its RNAN-glycosidase activity is known to inactivate plant cell ribosome by the same mechanism as lysin A chain ( Roberts, W.
K., Biochemistry (1979), 18,2615-2621). Based on the results of the studies conducted so far, the inventors considered that the low translation activity in the wheat germ cell-free system may be due to the inactivation of the autoribosome by this endogenous tritin. Therefore, when a cell-free protein of wheat germ was prepared and activation of tricine and inactivation of wheat germ ribosome due to cell destruction were investigated, 28SrRN of wheat germ ribosome was examined.
Deadenin at the N-glycosidase-specific action site of A was observed, and it was identified using an antibody that the N-glycosidase was tritin.

【0020】次に、上記の条件でトリチン抗体を共存さ
せてコムギ胚芽無細胞蛋白質合成系の蛋白質合成効率を
調べた。mRNAとしてジヒドロ葉酸還元酵素(DHF
R)を用い、14C−ロイシンの取り込みを測定したとこ
ろ、抗体添加系では無添加系に比べ反応時間が少なくと
も1.5倍以上も延び、取り込み量も2.5倍以上であ
った。
Next, the protein synthesis efficiency of the wheat embryo cell-free protein synthesis system was examined in the presence of the tritin antibody under the above conditions. Dihydrofolate reductase (DHF) as mRNA
When R 14 ) was used to measure 14 C-leucine uptake, the reaction time in the antibody-added system was at least 1.5 times longer than that in the non-added system, and the uptake amount was 2.5 times or more.

【0021】以上のことをまとめると、(1)コムギ胚
芽に内存するプログラム細胞死機構に関わるトリチン
が、コムギ胚芽の破砕に伴って不可避的に細胞抽出液に
混入し、自己のリボソームを不活性化すること、(2)
無細胞系における蛋白質合成の低下はこのことに起因す
ること、(3)抗トリチン抗体を用いるなど、トリチン
活性を除去・中和することによって長時間にわたって蛋
白質合成反応が持続するようになるので蛋白質合成活性
の効率化ができることなどが示された。
To summarize the above, (1) Tritin, which is involved in the programmed cell death mechanism inherent in wheat germ, is inevitably mixed in the cell extract with the crushing of the wheat germ and inactivates its own ribosome. (2)
This is because the decrease in protein synthesis in cell-free systems is due to this. (3) By removing and neutralizing the tritin activity by using an anti-tritin antibody, for example, the protein synthesis reaction can be sustained for a long time. It was shown that the efficiency of synthetic activity can be improved.

【0022】以上説明した実験について、以下実施例と
して具体的に説明する。しかし、本発明はこの実施例の
みに限定されるものではない。
The experiment described above will be specifically described below as an example. However, the present invention is not limited to this embodiment.

【0023】[0023]

【実施例】【Example】

[実施例1] コムギ胚芽の破砕によって誘発されるトリチンの活性化
および、コムギ胚芽リボソームの不活性化
Example 1 Tritin Activation and Wheat Germ Ribosome Inactivation Induced by Wheat Germ Crushing

【0024】市販のコムギ胚芽をエリクソン(Erickso
n)の方法で破砕し、細胞抽出液を得た後、無細胞蛋白
質合成液を調製した(Erickson,A.H., et al.,in Metho
ds inEnzymology(1983),96,38-50 )。ジヒドロ葉酸還
元酵素(DHFR)をコードするmRNAを鋳型として
用い、上記エリクソンらの方法に従って26℃で蛋白質
合成反応を行った。コムギ胚芽リボソームの内因性RN
A N−グリコシダーゼによる脱アデニン化反応は発明
者らの方法によって調べた(Endo,Y., et al.,J.Biol.C
hem.(1987),262,5908-5912)。
[0024] Commercially available wheat germ is used as Erickso
After crushing by the method of n) to obtain a cell extract, a cell-free protein synthesis solution was prepared (Erickson, AH, et al., in Metho
ds in Enzymology (1983), 96, 38-50). Using a mRNA encoding dihydrofolate reductase (DHFR) as a template, a protein synthesis reaction was carried out at 26 ° C. according to the method of Ericsson et al. Endogenous RN of wheat germ ribosome
The deadenination reaction by AN-glycosidase was examined by the method of the present inventors (Endo, Y., et al., J. Biol. C.
hem. (1987), 262, 5908-5912).

【0025】反応2、4、6時間後の反応液からそれぞ
れRNAを抽出し、酸性下アニリン処理を行った後、ゲ
ル電気泳動で、28rRNAを分離すると、図1の矢印
部に新たなRNA断片が生じていることが認められた
(それぞれレーン3、4、5の矢印部)。RNA断片の
生成は、保温開始前には見られない(レーン1)。この
RNA断片は、別に作成しておいたRNA断片マーカー
(レーン2)と同一の移動度を示すことから、コムギ胚
芽リボソームの28SrRNAの脱アデニン部は、進化
的にその構造が保存されたRNA N−グリコシダーゼ
の特異的な作用部位(ネズミ肝28rRNAの4324
番目のアデニンに対応)であることが判明した。
RNA was extracted from each of the reaction solutions after 2, 4, and 6 hours of the reaction, and after treatment with aniline under acidic condition, 28 rRNA was separated by gel electrophoresis. Was observed (arrows in lanes 3, 4, and 5 respectively). The production of RNA fragments is not seen before the start of incubation (lane 1). Since this RNA fragment shows the same mobility as the separately prepared RNA fragment marker (lane 2), the dead adenine part of 28S rRNA of wheat germ ribosome is RNA N whose evolutionarily preserved structure. -Specific site of action of glycosidases (4324 of murine liver 28 rRNA)
Corresponding to the second adenine).

【0026】以上の結果は、コムギ胚芽の破砕に伴っ
て、内因性のRNA N−グリコシダーゼが何らかの機
作によって活性化したことを示している。さらに、この
結果は、コムギ胚芽無細胞系においては、蛋白質合成反
応中にこのRIPの作用によって、リボソームの不活性
が生じることを示唆している。
The above results indicate that the endogenous RNA N-glycosidase was activated by some mechanism in association with the disruption of wheat germ. Furthermore, this result suggests that in the wheat germ cell-free system, ribosome inactivation occurs due to the action of this RIP during the protein synthesis reaction.

【0027】次に、このRNA N−グリコシダーゼの
蛋白質としての実体がトリチンであるか否かを調べる目
的で、家兎にて作製したトリチン抗体を用いて、上記R
NAN−グリコシダーゼの中和実験を試みた。上記と同
様な蛋白質合成系にトリチン抗体を添加して6時間反応
を行い、同様にRNAをゲル電気泳動で分解した。
Next, for the purpose of checking whether or not the substance of this RNA N-glycosidase as a protein is tritin, the above-mentioned R was prepared using a tritin antibody prepared in a rabbit.
NAN-glycosidase neutralization experiment was tried. A tritin antibody was added to the same protein synthesis system as above and reacted for 6 hours, and RNA was similarly degraded by gel electrophoresis.

【0028】その結果、トリチン抗体の添加によって、
RNA断片の生成が著しく抑制されることが確認された
(図1、レーン5とレーン6の矢印部のバンドの濃さを
比較するとレーン6が著しく薄くなった)。この事実
は、コムギ胚芽リボソームの修飾反応(脱アデニン化)
が、内因性のRIPであるトリチンによって触媒された
ことを示している。さらにこの結果は、生理機能が不明
であったコムギ胚芽トリチンが、傷ついた胚芽細胞のリ
ボソームを不活性化し、みずから自殺することによっ
て、ウイルス感染などを防ぐ、いわゆるプログラム細胞
死機機構の因子として働いていることを示している。
As a result, by adding the tritin antibody,
It was confirmed that the production of RNA fragments was remarkably suppressed (comparing the darkness of the band in the arrow portion between lane 5 and lane 6 in FIG. 1, lane 6 became significantly lighter). This fact is due to the modification reaction (deadening) of the wheat germ ribosome.
Were catalyzed by the endogenous RIP tritin. Furthermore, this result shows that wheat germ tritin, whose physiological function was unknown, acts as a so-called programmed cell death machine mechanism that inactivates ribosomes in injured embryo cells and kills themselves to prevent viral infection. It indicates that

【0029】また本実験結果は、細胞破砕によって起因
されたトリチンの活性を、同蛋白質に対する抗体を用い
ることによって有効に中和することが可能なことも示し
ている。しかし、この翻訳反応系へ抗体を添加する方法
による中和は完全でないことが分かる(レーン6で若干
の特異バンドが生成することで分かる)。そこで、トリ
チン活性を除去することを目的に、コムギ胚芽抽出液の
調製は、以下の2方法を併用した。すなわち、(1)抽
出液は、トリチン抗体存在下に調製する、(2)トリチ
ン抗体を固定化したカラムに抽出液を通し、内存性トリ
チンを補集除去することである。
The results of this experiment also show that the activity of tritin caused by cell disruption can be effectively neutralized by using an antibody against the protein. However, it can be seen that the neutralization by the method of adding an antibody to this translation reaction system is not complete (this can be seen from the formation of some specific bands in lane 6). Therefore, for the purpose of removing the tritin activity, the following two methods were used in combination to prepare the wheat germ extract. That is, (1) the extract is prepared in the presence of the tritin antibody, and (2) the extract is passed through a column on which the tritin antibody is immobilized to collect and remove the endogenous tritin.

【0030】このようにして得たコムギ胚芽抽出液を用
いて、上記と同様に蛋白質合成反応を行い、RNAを分
析した結果を図1のレーン7に示した。写真から分かる
ように、6時間の反応において、特異なRNA断片がほ
とんど生成しない(レーン7の矢印部分にはほとんど特
異バンドが見られない)。レーン6、7に対応する対照
実験を非免疫抗体を用いると(レーン8、9)、レーン
5で見られたと同様に、リボソームの顕著な脱アデニン
化反応が認められる。
Using the thus obtained wheat germ extract, a protein synthesis reaction was carried out in the same manner as above, and RNA was analyzed. The results are shown in lane 7 of FIG. As can be seen from the photograph, almost no specific RNA fragment is produced in the reaction for 6 hours (almost no specific band is seen in the arrow portion of lane 7). When non-immunized antibodies were used in the control experiments corresponding to lanes 6 and 7 (lanes 8 and 9), a significant ribosome deadenination reaction was observed as in lane 5.

【0031】[実施例2]トリチン抗体を利用した、コ
ムギ胚芽無細胞蛋白質合成系の効率化
[Example 2] Improvement of efficiency of wheat germ cell-free protein synthesis system using tritin antibody

【0032】RNA N−グリコシダーゼの作用によっ
て脱アデニン化したリボソームは、mRNA上でフリー
ズし、ペプチド鎖伸長反応が停止することが知られてい
る。(Furutani,M., et al.,Arch.Biochem.Biophys.(19
92),293,140-146 )。そこで、上記実施例1で示した条
件下で、DHFR合成を14C−ロイシンの蛋白質への取
り込みから測定した。実験方法は、エリクソン,A.H. ら
の常法を用いた。その結果を図2に示す。
It is known that the ribosome deadenified by the action of RNA N-glycosidase freezes on mRNA and the peptide chain elongation reaction is stopped. (Furutani, M., et al., Arch.Biochem.Biophys. (19
92), 293, 140-146). Therefore, DHFR synthesis was measured from the incorporation of 14 C-leucine into the protein under the conditions shown in Example 1 above. The experimental method used was the ordinary method of Ericsson, AH, et al. The result is shown in FIG.

【0033】図2に示したように、従来のコムギ胚芽無
細胞蛋白質合成系では、鋳型mRNAの添加に依存して
翻訳反応が進行するが、2時間後には、反応が完全に停
止する(●−●)。同様な反応液にトリチン抗体を添加
すると、翻訳反応が約3時間までほぼ直線的に進行し、
さらにその後も反応が持続することが分かる(□−
□)。さらに、内存性トリチンを除去し、反応時にトリ
チン抗体を添加した反応系では、翻訳反応が5時間以上
にわたって、ほぼ直線的に進行することが明らかになっ
た(△−△)。これと同様な実験を非トリチン抗体存在
下で行っても、その効果は全く認めらない(■−■)。
なお、鋳型mRNAの添加を行わない場合は、蛋白質合
成は行われない(○−○)。
As shown in FIG. 2, in the conventional wheat embryo cell-free protein synthesis system, the translation reaction proceeds depending on the addition of the template mRNA, but the reaction is completely stopped after 2 hours (● -●). When the tritin antibody was added to the same reaction solution, the translation reaction proceeded almost linearly up to about 3 hours,
Furthermore, it can be seen that the reaction continues after that (□-
□). Furthermore, it was revealed that in the reaction system in which endogenous tritin was removed and a tritin antibody was added during the reaction, the translation reaction proceeded almost linearly over 5 hours or more (Δ-Δ). Even if a similar experiment is performed in the presence of a non-tritin antibody, the effect is not observed at all (■-■).
If the template mRNA is not added, protein synthesis will not be performed (○-○).

【0034】これらの結果は、抗トリチン抗体がコムギ
胚芽無細胞蛋白質合成系における蛋白質合成の効率を著
しく上昇させることを示している。図2の14C−ロイシ
ンの取り込み放射活性から、DHFRの反応系1ml当
たりの合成量を計算すると、従来の無細胞系では最大限
で約40μgであるのに対し、トリチン抗体を利用し
て、内在性トリチンを除去・中和した系では約105μ
gであった。この収量は、スピリンらの開発した連続式
無細胞蛋白質合成システムを利用する蛋白質合成量[反
応液1ml,反応時間20時間当たり97μg](End
o,Y., et al.,J.Biotechnology(1992),25,221-230)に
匹敵するものであった。
These results indicate that the anti-tritin antibody markedly increases the efficiency of protein synthesis in the wheat embryo cell-free protein synthesis system. When the amount of DHFR synthesized per ml of the reaction system was calculated from the 14 C-leucine uptake radioactivity in FIG. 2, the maximum amount was about 40 μg in the conventional cell-free system, while using the tritin antibody, Approximately 105μ in the system in which endogenous tritin was removed and neutralized
It was g. This yield is the amount of protein synthesized using the continuous cell-free protein synthesis system developed by Spirin et al. [Reaction liquid 1 ml, reaction time 20 hours 97 μg] (End
o, Y., et al., J. Biotechnology (1992), 25, 221-230).

【0035】[実施例3] 翻訳産物の同定[Example 3] Identification of translation product

【0036】図2では、14C−ロイシンの蛋白質への取
り込みを測定したが、実際に目的とする完成されたDH
FRが、合成されていることを確認する目的で、6時間
の反応後、反応液の一部(2.5μl)を採り、蛋白質
SDS−ゲル電気泳動によって分離し、蛋白質のバンド
をクマシーブリリアントブルーを用いて染色した(図
3)。
In FIG. 2, the incorporation of 14 C-leucine into the protein was measured.
To confirm that FR was synthesized, after a reaction for 6 hours, a part (2.5 μl) of the reaction solution was taken and separated by protein SDS-gel electrophoresis, and the protein band was separated by Coomassie Brilliant Blue. Was used for staining (Fig. 3).

【0037】レーン1はDHFRmRNA非存在下、レ
ーン2はその存在下で蛋白質合成を行ったものである。
レーン3はトリチン抗体を反応系に添加したもの、レー
ン4はトリチンをトリチン抗体を利用して、除去・中和
した反応液を分析したものである。レーン4の矢印部に
DHFRと同一の移動度を示す蛋白質バンドが明確に認
められる。また、対応するバンドがレーン1には確認で
きないことから、これがDHFRmRNAの翻訳産物で
あると結論した。従来のコムギ胚芽無細胞蛋白質合成系
では、生成量が少ないことからDHFRは明瞭なバンド
としては観察されない。
Lane 1 is for protein synthesis in the absence of DHFR mRNA, and Lane 2 is for protein synthesis in the presence thereof.
Lane 3 shows the reaction solution in which tritin antibody was added to the reaction system, and lane 4 shows the analysis of the reaction solution in which tritin was removed and neutralized using the tritin antibody. A protein band showing the same mobility as DHFR is clearly observed in the arrow portion of lane 4. Further, since the corresponding band could not be confirmed in lane 1, it was concluded that this is a translation product of DHFR mRNA. In the conventional wheat germ cell-free protein synthesis system, DHFR is not observed as a clear band because the amount produced is small.

【0038】さらにレーン4とレーン3のデンシトメー
ターを用いたDHFRバンドのスキャニングの結果か
ら、既に発明者らは、従来の無細胞系を用いてDHFR
合成を試み、この翻訳産物が酵素活性を保持しているこ
とを見い出している(Endo,Y.,et al.,J.Biotechnology
(1992),25,221-230)ので、本実験で合成されたDHF
Rも酵素活性を有する蛋白質としての構造を保持してい
るものと考えられる。
Furthermore, from the results of scanning the DHFR band using the densitometers in lane 4 and lane 3, the present inventors have already used the conventional cell-free system.
We attempted synthesis and found that this translation product retains enzymatic activity (Endo, Y., et al., J. Biotechnology.
(1992), 25, 221-230), so DHF synthesized in this experiment
It is considered that R also retains its structure as a protein having enzymatic activity.

【0039】[0039]

【発明の効果】本発明は従来1〜2時間程度で反応の進
行が止まってしまった無細胞蛋白質合成系の寿命を3〜
5時間以上に延ばすばかりか、反応効率も上昇させると
いう優れた効果を有し、特に生成蛋白量が従来の系の
2.5倍以上にも達することにより、蛋白質製造コスト
の低減に大きく寄与する効果が認められる。またスピリ
ンらの開発した連続式蛋白合成系と組み合わせることに
より、さらなる効率化が期待できる。
INDUSTRIAL APPLICABILITY According to the present invention, the life of a cell-free protein synthesis system in which the reaction has been stopped in about 1 to 2 hours is 3 to
In addition to extending the reaction time to 5 hours or more, it also has the excellent effect of increasing the reaction efficiency. In particular, when the amount of produced protein reaches 2.5 times or more that of the conventional system, it greatly contributes to the reduction of protein production cost. The effect is recognized. Further, further efficiency can be expected by combining with the continuous protein synthesis system developed by Spirin et al.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1の実験結果を示す電気泳動図FIG. 1 is an electrophoretogram showing the experimental results of Example 1.

【図2】実施例2の実験結果を示すグラフFIG. 2 is a graph showing the experimental results of Example 2.

【図3】実施例3の実験結果を示す電気泳動図FIG. 3 is an electrophoretogram showing the experimental results of Example 3.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】細胞破壊に伴って誘発される活性阻害因子
であって、核酸合成および/または蛋白質合成の活性を
阻害する因子である活性阻害因子の活性化を抑制した無
細胞蛋白質合成系で遺伝子情報より蛋白質を合成するこ
とを特徴とする、蛋白質の合成方法。
1. A cell-free protein synthesis system that suppresses activation of an activity inhibitor, which is an activity inhibitor that is induced by cell destruction and that inhibits the activity of nucleic acid synthesis and / or protein synthesis. A method for synthesizing a protein, which comprises synthesizing a protein from genetic information.
【請求項2】細胞を含まない蛋白質合成系が細胞を破壊
して得られる蛋白質合成系である、請求項1の合成方
法。
2. The synthetic method according to claim 1, wherein the cell-free protein synthesis system is a protein synthesis system obtained by destroying cells.
【請求項3】細胞が、動物細胞、植物細胞、真菌細胞、
または細菌細胞である、請求項2の合成方法。
3. The cells are animal cells, plant cells, fungal cells,
Alternatively, the synthetic method according to claim 2, which is a bacterial cell.
【請求項4】活性阻害因子がポリペプチドないし蛋白質
である、請求項1の合成方法。
4. The synthetic method according to claim 1, wherein the activity inhibitor is a polypeptide or protein.
【請求項5】活性阻害因子が核酸である、請求項1の合
成方法。
5. The synthetic method according to claim 1, wherein the activity inhibitor is a nucleic acid.
【請求項6】活性阻害因子の活性化抑制が、活性阻害因
子の阻害剤の使用によるものである、請求項1の合成方
法。
6. The method according to claim 1, wherein the inhibition of activation of the activity inhibitor is due to the use of an inhibitor of the activity inhibitor.
【請求項7】阻害剤が活性阻害因子を中和する抗体であ
る、請求項6の合成方法。
7. The synthetic method according to claim 6, wherein the inhibitor is an antibody that neutralizes an activity inhibitor.
【請求項8】活性阻害因子の活性化抑制が、活性阻害因
子の除去によるものである、請求項1の合成方法。
8. The method according to claim 1, wherein the inhibition of activation of the activity inhibitor is due to removal of the activity inhibitor.
【請求項9】細胞破壊によって得られ、破壊された細胞
が有していた蛋白質合成能を利用する蛋白質合成用の組
成物において、細胞破壊に伴って誘発される活性阻害因
子であって、核酸合成および/または蛋白質合成の活性
を阻害する因子である活性阻害因子を蛋白質合成用組成
物から除去してなるか蛋白質合成用組成物中でその活性
化を抑制してなる、細胞を含まない蛋白質合成用組成
物。
9. A composition for protein synthesis, which is obtained by cell disruption and utilizes the protein synthesizing ability of the disrupted cells, which is an activity inhibitory factor induced by cell disruption A cell-free protein obtained by removing an activity inhibitor, which is a factor that inhibits the activity of synthesis and / or protein synthesis, from the composition for protein synthesis or suppressing the activation in the composition for protein synthesis. Synthetic composition.
JP00713194A 1994-01-26 1994-01-26 Method of protein synthesis Expired - Fee Related JP3255784B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00713194A JP3255784B2 (en) 1994-01-26 1994-01-26 Method of protein synthesis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00713194A JP3255784B2 (en) 1994-01-26 1994-01-26 Method of protein synthesis

Publications (2)

Publication Number Publication Date
JPH07203984A true JPH07203984A (en) 1995-08-08
JP3255784B2 JP3255784B2 (en) 2002-02-12

Family

ID=11657531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00713194A Expired - Fee Related JP3255784B2 (en) 1994-01-26 1994-01-26 Method of protein synthesis

Country Status (1)

Country Link
JP (1) JP3255784B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000068412A1 (en) * 1999-05-11 2000-11-16 Wakenyaku Co., Ltd. Preparation containing cell extract for synthesizing cell-free protein and means for synthesizing cell-free protein
WO2001027260A1 (en) * 1999-10-15 2001-04-19 Wakenyaku Co., Ltd. Template molecule having broad applicability and highly efficient function means of cell-free synthesis of proteins by using the same
WO2002018586A1 (en) * 2000-08-30 2002-03-07 Wakenyaku Co Ltd Design and construction of transcription template for synthesizing cell-free protein, and dilution batch-type method of synthesizing cell-free wheat germ protein by using the same
WO2002024939A1 (en) * 2000-08-29 2002-03-28 Wakenyaku Co Ltd Methods of synthesizing cell-free protein
WO2002038790A1 (en) * 2000-11-08 2002-05-16 Wakenyaku Co Ltd Process for producing germ extract
WO2003056009A1 (en) * 2001-12-27 2003-07-10 Yaeta Endo Nucleotide sequences having activity of controlling translation efficiency and utilization thereof
JP2005503157A (en) * 2001-09-17 2005-02-03 エフ.ホフマン−ラ ロシュ アーゲー Method for increasing protein solubility, expression rate and activity in recombinant production
WO2005083104A1 (en) * 2004-03-02 2005-09-09 Zoegene Corporation Method of producing liquid cell extract for cell-free protein synthesis
US7074595B2 (en) 2000-07-21 2006-07-11 Cellfree Sciences Co., Ltd. General means of labeling protein by using wheat embryo cell-free protein synthesis system

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6905843B1 (en) * 1999-05-11 2005-06-14 Cellfree Sciences Co., Ltd. Preparation containing cell extracts for synthesizing cell-free protein and means for synthesizing cell-free protein
US7235382B2 (en) 1999-05-11 2007-06-26 Cellfree Sciences Co., Ltd. Preparation containing cell extracts for cell-free protein synthesis and means for synthesizing protein using the preparation
WO2000068412A1 (en) * 1999-05-11 2000-11-16 Wakenyaku Co., Ltd. Preparation containing cell extract for synthesizing cell-free protein and means for synthesizing cell-free protein
WO2001027260A1 (en) * 1999-10-15 2001-04-19 Wakenyaku Co., Ltd. Template molecule having broad applicability and highly efficient function means of cell-free synthesis of proteins by using the same
US7074595B2 (en) 2000-07-21 2006-07-11 Cellfree Sciences Co., Ltd. General means of labeling protein by using wheat embryo cell-free protein synthesis system
WO2002024939A1 (en) * 2000-08-29 2002-03-28 Wakenyaku Co Ltd Methods of synthesizing cell-free protein
WO2002018586A1 (en) * 2000-08-30 2002-03-07 Wakenyaku Co Ltd Design and construction of transcription template for synthesizing cell-free protein, and dilution batch-type method of synthesizing cell-free wheat germ protein by using the same
JP4762481B2 (en) * 2000-08-30 2011-08-31 株式会社セルフリーサイエンス Design and construction of transcription template for cell-free protein synthesis and dilution batch method wheat germ cell-free protein synthesis method using the same
WO2002038790A1 (en) * 2000-11-08 2002-05-16 Wakenyaku Co Ltd Process for producing germ extract
JP2005503157A (en) * 2001-09-17 2005-02-03 エフ.ホフマン−ラ ロシュ アーゲー Method for increasing protein solubility, expression rate and activity in recombinant production
WO2003056009A1 (en) * 2001-12-27 2003-07-10 Yaeta Endo Nucleotide sequences having activity of controlling translation efficiency and utilization thereof
WO2005083104A1 (en) * 2004-03-02 2005-09-09 Zoegene Corporation Method of producing liquid cell extract for cell-free protein synthesis
JPWO2005083104A1 (en) * 2004-03-02 2008-01-17 三菱化学株式会社 Method for producing cell extract for cell-free protein synthesis
US7838640B2 (en) 2004-03-02 2010-11-23 Cellfree Sciences Co., Ltd. Method of producing cell extract for cell-free protein synthesis
US7919597B2 (en) 2004-03-02 2011-04-05 Cellfree Sciences Co., Ltd. Method of producing cell extract for cell-free protein synthesis

Also Published As

Publication number Publication date
JP3255784B2 (en) 2002-02-12

Similar Documents

Publication Publication Date Title
Endo et al. The site of action of the A-chain of mistletoe lectin I on eukaryotic ribosomes The RNA N-glycosidase activity of the protein
DE602004011789T2 (en) Compositions of orthogonal lysyl tRNA and aminoacyl-tRNA synthetase pairs and their uses
Gonen et al. Protein synthesis elongation factor EF-1 alpha is essential for ubiquitin-dependent degradation of certain N alpha-acetylated proteins and may be substituted for by the bacterial elongation factor EF-Tu.
Dougan et al. ClpS, a substrate modulator of the ClpAP machine
EP1220944B1 (en) Nuclease inhibitor cocktail
CN1897969B (en) Selective incorporation of 5-hyroxytrypophan into proteins in mammalian cells
Telkov et al. Proteins of the Rpf (resuscitation promoting factor) family are peptidoglycan hydrolases
Zou et al. Molecular cloning and characterization of a rabbit eIF2C protein
CN105567765A (en) RNA interferases and methods of use thereof
JPH07203984A (en) Synthesis of protein
Kumura et al. Stimulation of the UvrABC enzyme-catalyzed repair reactions by the UvrD protein (DNA helicase II)
US20160304571A1 (en) Synthesis of Site Specifically-Linked Ubiquitin
Ciechanover The ubiquitin‐mediated proteolytic pathway
EP0086053B1 (en) Process for synthesizing peptides or peptide derivatives
AU2004234282B2 (en) Chaperonine-target protein complex, method of producing the same, method of stabilizing target protein, method of immobilizing target protein, method of analyzing the structure of target protein, sustained-release preparation and method of producing antibody against target protein
JP3753358B2 (en) Germ extract for cell-free protein synthesis, method for producing the same, and method for protein synthesis using the same
DE60222390T2 (en) IMPROVED IN VITRO SYNTHESIS SYSTEM
Chaddock et al. Pokeweed antiviral protein (PAP) mutations which permit E. coli growth do not eliminate catalytic activity towards prokaryotic ribosomes
Tsukahara et al. RNA degrading activity is tightly associated with the multicatalytic proteinase, ingensin
CN111154785A (en) Method for modifying ubiquitin and inhibiting ubiquitination pathway
CN117157404A (en) Mutant MAD7 proteins
Tokumoto et al. Identification of the Xenopus 20S proteasome α4 subunit which is modified in the meiotic cell cycle
US20100184949A1 (en) Method for the mass expression of an antimicrobial peptide by using a translational coupling system
Daskalova et al. Elongation Factor P Modulates the Incorporation of Structurally Diverse Noncanonical Amino Acids into Escherichia coli Dihydrofolate Reductase
WO1999006072A1 (en) Cyclized prodrugs

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20011029

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081130

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081130

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091130

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111130

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees