JPH07202325A - Gallium nitride compound semiconductor laser diode - Google Patents

Gallium nitride compound semiconductor laser diode

Info

Publication number
JPH07202325A
JPH07202325A JP35457193A JP35457193A JPH07202325A JP H07202325 A JPH07202325 A JP H07202325A JP 35457193 A JP35457193 A JP 35457193A JP 35457193 A JP35457193 A JP 35457193A JP H07202325 A JPH07202325 A JP H07202325A
Authority
JP
Japan
Prior art keywords
layer
electrode layer
sapphire substrate
laser
compound semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP35457193A
Other languages
Japanese (ja)
Other versions
JP3753747B2 (en
Inventor
Norikatsu Koide
典克 小出
Shiro Yamazaki
史郎 山崎
Junichi Umezaki
潤一 梅崎
Isamu Akasaki
勇 赤崎
Hiroshi Amano
浩 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Toyoda Gosei Co Ltd
Original Assignee
Research Development Corp of Japan
Toyoda Gosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Development Corp of Japan, Toyoda Gosei Co Ltd filed Critical Research Development Corp of Japan
Priority to JP35457193A priority Critical patent/JP3753747B2/en
Publication of JPH07202325A publication Critical patent/JPH07202325A/en
Application granted granted Critical
Publication of JP3753747B2 publication Critical patent/JP3753747B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To improve laser oscillation efficiency by constituting a resonator of an uppermost first electrode layer, a lowermost second electrode layer and multiple layers therebetween and outputting a laser to a direction perpendicular to the electrode layers. CONSTITUTION:Multiple layers 3 to 6 comprising gallium nitride compound semiconductor of a double hetero junction structure ((AlxGa1-x)yIn1-yN: 0<=x<=1, 0<=y<=1) are laminated on a sapphire substrate 1, wherein a first electrode layer 8 made of a reflection film is formed on the uppermost layer 6 and a second electrode layer 9 of the reflection film is formed on the lowermost layer 3 which is exposed at a hole 1a formed on the sapphire substrate 1. The first electrode layer 8, the second electrode layer 9 and the multiple layers 3 to 6 between both electrode layers 8, 9 constitute a laser resonator for outputting a laser in a direction perpendicular to the electrode layers 8, 9. Thus oscillation efficiency of the laser is improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、可視単波長、特に、青
色領域から紫色領域まで、及び紫外光領域で発光可能な
半導体レーザダイオードに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor laser diode capable of emitting light in a single visible wavelength, particularly in the blue region to the violet region and the ultraviolet region.

【0002】[0002]

【従来技術】従来、特開平4-242985号公報に記載のレー
ザダイオードが提案されている。そのレーザダイオード
は、リン化インジウムガリウムアルミニウム(InGaAlP)
系結晶により作製されており、活性層には不純物の無添
加の層が用いられている。
2. Description of the Related Art Conventionally, a laser diode described in Japanese Patent Laid-Open No. 4-242985 has been proposed. The laser diode is indium gallium aluminum phosphide (InGaAlP)
It is made of a system crystal, and a layer without addition of impurities is used for the active layer.

【0003】[0003]

【発明が解決しようとする課題】このレーザダイオード
は、サファイア基板上に窒化ガリウム系化合物半導体を
エピタキシャル成長させたものである。しかしながら、
レーザダイオードを製作する場合には、精密な鏡面を得
る必要があるが、未だ、精密な鏡面を得るためのへき開
方向が見いだされていない。精密な鏡面が得られないた
め、レーザの発振効率が低いという問題があった。
This laser diode is obtained by epitaxially growing a gallium nitride compound semiconductor on a sapphire substrate. However,
When manufacturing a laser diode, it is necessary to obtain a precise mirror surface, but the cleavage direction for obtaining a precise mirror surface has not yet been found. Since a precise mirror surface cannot be obtained, there is a problem that the laser oscillation efficiency is low.

【0004】本発明は、上記の課題を解決するために成
されたものであり、その目的は、窒化ガリウム系化合物
半導体レーザダイオードにおいて、共振器を構成する両
端面の平行度及び面精度を良好とすることで、レーザの
発振効率を向上させることである。
The present invention has been made to solve the above problems, and an object thereof is to improve the parallelism and surface accuracy of both end faces constituting a resonator in a gallium nitride-based compound semiconductor laser diode. Is to improve the oscillation efficiency of the laser.

【0005】[0005]

【課題を解決するための手段】上記問題を解決するため
の発明の構成は、活性層をその禁制帯幅よりも大きな禁
制帯幅を有する層で挟んだダブルヘテロ接合構造の窒化
ガリウム系化合物半導体((AlxGa1-x)yIn1-yN:0≦x≦1,
0≦y≦1)から成るレーザダイオードにおいて、サファイ
ア基板と、サファイア基板上に直接又はバッファ層を介
在させて、ダブルヘテロ接合構造に形成された窒化ガリ
ウム系化合物半導体 ((AlxGa1-x)yIn1-yN:0≦x≦1,0≦y
≦1)から成る積層された多重層と、多重層の最上層に反
射膜で形成された第1電極層と、サファイア基板に形成
された穴において多重層の露出した最下層に形成された
反射膜で形成された第2電極層と、を有し、第1電極層
と第2電極層と、それらの間の多重層とで共振器を構成
し、電極層に垂直な方向にレーザを出力するようにした
ことを特徴とする。
The structure of the invention for solving the above-mentioned problems is a gallium nitride compound semiconductor having a double heterojunction structure in which an active layer is sandwiched by layers having a forbidden band width larger than the forbidden band width. ((Al x Ga 1-x ) y In 1-y N: 0 ≦ x ≦ 1,
0 ≦ y ≦ 1), a sapphire substrate and a gallium nitride compound semiconductor ((Al x Ga 1-x) formed in a double heterojunction structure directly or with a buffer layer interposed on the sapphire substrate. ) y In 1-y N: 0≤x≤1,0≤y
≦ 1) stacked multilayers, the first electrode layer formed of a reflective film on the uppermost layer of the multilayer, and the reflection formed on the exposed lowermost layer of the multilayer in the hole formed on the sapphire substrate. A second electrode layer formed of a film, the first electrode layer and the second electrode layer, and a multi-layer between them form a resonator, and output a laser in a direction perpendicular to the electrode layer. It is characterized by doing so.

【0006】[0006]

【作用及び効果】本発明は、上記のように、サファイア
基板の主面上に窒化ガリウム系化合物半導体の多層を形
成して、その多層によりレーザ素子を形成して、サフア
イア基板に裏面から穴をあけて、その穴に露出した多重
層の最下層に鏡面の第2電極層と最上層に鏡面の第1電
極層とを形成している。よって、その2つの鏡面により
サファイア基板の主面に垂直な方向に共振器を構成する
ことができる。この共振器の端面は蒸着等で鏡面に形成
することができ、面精度が高くとれるので、レーザ出力
の効率を向上させることができる。
As described above, the present invention forms a multi-layer of gallium nitride compound semiconductor on the main surface of the sapphire substrate, forms a laser element by the multi-layer, and forms a hole in the sapphire substrate from the back surface. A mirror-like second electrode layer is formed on the lowermost layer of the multilayer exposed in the hole, and a mirror-like first electrode layer is formed on the uppermost layer. Therefore, the two mirror surfaces can form a resonator in a direction perpendicular to the main surface of the sapphire substrate. The end surface of this resonator can be formed into a mirror surface by vapor deposition or the like, and high surface accuracy can be obtained, so that the efficiency of laser output can be improved.

【0007】[0007]

【実施例】以下、本発明を具体的な実施例に基づいて説
明する。
EXAMPLES The present invention will be described below based on specific examples.

【0008】図1は、サファイア基板を用いた半導体レ
ーザダイオードの構造を示した断面図である。図1にお
いて、(1,1,-2,0)面(a面)を結晶成長面とするサファ
イア基板1を有機洗浄の後、結晶成長装置の結晶成長部
に設置する。成長炉を真空排気の後、水素を供給し1200
℃程度まで昇温する。これによりサファイア基板1の表
面に付着していた炭化水素系ガスがある程度取り除かれ
る。
FIG. 1 is a sectional view showing the structure of a semiconductor laser diode using a sapphire substrate. In FIG. 1, a sapphire substrate 1 having a (1,1, -2,0) plane (a-plane) as a crystal growth plane is subjected to organic cleaning and then installed in a crystal growth unit of a crystal growth apparatus. After evacuation of the growth furnace, hydrogen is supplied and 1200
Raise the temperature to about ℃. As a result, the hydrocarbon gas attached to the surface of the sapphire substrate 1 is removed to some extent.

【0009】次に、サファイア基板1の温度を 600℃程
度まで降温し、トリメチルアルミニウム(TMA) 及びアン
モニア(NH3) を供給して、サファイア基板1上に50nm程
度の膜厚を持つAlN 層2を形成する。
Next, the temperature of the sapphire substrate 1 is lowered to about 600 ° C., trimethylaluminum (TMA) and ammonia (NH 3 ) are supplied, and the AlN layer 2 having a film thickness of about 50 nm is formed on the sapphire substrate 1. To form.

【0010】次に、TMA の供給のみを止め、基板温度を
1040℃まで上げ、トリメチルガリウム(TMG) 及びシラン
(SiH4 ) を供給しSiドープn型GaN 層3(n+ 層)(最
下層)を成長する。
Next, the supply of TMA is stopped and the substrate temperature is adjusted.
Raise to 1040 ℃, trimethylgallium (TMG) and silane
(SiH 4 ) is supplied to grow the Si-doped n-type GaN layer 3 (n + layer) (bottom layer).

【0011】次に、TMA 及びTMG 及びシラン(SiH4 ) を
供給して、厚さ 0.4μmのSiドープのAl0.1Ga0.9N 層4
(n層)を形成する。
Next, TMA and TMG and silane (SiH 4 ) were supplied to the Si-doped Al 0.1 Ga 0.9 N layer 4 having a thickness of 0.4 μm.
(N layer) is formed.

【0012】次に、TMG を供給して厚さ 0.2μmのGaN
層5(活性層)を成長させる。
Next, by supplying TMG, GaN having a thickness of 0.2 μm is formed.
Layer 5 (active layer) is grown.

【0013】次に、TMA 、TMG 及びCp2Mg を供給して、
厚さ0.4 μmのマグネシウムドープのAl0.1Ga0.9N 層6
(p層)(最上層)を形成する。
Next, by supplying TMA, TMG and Cp 2 Mg,
0.4 μm thick magnesium-doped Al 0.1 Ga 0.9 N layer 6
(P layer) (uppermost layer) is formed.

【0014】次に、Al0.1Ga0.9N 層6(p層)上にSiO2
層7を堆積した後、1mmφに窓7Aを開ける。又、サフ
ァイア基板1の裏面b側から反応性イオンエッチング
(RIE)により、1mmφに穴1Aを開けて、Siドープ
n型GaN 層3を露出させた。
Next, SiO 2 is formed on the Al 0.1 Ga 0.9 N layer 6 (p layer).
After depositing the layer 7, a window 7A is opened in 1 mmφ. Further, a hole 1A was made in 1 mmφ from the back surface b side of the sapphire substrate 1 by reactive ion etching (RIE) to expose the Si-doped n-type GaN layer 3.

【0015】その後、真空チャンバに移して、マグネシ
ウムのドープされたAl0.1Ga0.9N層6(p層)及びGaN
層5(活性層)に電子線照射処理を行う。この電子線の
照射により、Al0.1Ga0.9N 層6(p層)及びGaN 層5
(活性層)とp型伝導を示した。
Then, it was transferred to a vacuum chamber and the magnesium-doped Al 0.1 Ga 0.9 N layer 6 (p layer) and GaN were deposited.
The layer 5 (active layer) is subjected to electron beam irradiation treatment. By this electron beam irradiation, the Al 0.1 Ga 0.9 N layer 6 (p layer) and the GaN layer 5
(Active layer) and p-type conduction.

【0016】典型的な電子線照射処理条件を表に示す。Typical electron beam irradiation treatment conditions are shown in the table.

【表1】 [Table 1]

【0017】次に、Al0.1Ga0.9N 層6(p層)の窓7A
の部分に厚さ、2000Åのアルミニウム電極層(第1
電極層)8を形成した。又、穴1Aにおいて、露出した
Siドープn型GaN 層3に厚さ、800Åのアルミニウム
電極層(第2電極層)9を形成した。アルミニウム電極
層8、9はレーザ共振器の両端の鏡面となる。
Next, the window 7A of the Al 0.1 Ga 0.9 N layer 6 (p layer) is formed.
2000 Å aluminum electrode layer (first
Electrode layer) 8 was formed. Also, exposed in the hole 1A
An aluminum electrode layer (second electrode layer) 9 having a thickness of 800 Å was formed on the Si-doped n-type GaN layer 3. The aluminum electrode layers 8 and 9 become mirror surfaces on both ends of the laser resonator.

【0018】上記の素子が1枚のサファイア基板1の上
に多数形成され、各素子がダイヤモンドカッタで切断さ
れる。そして、各素子において、アルミニウム電極層8
とアルミニウム電極層9とに電圧を印加することで、本
レーザダイオードはX軸方向(サファイア基板1の面に
垂直な方向)に発振する。発振したレーザは、反射率が
80%のアルミニウム電極層9の側から出力される。
尚、アルミニウム電極層8は反射率100%とすること
ができる。
A large number of the above-mentioned elements are formed on one sapphire substrate 1, and each element is cut with a diamond cutter. Then, in each element, the aluminum electrode layer 8
By applying a voltage to the aluminum electrode layer 9 and the aluminum electrode layer 9, the laser diode oscillates in the X-axis direction (direction perpendicular to the surface of the sapphire substrate 1). The oscillated laser is output from the aluminum electrode layer 9 side having a reflectance of 80%.
The aluminum electrode layer 8 can have a reflectance of 100%.

【0019】このように、縦型の共振器を有したレーザ
ダイオードを得ることができる。
Thus, a laser diode having a vertical resonator can be obtained.

【0020】尚、レーザを出力する側の電極層は、アル
ミニウムに代えて、例えば、厚さ350ÅのGaN と厚さ
350ÅのAlGaN との多重層で構成することができる。
この多重層の層数や層の厚さにより反射率を制御するこ
とができる。又、この電極層をSiO2/TiO2 の多重層で構
成することもできる。この場合にも、多重層の層数や層
の厚さにより反射率を制御することができる。
The electrode layer on the laser output side can be formed of, for example, a multi-layer of GaN having a thickness of 350 Å and AlGaN having a thickness of 350 Å instead of aluminum.
The reflectance can be controlled by the number of layers and the thickness of the multiple layers. Further, this electrode layer may be composed of a multi-layer of SiO 2 / TiO 2 . Also in this case, the reflectance can be controlled by the number of layers and the thickness of the layers.

【0021】又、サファイア基板1のエッチングはサフ
ァイア基板1を裏面a側から研磨した後、エッチングす
るようにすれば、よりエッチング時間が短くてすむ。
The etching time of the sapphire substrate 1 can be shortened by polishing the sapphire substrate 1 from the back surface a side and then etching.

【0022】上記のレーザダイオードは、1つの面にお
いて多数の点状の電極を形成することで、ドット発光が
可能となり、平面ドットマトリックスディスプレイとす
ることができる。
The laser diode described above can emit dots by forming a large number of dot-shaped electrodes on one surface, and can be used as a flat dot matrix display.

【図面の簡単な説明】[Brief description of drawings]

【図1】サファイア基板上に作製した本発明の具体的な
一実施例に係る((AlxGa1-x)yIn1-yN:0≦x≦1,0≦y≦1)
系半導体レーザダイオードの構成を示した断面図。
FIG. 1 relates to a specific example of the present invention formed on a sapphire substrate ((Al x Ga 1-x ) y In 1-y N: 0 ≦ x ≦ 1,0 ≦ y ≦ 1)
FIG. 3 is a cross-sectional view showing the configuration of a semiconductor laser diode.

【符号の説明】[Explanation of symbols]

1…サファイアの(11-20) 面基板 2…AlN 緩衝層 3…GaN 層(n+ 層)(最下層) 4…Al0.1Ga0.9N 層(n層) 5…GaN 層(活性層) 6…Al0.1Ga0.9N 層(p層)(最上層) 7…─SiO2層 8…アルミニウム電極層(第1電極層) 9…アルミニウム電極層(第2電極層)1 ... Sapphire (11-20) face substrate 2 ... AlN buffer layer 3 ... GaN layer (n + layer) (bottom layer) 4 ... Al 0.1 Ga 0.9 N layer (n layer) 5 ... GaN layer (active layer) 6 ... Al 0.1 Ga 0.9 N layer (p layer) (uppermost layer) 7 --- SiO 2 layer 8 ... Aluminum electrode layer (first electrode layer) 9 ... Aluminum electrode layer (second electrode layer)

フロントページの続き (71)出願人 591014950 天野 浩 愛知県名古屋市名東区山の手2丁目104 宝マンション山の手508号 (72)発明者 小出 典克 愛知県西春日井郡春日町大字落合字長畑1 番地 豊田合成株式会社内 (72)発明者 山崎 史郎 愛知県西春日井郡春日町大字落合字長畑1 番地 豊田合成株式会社内 (72)発明者 梅崎 潤一 愛知県西春日井郡春日町大字落合字長畑1 番地 豊田合成株式会社内 (72)発明者 赤崎 勇 愛知県名古屋市西区浄心1丁目1番38− 805 (72)発明者 天野 浩 愛知県名古屋市名東区神丘町二丁目21 虹 ケ丘東団地19号棟103号室Front page continuation (71) Applicant 591014950 Amano Hiro Ainoyama, Nagoya, Meito-ku, Yamanote 2-chome 104 Takara Mansion Yamanote 508 (72) Inventor Norikatsu Koide Aichi Prefecture Nishikasugai-gun Kasuga-cho 1 Ochiai, Nagahata Toyoda Gosei Incorporated (72) Inventor Shiro Yamazaki 1 Ochiai, Nagachibata, Kasuga-cho, Nishikasugai-gun, Aichi Toyoda Gosei Co., Ltd. (72) Inventor Junichi Umezaki 1-Ichi, Nagahata, Kasuga-cho, Nishikasugai-gun, Aichi Prefecture Toyoda Gosei Co., Ltd. (72) Inventor, Isamu Akasaki, 1-3-1, Joshi, Nishi-ku, Nagoya, Aichi Prefecture 38-805 (72) Inventor, Hiroshi Amano 2-21, Kamioka-cho, Meito-ku, Nagoya, Aichi Prefecture, Nijigaoka East Complex, Room No. 103, Bldg.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 活性層をその禁制帯幅よりも大きな禁制
帯幅を有する層で挟んだダブルヘテロ接合構造の窒化ガ
リウム系化合物半導体((AlxGa1-x)yIn1-yN:0≦x≦1,0
≦y≦1)から成るレーザダイオードにおいて、 サファイア基板と、 前記サファイア基板上に直接又はバッファ層を介在させ
て、前記ダブルヘテロ接合構造に形成された窒化ガリウ
ム系化合物半導体((AlxGa1-x)yIn1-yN:0 ≦x≦1,0≦y
≦1)から成る積層された多重層と、 前記多重層の最上層に反射膜で形成された第1電極層
と、 前記サファイア基板に形成された穴において前記多重層
の露出した最下層に形成された反射膜で形成された第2
電極層と、 を有し、前記第1電極層と第2電極層と、それらの間の
多重層とで共振器を構成し、前記電極層に垂直な方向に
レーザを出力するようにしたことを特徴とする窒化ガリ
ウム系化合物半導体レーザダイオード。
1. A gallium nitride-based compound semiconductor ((Al x Ga 1-x ) y In 1-y N: having a double heterojunction structure in which an active layer is sandwiched between layers having a forbidden band width larger than the forbidden band width. 0 ≦ x ≦ 1,0
≦ y ≦ 1), a sapphire substrate, and a gallium nitride-based compound semiconductor ((Al x Ga 1- x ) y In 1-y N: 0 ≤x≤1,0≤y
≦ 1) laminated multilayer, a first electrode layer formed of a reflective film on the uppermost layer of the multilayer, and formed on the exposed lowermost layer of the multilayer in a hole formed on the sapphire substrate Second formed of a reflective film
An electrode layer, and a resonator is constituted by the first electrode layer, the second electrode layer, and a multi-layer between them, and a laser is output in a direction perpendicular to the electrode layer. A gallium nitride-based compound semiconductor laser diode characterized by:
JP35457193A 1993-12-27 1993-12-27 Gallium nitride compound semiconductor laser diode Expired - Fee Related JP3753747B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35457193A JP3753747B2 (en) 1993-12-27 1993-12-27 Gallium nitride compound semiconductor laser diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35457193A JP3753747B2 (en) 1993-12-27 1993-12-27 Gallium nitride compound semiconductor laser diode

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2003164313A Division JP2004006914A (en) 2003-06-09 2003-06-09 Gallium nitride based compound semiconductor light- emitting element and its manufacturing method

Publications (2)

Publication Number Publication Date
JPH07202325A true JPH07202325A (en) 1995-08-04
JP3753747B2 JP3753747B2 (en) 2006-03-08

Family

ID=18438453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35457193A Expired - Fee Related JP3753747B2 (en) 1993-12-27 1993-12-27 Gallium nitride compound semiconductor laser diode

Country Status (1)

Country Link
JP (1) JP3753747B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1146038A (en) * 1997-05-29 1999-02-16 Nichia Chem Ind Ltd Nitride semiconductor laser element and manufacture of the same
US5905275A (en) * 1996-06-17 1999-05-18 Kabushiki Kaisha Toshiba Gallium nitride compound semiconductor light-emitting device
GB2374459A (en) * 2000-12-18 2002-10-16 Samsung Electro Mech Light Emitting Device
JP2003163373A (en) * 2001-11-26 2003-06-06 Toyoda Gosei Co Ltd Iii nitride compound semiconductor light emitting element
US6580099B2 (en) 1994-12-02 2003-06-17 Nichia Chemical Industries, Ltd. Nitride semiconductor light-emitting devices
JP2005109469A (en) * 2003-09-12 2005-04-21 Semiconductor Energy Lab Co Ltd Luminescent device
US6900465B2 (en) 1994-12-02 2005-05-31 Nichia Corporation Nitride semiconductor light-emitting device
WO2005057745A1 (en) * 2003-12-12 2005-06-23 Itswell Co. Ltd. Gan-based vertical electrode laser diode utilizing the technique of sapphire etching and manufacturing method of the same.
KR100615122B1 (en) * 1997-07-10 2007-04-25 로무 가부시키가이샤 Semiconductor light emitting device
EP2894679A1 (en) * 2001-02-23 2015-07-15 International Rectifier Corporation Gallium nitride material devices including backside vias and methods of fabrication
US10700023B2 (en) 2016-05-18 2020-06-30 Macom Technology Solutions Holdings, Inc. High-power amplifier package
US11367674B2 (en) 2016-08-10 2022-06-21 Macom Technology Solutions Holdings, Inc. High power transistors

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6900465B2 (en) 1994-12-02 2005-05-31 Nichia Corporation Nitride semiconductor light-emitting device
US6580099B2 (en) 1994-12-02 2003-06-17 Nichia Chemical Industries, Ltd. Nitride semiconductor light-emitting devices
US5905275A (en) * 1996-06-17 1999-05-18 Kabushiki Kaisha Toshiba Gallium nitride compound semiconductor light-emitting device
JPH1146038A (en) * 1997-05-29 1999-02-16 Nichia Chem Ind Ltd Nitride semiconductor laser element and manufacture of the same
KR100615122B1 (en) * 1997-07-10 2007-04-25 로무 가부시키가이샤 Semiconductor light emitting device
US7566578B2 (en) 2000-12-18 2009-07-28 Samsung Electro-Mechanics Co., Ltd. GaN based group III-V nitride semiconductor light-emitting diode and method for fabricating the same
US6657237B2 (en) 2000-12-18 2003-12-02 Samsung Electro-Mechanics Co., Ltd. GaN based group III-V nitride semiconductor light-emitting diode and method for fabricating the same
GB2374459B (en) * 2000-12-18 2005-09-14 Samsung Electro Mech GaN based group III-V nitride semiconductor light-emitting diode and method for fabricating the same
CN100452447C (en) * 2000-12-18 2009-01-14 三星电机株式会社 GaN group III-V family nitride light-emitting diode and its production method
GB2374459A (en) * 2000-12-18 2002-10-16 Samsung Electro Mech Light Emitting Device
US8324004B2 (en) 2000-12-18 2012-12-04 Samsung Electronics Co., Ltd. Method for manufacturing of light emitting device using GaN series III-V group nitride semiconductor material
EP2894679A1 (en) * 2001-02-23 2015-07-15 International Rectifier Corporation Gallium nitride material devices including backside vias and methods of fabrication
JP2003163373A (en) * 2001-11-26 2003-06-06 Toyoda Gosei Co Ltd Iii nitride compound semiconductor light emitting element
JP2005109469A (en) * 2003-09-12 2005-04-21 Semiconductor Energy Lab Co Ltd Luminescent device
WO2005057745A1 (en) * 2003-12-12 2005-06-23 Itswell Co. Ltd. Gan-based vertical electrode laser diode utilizing the technique of sapphire etching and manufacturing method of the same.
US10700023B2 (en) 2016-05-18 2020-06-30 Macom Technology Solutions Holdings, Inc. High-power amplifier package
US11367674B2 (en) 2016-08-10 2022-06-21 Macom Technology Solutions Holdings, Inc. High power transistors
US11862536B2 (en) 2016-08-10 2024-01-02 Macom Technology Solutions Holdings, Inc. High power transistors

Also Published As

Publication number Publication date
JP3753747B2 (en) 2006-03-08

Similar Documents

Publication Publication Date Title
JP5118392B2 (en) Semiconductor light emitting device and manufacturing method thereof
JP3988018B2 (en) Crystal film, crystal substrate and semiconductor device
JP3164016B2 (en) Light emitting device and method for manufacturing wafer for light emitting device
US8013356B2 (en) Semiconductor light emitting device
JP2008109066A (en) Light emitting element
JPH0832116A (en) Light emitting element
JP2008235804A (en) Light-emitting element
JP2002368343A (en) Nitride semiconductor laser
JP2008091488A (en) Method for manufacturing nitride semiconductor
US5850410A (en) Semiconductor laser and method for fabricating the same
JPH11251632A (en) Manufacture of gallium nitride semiconductor element
JP3753747B2 (en) Gallium nitride compound semiconductor laser diode
JP2009117641A (en) Semiconductor light-emitting element
JP2009071174A (en) Semiconductor light-emitting device
JPH09283799A (en) Semiconductor light-emitting element
JP4608731B2 (en) Manufacturing method of semiconductor laser
JPH10275955A (en) Semiconductor laser diode and manufacture thereof
JP2003209062A (en) Crystal growth method of compound semiconductor layer and semiconductor element
JP2001345282A (en) Method of manufacturing nitride-based iii group compound semiconductor and nitride-based iii group compound semiconductor element
JPH07297495A (en) Gallium nitride compound semiconductor laser diode
JPH10303458A (en) Gallium nitride compound semiconductor element
JP2009212343A (en) Nitride semiconductor element, and method of manufacturing the same
JP4363415B2 (en) Crystal film, crystal substrate and semiconductor device
JPH09275243A (en) Crystal growing method of nitride semiconductor and forming method of laser device resonant plane
JPH09307193A (en) Nitride semiconductor laser element and its manufacture

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051214

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20091222

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20091222

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees