JPH07202138A - Ferroelectric memory element - Google Patents

Ferroelectric memory element

Info

Publication number
JPH07202138A
JPH07202138A JP5335336A JP33533693A JPH07202138A JP H07202138 A JPH07202138 A JP H07202138A JP 5335336 A JP5335336 A JP 5335336A JP 33533693 A JP33533693 A JP 33533693A JP H07202138 A JPH07202138 A JP H07202138A
Authority
JP
Japan
Prior art keywords
ferroelectric
capacitor
transistor
paraelectric
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5335336A
Other languages
Japanese (ja)
Other versions
JP3131340B2 (en
Inventor
Nobuhito Ogata
信人 緒方
Akira Okuto
章 奥藤
Keiichiro Uda
啓一郎 宇田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP05335336A priority Critical patent/JP3131340B2/en
Publication of JPH07202138A publication Critical patent/JPH07202138A/en
Application granted granted Critical
Publication of JP3131340B2 publication Critical patent/JP3131340B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)
  • Dram (AREA)

Abstract

PURPOSE:To manufacture a stabilized element by a method wherein a ferroelectric capacitor and a paraelectric capacitor are connected to the gate electrode of a transistor which stores information, and another electrode which is not the common electrode of the paraelectric capacitor is connected to a drain terminal. CONSTITUTION:A ferroelectric thin film 28 is series connected to a ferroelectric capacitor which becomes the constituent element of an insulating film, and a normal dielectric capacitor 26 is series connected to a paraelectric capacitor 2 which becomes an insulating film. The common electrode 27 of the ferroelectric capacitor 1 and the paraelectric capacitor 2 is connected to the gate electrode of a transistor which stores information by changing the current capacity using the prescribed threshold value, and the other electrode which is not the common electrode 27 of the paraelectric capacitor 2 is connected to the drain terminal of the transistor. In order to read out information, voltage is applied between terminals 5 and 6, and the conductivity and non-conductivity of the transistor is detected. As a result, information can be read out without changing the condition of polarization of the ferroelectric film, namely, information can be non-destructively read out.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は非破壊読みだしの強誘電
体記憶素子に関する。さらに詳しくは強誘電体薄膜の自
発分極により強誘電体キャパシタまたは常誘電体キャパ
シタの両端に発生する電圧を利用することによってMOSF
ETのスイッチングを行う強誘電体記憶素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nondestructive read ferroelectric memory device. More specifically, by using the voltage generated across the ferroelectric capacitor or paraelectric capacitor due to the spontaneous polarization of the ferroelectric thin film, the MOSF
The present invention relates to a ferroelectric memory element that performs ET switching.

【0002】[0002]

【従来の技術】最近、強誘電体材料の自発分極を利用し
た不揮発性メモリが注目を集めており、精力的な研究が
行われている。強誘電体材料としては、例えばPZT(チ
タン酸ジルコン酸鉛)、PbTiO3、Bi4Ti3O12、BaMgF4
どが用いられている。なかでも、PZTはPt電極上に成長
させればc軸配向性の良い膜が得られることが知られて
おり、製品化に対して有望な材料と考えられている。こ
の強誘電体を利用した不揮発性メモリとしては、主に2
通りの構造が考えられており、それぞれ、キャパシタ
型、MFS(Metal-Ferroelectric-Semiconductor)FET(F
ield-Effect-Transistor)型とよばれている。
2. Description of the Related Art Recently, a non-volatile memory utilizing spontaneous polarization of a ferroelectric material has been attracting attention and vigorous research has been conducted. As the ferroelectric material, for example, PZT (lead zirconate titanate), PbTiO 3 , Bi 4 Ti 3 O 12 , BaMgF 4 or the like is used. Among them, PZT is known to produce a film with good c-axis orientation when grown on a Pt electrode, and is considered to be a promising material for commercialization. There are two main types of non-volatile memory using this ferroelectric material.
The following structures are considered, and they are a capacitor type and a MFS (Metal-Ferroelectric-Semiconductor) FET (F
ield-Effect-Transistor) type.

【0003】キャパシタ型は、強誘電体薄膜を電極で挟
んでキャパシタ構造としたものであり、強誘電体の自発
分極が反転する際に流れる反転電流の有無を検出して情
報の読み出しを行うものである。通常、図19の等価回
路に示すようにセル選択用のスイッチングトランジスタ
を用いてメモリセルを構成する。これに対しMFSFET型
は、図20のようにMOSFETのゲート酸化膜の代わりに強
誘電体薄膜12を用いたものであり、強誘電体の自発分
極によって半導体表面に電荷が誘起されることを利用し
てチャネルの電導度を変化させ、メモリセル情報の読み
出しを非破壊的に行うものである。
The capacitor type has a capacitor structure in which a ferroelectric thin film is sandwiched between electrodes, and information is read by detecting the presence or absence of a reversal current flowing when the spontaneous polarization of the ferroelectric material is reversed. Is. Normally, a memory cell is configured by using a switching transistor for cell selection as shown in the equivalent circuit of FIG. On the other hand, the MFSFET type uses the ferroelectric thin film 12 instead of the gate oxide film of the MOSFET as shown in FIG. 20, and utilizes the fact that charges are induced on the semiconductor surface by spontaneous polarization of the ferroelectric. Then, the conductivity of the channel is changed to read the memory cell information nondestructively.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、キャパ
シタ型ではPt電極等の上に良質な強誘電体薄膜を形成で
きる反面、読みだし時に自発分極の方向が変化する破壊
読みだしであり、読み出しの際に情報を破壊してしまう
ので再書き込みをしなければならないという欠点があ
る。
However, while the capacitor type can form a good-quality ferroelectric thin film on the Pt electrode or the like, it is a destructive reading in which the direction of spontaneous polarization changes at the time of reading. There is a drawback that you have to rewrite because it destroys information.

【0005】また、MFSFET型では読み出し時に情報を破
壊しない非破壊読み出しが可能であるが、半導体基板上
に直接強誘電体薄膜を形成するため、界面準位密度が大
きく、かつ不安定であり、また半導体表面に酸化膜など
が形成されるなど強誘電体と半導体との反応の問題もあ
り、界面の整合性の良い安定な素子を得ることが困難で
あるという欠点がある。
The MFSFET type is capable of nondestructive reading without destroying information at the time of reading, but since the ferroelectric thin film is formed directly on the semiconductor substrate, the interface state density is large and unstable. Further, there is a problem of reaction between the ferroelectric substance and the semiconductor such as formation of an oxide film on the surface of the semiconductor, and it is difficult to obtain a stable element having good interface matching.

【0006】このような問題点に対して、上記MFSFET型
の拡張として、ゲートを2重構造とし、図21のように
上部電極13と下部電極11の間に強誘電体薄膜12を
形成し、下部電極11と半導体表面との間に常誘電体薄
膜10を形成した構造が提案されている(特開昭49−
131646)。この構造によれば、強誘電体の自発分
極は、下部電極11と半導体表面に挟まれた誘電体10
の分極を通じてチャネルの電導度を変調することができ
る。
In order to solve such a problem, as an extension of the MFSFET type, the gate has a double structure, and the ferroelectric thin film 12 is formed between the upper electrode 13 and the lower electrode 11 as shown in FIG. A structure has been proposed in which the paraelectric thin film 10 is formed between the lower electrode 11 and the semiconductor surface (Japanese Patent Laid-Open No. 49-49).
131646). According to this structure, the spontaneous polarization of the ferroelectric substance is caused by the dielectric substance 10 sandwiched between the lower electrode 11 and the semiconductor surface.
It is possible to modulate the conductivity of the channel through the polarization of.

【0007】ところが、この構造では、強誘電体の大き
な誘電率のために上部電極13とソース8の間に加えら
れた電圧の多くが常誘電体薄膜10(通常、シリコン半
導体と整合性の良いSiO2)の方にかかり易くなるため、
分極を反転させるために高い電圧が必要となる。低電圧
で分極反転させるには常誘電体薄膜10の膜厚をできる
だけ薄くしたり、高誘電率材料を用いるなどの工夫が必
要であるが、前者ではリーク電流の増加や耐圧の減少な
どの問題があり、後者では強誘電体と半導体の界面が問
題になるのと同様、高誘電率材料と半導体における界面
の整合性が問題となり、安定な素子の作製が困難であ
る。
However, in this structure, most of the voltage applied between the upper electrode 13 and the source 8 has a good compatibility with the paraelectric thin film 10 (generally, a good match with the silicon semiconductor) due to the large dielectric constant of the ferroelectric substance. SiO 2 ) is more likely to be absorbed,
A high voltage is required to reverse the polarization. In order to invert the polarization at a low voltage, it is necessary to make the paraelectric thin film 10 as thin as possible and use a material having a high dielectric constant. However, in the former case, there are problems such as increase in leak current and decrease in breakdown voltage. However, in the latter case, similarly to the problem of the interface between the ferroelectric and the semiconductor, the consistency of the interface between the high dielectric constant material and the semiconductor becomes a problem, and it is difficult to manufacture a stable element.

【0008】[0008]

【課題を解決するための手段】本発明の強誘電体記憶素
子は、強誘電体薄膜を絶縁膜の構成要素とする強誘電体
キャパシタと、常誘電体薄膜を絶縁膜とする常誘電体キ
ャパシタとが直列に接続され、前記強誘電体キャパシタ
と前記常誘電体キャパシタの共通電極が所定のしきい値
で電流量を変化せしめて情報を記憶するトランジスタの
ゲート電極に接続され、前記常誘電体キャパシタの前記
共通電極でないもう一方の電極を前記トランジスタのド
レイン端子に接続したことを特徴とする。
A ferroelectric memory device according to the present invention comprises a ferroelectric capacitor having a ferroelectric thin film as a constituent element of an insulating film and a paraelectric capacitor having a paraelectric thin film as an insulating film. Are connected in series, the common electrode of the ferroelectric capacitor and the paraelectric capacitor is connected to the gate electrode of a transistor that stores the information by changing the amount of current at a predetermined threshold, The other electrode of the capacitor, which is not the common electrode, is connected to the drain terminal of the transistor.

【0009】また、上記強誘電体記憶素子は、前記ドレ
イン端子に読み出しトラジスタを付加したことを特徴と
する。
Further, the ferroelectric memory element is characterized in that a read transistor is added to the drain terminal.

【0010】また、上記強誘電体記憶素子は、前記強誘
電体キャパシタと前記常誘電体キャパシタを入れ換えた
構造を有することを特徴とする。
The ferroelectric memory element has a structure in which the ferroelectric capacitor and the paraelectric capacitor are interchanged.

【0011】[0011]

【作用】図1に示された本発明の強誘電体記憶素子の動
作を説明するための準備として、まず図2のような強誘
電体キャパシタ1と常誘電体キャパシタ2を直列に接続
したものの両端に電圧を加えた場合、それぞれのキャパ
シタに電圧がどのように加わるかを考える。話を簡単に
するために強誘電体キャパシタのQf−Vfヒステリシス
を図3の様に仮定する。Qfは強誘電体キャパシタの電
極に蓄積される電荷、Vfは両端の電圧を示す。図3中
のQr、Vcはそれぞれ、残留分極(Pr)×電極面積、
抗電界(Ec)×膜厚である。常誘電体キャパシタの両
端の電圧をVn、蓄積される電荷をQnとすると Qf=Qn=CnVn=Cn(Vw−Vf) (1) である。ここで、Vwは直列に接続されたキャパシタの
両端に加わる電圧である。
As a preparation for explaining the operation of the ferroelectric memory element of the present invention shown in FIG. 1, first, the ferroelectric capacitor 1 and the paraelectric capacitor 2 as shown in FIG. 2 are connected in series. When a voltage is applied to both ends, consider how the voltage is applied to each capacitor. For the sake of simplicity, the Qf-Vf hysteresis of the ferroelectric capacitor is assumed as shown in FIG. Qf is the electric charge accumulated in the electrode of the ferroelectric capacitor, and Vf is the voltage across it. Qr and Vc in FIG. 3 are respectively remanent polarization (Pr) × electrode area,
Coercive electric field (Ec) × film thickness. When the voltage across the paraelectric capacitor is Vn and the accumulated charge is Qn, Qf = Qn = Cn Vn = Cn (Vw-Vf) (1). Here, Vw is a voltage applied across the capacitors connected in series.

【0012】図3において、状態が直線I上にあるとき
Qf=−Qrであり、(1)式よりVf=Vw+Qr/Cn
(図4におけるI’に対応)となる。状態が直線II上に
あるときは常にVf=Vcである(図4におけるII’に対
応)。同様に、状態がIII、IVにあるときはそれぞれVf
=Vw−Qr/Cn、Vf=−Vc(図4におけるIII’、I
V’に対応)である。これより、Vwに対するVfの振る
舞いは図4の様になる。図4からわかるように、Vw=
0のとき、Vf=Vf0=VcまたはVf=−Vf0=−Vcで
あり、またVf=0のときVw=Vw0=Qr/Cnまたは−
Vw0=−Qr/Cnである。Vf0は後で述べるようにMOSF
ETをスイッチングするための電圧となるので、トランジ
スタの閾値電圧よりも大きくなくてはならない。また、
Vw0は強誘電体薄膜の分極を反転させるために必要な電
圧であるので、小さい方が望ましい。結局、強誘電体キ
ャパシタの特性としては、Qrが小さく、Vc>Vthであ
ることが要求される。
In FIG. 3, when the state is on the straight line I, Qf = -Qr, and from the equation (1), Vf = Vw + Qr / Cn.
(Corresponding to I'in FIG. 4). Whenever the state is on the straight line II, Vf = Vc (corresponding to II 'in FIG. 4). Similarly, when the state is III or IV, Vf is
= Vw-Qr / Cn, Vf = -Vc (III ', I in FIG. 4)
It corresponds to V '). From this, the behavior of Vf with respect to Vw is as shown in FIG. As can be seen from FIG. 4, Vw =
When 0, Vf = Vf0 = Vc or Vf = -Vf0 = -Vc, and when Vf = 0, Vw = Vw0 = Qr / Cn or-
Vw0 = -Qr / Cn. Vf0 is MOSF as described later
Since it is the voltage for switching ET, it must be higher than the threshold voltage of the transistor. Also,
Since Vw0 is a voltage required to invert the polarization of the ferroelectric thin film, it is desirable that it be smaller. After all, as the characteristics of the ferroelectric capacitor, it is required that Qr is small and Vc> Vth.

【0013】図4において特徴的なのは、直列のキャパ
シタの両端の電圧Vwが0の場合でも強誘電体キャパシ
タの両端には有限の、しかも強誘電体のヒステリシスに
対応して、正または負の2値の電圧が生じることであ
る。このときはまた、常誘電体キャパシタの両端には大
きさ等しく極性が逆の電圧が生じている。従って、この
電圧がMOSFETの閾値電圧Vthより大きくなる様に強誘電
体材料、常誘電体材料、膜厚、電極面積等を選び、どち
らかのキャパシタの両端をMOSFETのゲート、ソース間に
接続すれば、Vwが0Vのままでトランジスタをオンま
たはオフどちらかの状態に保持することができる。
A characteristic feature of FIG. 4 is that even when the voltage Vw across the series capacitor is 0, there is a finite difference between the two ends of the ferroelectric capacitor, and a positive or negative 2 depending on the hysteresis of the ferroelectric. The value of voltage is to occur. At this time, a voltage having the same magnitude and the opposite polarity is generated across the paraelectric capacitor. Therefore, choose a ferroelectric material, paraelectric material, film thickness, electrode area, etc. so that this voltage becomes higher than the threshold voltage Vth of the MOSFET, and connect either end of either capacitor between the gate and source of the MOSFET. For example, the transistor can be held in either the on state or the off state while Vw remains 0V.

【0014】実際には、強誘電体薄膜のP−Eヒステリ
シス(Pは強誘電体表面に誘起される分極電荷密度、E
は印加電界)は図5のようになり、それに伴って、直列
キャパシタ両端の電圧と強誘電体キャパシタ両端の電圧
との関係は、図6の様になる。
In practice, the P-E hysteresis of the ferroelectric thin film (P is the polarization charge density induced on the ferroelectric surface, E
The applied electric field) is as shown in FIG. 5, and accordingly, the relationship between the voltage across the series capacitor and the voltage across the ferroelectric capacitor is as shown in FIG.

【0015】もし、簡単に図1におけるMOSFET3のゲー
ト、ソース間容量に電圧依存性がないとすれば、端子
4、6間の等価回路は図2であると考えることができ
る。従って、図1において、端子4と端子6の間に加え
る電圧Vwに対する、強誘電体キャパシタ1に加わる電
圧Vfの関係も図6に示すようになると考えることがで
きる。実際にはゲート、ソース間の容量は電圧依存性が
あり、印加電圧の正負に対して非対称である。従って図
6のようにVw-Vf特性は、厳密には原点に対して対称
とはならない。しかしこの容量がキャパシタ1、2の容
量に対して充分小さければその様な効果は無視できる。
If the gate-source capacitance of the MOSFET 3 in FIG. 1 has no voltage dependency, the equivalent circuit between the terminals 4 and 6 can be considered to be that shown in FIG. Therefore, it can be considered that the relationship between the voltage Vw applied between the terminals 4 and 6 in FIG. 1 and the voltage Vf applied to the ferroelectric capacitor 1 is also as shown in FIG. In reality, the capacitance between the gate and the source depends on the voltage and is asymmetric with respect to the positive / negative of the applied voltage. Therefore, as shown in FIG. 6, the Vw-Vf characteristic is not strictly symmetrical with respect to the origin. However, if this capacitance is sufficiently smaller than the capacitances of the capacitors 1 and 2, such effect can be ignored.

【0016】電圧Vwを0Vとすると、図6に示すよう
に強誘電体の分極の方向に対応して、強誘電体キャパシ
タ1の両端に+Vf0または−Vf0の電圧が現れる。同時
に、常誘電体キャパシタ2の両端、従ってMOSFET3のゲ
ート、ソース間には大きさが等しく極性が逆の電圧が現
れる。MOSFET3がnチャンネルであれば、Vf=−Vf0
の時オンの状態、Vf=+Vf0の時オフの状態となる。
ただし、Vf0はMOSFETの閾値電圧Vthより大きいものと
する。また、MOSFET3がpチャンネルの場合は、Vf=
+Vf0の時オンの状態、Vf=−Vf0の時オフの状態と
なる。このように、強誘電体キャパシタ1の分極の状態
と、トランジスタのオン、オフを対応させることができ
る。
When the voltage Vw is 0 V, a voltage of + Vf0 or -Vf0 appears across the ferroelectric capacitor 1 in accordance with the polarization direction of the ferroelectric substance, as shown in FIG. At the same time, a voltage of equal magnitude and opposite polarity appears across the paraelectric capacitor 2, and thus between the gate and source of the MOSFET 3. If the MOSFET 3 is an n-channel, Vf = -Vf0
When Vf = + Vf0, it is turned on, and when Vf = + Vf0, it is turned off.
However, Vf0 is assumed to be higher than the threshold voltage Vth of the MOSFET. If the MOSFET 3 is a p-channel, Vf =
When + Vf0, it is turned on, and when Vf = -Vf0, it is turned off. In this way, the polarization state of the ferroelectric capacitor 1 can be associated with the on / off state of the transistor.

【0017】情報を読み出すには、端子5、6間に電圧
を加え、トランジスタの導通、非導通を検出すれば良い
ので、強誘電体膜の分極状態を変えずに、すなわち非破
壊で読み出すことができる。
Information can be read out by applying a voltage between the terminals 5 and 6 and detecting conduction / non-conduction of the transistor. Therefore, the information can be read out without changing the polarization state of the ferroelectric film, that is, non-destructively. You can

【0018】情報を書き換えるには、例えば図6におい
てaの状態にある時、Vw>Vswの電圧を加えた後Vw=
0とすれば、分極の状態がbの状態に移るため情報が書
き換えられる。同様にaの状態からbの状態にするに
は、Vw<−Vswの電圧を加えた後、Vw=0とすれば良
い。
To rewrite the information, for example, in the state of "a" in FIG. 6, after applying a voltage of Vw> Vsw, Vw =
When it is set to 0, the polarization state shifts to the state b, and the information is rewritten. Similarly, in order to change from the state a to the state b, it is sufficient to set the voltage Vw <−Vsw and then set Vw = 0.

【0019】強誘電体キャパシタ1と常誘電体キャパシ
タ2を入れ換えた場合は、MOSFET3のゲートとソースが
強誘電体キャパシタの両端に接続されるので、nチャン
ネルの場合は書き込み電圧が正(端子6を基準とする)
の時にオン、負の時にオフとなり、pチャンネルの時は
その逆である。
When the ferroelectric capacitor 1 and the paraelectric capacitor 2 are replaced with each other, the gate and source of the MOSFET 3 are connected to both ends of the ferroelectric capacitor, so that the write voltage is positive (terminal 6) in the case of n-channel. Based on)
Is on, when it is negative, it is off, and vice versa for p-channel.

【0020】[0020]

【実施例】【Example】

実施例1 本発明の強誘電体記憶素子を用いてメモリセルを構成す
るための等価回路構成を図7に示す。
Example 1 FIG. 7 shows an equivalent circuit configuration for forming a memory cell using the ferroelectric memory element of the present invention.

【0021】書き込み動作は以下の手順で行う。書き込
みを行おうとするセルのワード線15に電圧を加えてセ
ル選択用トランジスタ14をオンの状態にし、ビット線
16に電圧を加える。このときビット線に加える電圧
は、図9におけるVwに対応し、適当な大きさ(>Vs
w)のパルスを加えれば、ビット線電圧を0Vに保持し
たときの常誘電体キャパシタ2の両端の電圧(Vf0)
を、正から負、または負から正に変えることができる。
この電圧の絶対値はトランジスタ3の閾値電圧Vthより
も大きくなるように設定されているので、トランジスタ
3をオン、またはオフに保持することになる。
The write operation is performed in the following procedure. A voltage is applied to the word line 15 of the cell to be written to turn on the cell selection transistor 14, and a voltage is applied to the bit line 16. The voltage applied to the bit line at this time corresponds to Vw in FIG. 9 and has an appropriate magnitude (> Vs).
If the pulse of w) is applied, the voltage (Vf0) across the paraelectric capacitor 2 when the bit line voltage is held at 0V
Can be changed from positive to negative or from negative to positive.
Since the absolute value of this voltage is set to be larger than the threshold voltage Vth of the transistor 3, the transistor 3 is held on or off.

【0022】読み出し動作は、読み出したいセルのワー
ド線15の電位を上げてセル選択用トランジスタ14を
オンにし、ビット線16の電位を上げる。メモリ素子を
構成するメモリセルトランジスタ3はオンの状態にあれ
ば導通し、オフならば導通しない。ただし、この時のビ
ット線の電位は強誘電体キャパシタの両端にも加わるの
で、強誘電体薄膜の分極を反転させない程度に抑える必
要がある。これらの電流値の差を検知してセルのオンオ
フ状態を非破壊で検出する。
In the read operation, the potential of the word line 15 of the cell to be read is raised to turn on the cell selecting transistor 14 and the potential of the bit line 16 is raised. The memory cell transistor 3 forming the memory element is conductive when it is on, and does not conduct when it is off. However, since the potential of the bit line at this time is also applied to both ends of the ferroelectric capacitor, it is necessary to suppress it so that the polarization of the ferroelectric thin film is not inverted. The on / off state of the cell is detected nondestructively by detecting the difference between these current values.

【0023】これらの書き込み、読みだしの動作におけ
る選択したセルのワード線15、ビット線16に加える
パルスの一例を図8に示す。ただし、図8はメモリセル
トランジスタ3及びセル選択用トランジスタ14が共に
nチャンネルの場合である。ビット線に正のパルスを加
えたときは、常誘電体キャパシタ2の両端の電圧がトラ
ンジスタ3のソースに接続されている側の電極が高電位
となり、トランジスタはオフとなる。ビット線に負のパ
ルスを加えたときは逆にオンとなる。また、メモリセル
トランジスタ3がpチャンネルの場合はオンとオフが逆
になる。この時、選択したセルを含まないワード線、ビ
ット線は0Vに保つとする。
FIG. 8 shows an example of pulses applied to the word line 15 and the bit line 16 of the selected cell in these writing and reading operations. However, FIG. 8 shows a case where both the memory cell transistor 3 and the cell selecting transistor 14 are n-channel. When a positive pulse is applied to the bit line, the electrode on the side where the voltage across the paraelectric capacitor 2 is connected to the source of the transistor 3 becomes high potential, and the transistor is turned off. Conversely, when a negative pulse is applied to the bit line, it turns on. When the memory cell transistor 3 is a p-channel, on and off are reversed. At this time, the word line and bit line not including the selected cell are kept at 0V.

【0024】上記メモリセルを以下のように実際に作製
した。構造を図9〜12に示す。図9はメモリセルの平
面図である。図10、11、12はそれぞれ図9の一点
鎖線a、b、cの断面図である。p型シリコン半導体基
板30上にポリシリコンゲート電極17、18、ゲート
酸化膜19、20、n+不純物拡散領域21〜24を従
来技術によって形成することによって二つのMOSFETを形
成した。ゲート長は共に1μmである。この隣合う二つ
のMOSFETのソースとドレインを素子分離領域を挟んで電
気的に接続するために、Pt電極25をスパッタ法により
厚さ200nmで形成し、これを下地電極として素子分
離領域上に常誘電体Ta2O5薄膜26(膜厚50nm)及
び、さらにその上の強誘電体キャパシタ・常誘電体キャ
パシタ共通Pt電極27(膜厚200nm)をスパッタ法
で形成した。次に強誘電体PZT薄膜28(膜厚300n
m)をMOCVD法で形成した後、上部Pt電極29(膜厚2
00nm)をスパッタ法で形成した。電極や誘電体材料
及び形成方法は、所望の特性が得られるものであれば何
でも良い。これらの電極や誘電体膜の加工はフォトリソ
グラフィー技術によってレジストマスクを当該形状に形
成した後、エッチングを行った。キャパシタの面積は常
誘電体キャパシタを2μm×4μm、強誘電体キャパシ
タを2μm×2μmとした。その後、層間絶縁膜NSG3
2を形成し、Al配線とのコンタクト33〜35を形成し
た。コンタクト33、34、35はそれぞれセンスアン
プ、グランド線、ビット線と接続される。またメモリセ
ルトランジスタのゲートと強誘電体キャパシタ・常誘電
体キャパシタ共通Pt電極は図14中のAl配線36に示し
たように接続される。
The above memory cell was actually manufactured as follows. The structure is shown in FIGS. FIG. 9 is a plan view of the memory cell. 10, 11, and 12 are cross-sectional views taken along alternate long and short dash lines a, b, and c in FIG. Two MOSFETs were formed by forming the polysilicon gate electrodes 17 and 18, the gate oxide films 19 and 20, and the n + impurity diffusion regions 21 to 24 on the p-type silicon semiconductor substrate 30 by a conventional technique. Both gate lengths are 1 μm. In order to electrically connect the source and drain of the two adjacent MOSFETs with the element isolation region sandwiched therebetween, a Pt electrode 25 is formed with a thickness of 200 nm by a sputtering method, and is used as a base electrode on the element isolation region. A dielectric Ta 2 O 5 thin film 26 (thickness: 50 nm) and a Pt electrode 27 (thickness: 200 nm) common to both the ferroelectric capacitor and the paraelectric capacitor were formed thereon by a sputtering method. Next, the ferroelectric PZT thin film 28 (thickness 300 n
m) is formed by MOCVD, the upper Pt electrode 29 (film thickness 2
00 nm) was formed by the sputtering method. The electrodes, the dielectric material, and the forming method may be any as long as desired characteristics can be obtained. To process these electrodes and dielectric film, a resist mask was formed into the shape by a photolithography technique, and then etching was performed. The area of the capacitor was 2 μm × 4 μm for the paraelectric capacitor and 2 μm × 2 μm for the ferroelectric capacitor. After that, the interlayer insulating film NSG3
2 was formed, and contacts 33 to 35 with Al wiring were formed. The contacts 33, 34 and 35 are connected to the sense amplifier, the ground line and the bit line, respectively. The gate of the memory cell transistor and the common Pt electrode of the ferroelectric capacitor / paraelectric capacitor are connected as shown by the Al wiring 36 in FIG.

【0025】実施例2 本発明の強誘電体記憶素子を用いたメモリセルの他の実
施例を図13の等価回路に示す。この場合はセル選択用
トランジスタを用いないで、ワード線15とビット線1
6のみで、書き込み、読みだしを行う。
Embodiment 2 Another embodiment of a memory cell using the ferroelectric memory element of the present invention is shown in the equivalent circuit of FIG. In this case, the cell line selection transistor is not used, and the word line 15 and the bit line 1
Only 6 writes and reads.

【0026】書き込み、読みだしの際に選択したセルの
ワード線15及びビット線16に加えるパルスは図14
のようになる。ビット線に加えるパルスの大きさは実施
例1の場合と同様である。トランジスタ3はnチャンネ
ルを想定しているが、pチャンネルの場合は勿論オンと
オフが逆となる。この時、選択したセルを含まないワー
ド線、ビット線の電位は0Vに保つ。書き込みの際は選
択したセルのみに反転電圧が加わり、それ以外のセルに
はその半分の電圧が加わるかまたは0Vのままである。
分極反転に必要な電圧の1/2の電圧では分極反転は生
じないので、選択したセルの分極のみを反転させること
ができる。
The pulse applied to the word line 15 and the bit line 16 of the selected cell at the time of writing and reading is shown in FIG.
become that way. The magnitude of the pulse applied to the bit line is the same as in the first embodiment. The transistor 3 is supposed to be an n-channel, but in the case of a p-channel, it goes without saying that on and off are reversed. At this time, the potentials of word lines and bit lines not including the selected cell are kept at 0V. At the time of writing, the inversion voltage is applied only to the selected cell, and half of the voltage is applied to the other cells or 0V remains.
Since the polarization inversion does not occur at a voltage half the voltage required for the polarization inversion, only the polarization of the selected cell can be inverted.

【0027】読みだしの場合は、実施例1と同様に分極
反転を起こさない程度のパルスをビット線15に加え
て、メモリセルトランジスタ3の導通状態を検知すれば
良い。
In the case of reading, as in the case of the first embodiment, a pulse that does not cause polarization reversal may be applied to the bit line 15 to detect the conduction state of the memory cell transistor 3.

【0028】図15〜18に実際に作成した上記メモリ
セルの構造を示す。形成方法、形成条件、材料等は実施
例1の場合と基本的に同様である。
15 to 18 show the structures of the memory cells actually manufactured. The forming method, forming conditions, materials, etc. are basically the same as those in the first embodiment.

【0029】[0029]

【発明の効果】本発明によれば、非破壊読みだし可能な
強誘電体メモリセルが従来技術による通常のMOSFETの活
用により可能となる。更に、強誘電体キャパシタ及び通
常のキャパシタの膜厚や材料の設定を行うだけで反転電
圧を低減化することができる。特に常誘電体として、Si
O2よりも誘電率が大きいSiN、Ta2O5等を選べば、強誘電
体との誘電率の差が小さくなり、MFSFET型においてゲー
トを強誘電体薄膜とSiO2の2重構造としたものに比べて
反転電圧を低減化し易いという特徴がある。また強誘電
体薄膜の下地電極を自由に選択できるので配向性の良い
膜を得ることができ、従ってMFSFETのような強誘電体と
半導体の界面における困難性も存在しない、構成が簡単
かつ安定な非破壊読み出しの不揮発性メモリを提供する
ことができる。
According to the present invention, a non-destructive readable ferroelectric memory cell can be realized by utilizing a normal MOSFET according to the prior art. Further, the inversion voltage can be reduced only by setting the film thickness and material of the ferroelectric capacitor and the normal capacitor. Especially as a paraelectric material, Si
O 2 dielectric constant is larger than the SiN, if you choose Ta 2 O 5 or the like, the intensity difference of the dielectric constant of the dielectric is reduced, and a double structure of a ferroelectric thin film and SiO 2 gate in MFSFET type It has a feature that the inversion voltage can be easily reduced as compared with the conventional one. In addition, since the base electrode of the ferroelectric thin film can be freely selected, a film with good orientation can be obtained, and therefore there is no difficulty at the interface between the ferroelectric and the semiconductor such as MFSFET, and the structure is simple and stable. A non-destructive read non-volatile memory can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明での強誘電体記憶素子の等価回路図であ
る。
FIG. 1 is an equivalent circuit diagram of a ferroelectric memory element according to the present invention.

【図2】強誘電体キャパシタと常誘電体キャパシタ直列
回路を示す図である。
FIG. 2 is a diagram showing a series circuit of a ferroelectric capacitor and a paraelectric capacitor.

【図3】図5における強誘電体キャパシタの特性を示す
図である。
FIG. 3 is a diagram showing characteristics of the ferroelectric capacitor in FIG.

【図4】図5の回路におけるVf−Vw特性を示す図であ
る。
FIG. 4 is a diagram showing Vf-Vw characteristics in the circuit of FIG.

【図5】図4におけるの端子4と端子6の間の電圧Vw
−強誘電体キャパシタ電圧Vf特性を示す図である。
5 is a voltage Vw between terminals 4 and 6 in FIG.
FIG. 6 is a diagram showing a ferroelectric capacitor voltage Vf characteristic.

【図6】強誘電体薄膜のP−Eヒステリシス特性を示す
図である。
FIG. 6 is a diagram showing PE hysteresis characteristics of a ferroelectric thin film.

【図7】実施例1での強誘電体記憶素子を用いて構成し
たメモリセルの等価回路を示す図である。
FIG. 7 is a diagram showing an equivalent circuit of a memory cell configured by using the ferroelectric memory element according to the first embodiment.

【図8】実施例1でのメモリセルの書き込み、読みだし
時におけるビット線とワード線に加えられるパルスを示
す図である。
FIG. 8 is a diagram showing pulses applied to a bit line and a word line at the time of writing and reading of the memory cell in the first embodiment.

【図9】実施例1でのメモリセルの平面構成を示す図で
ある。
FIG. 9 is a diagram showing a planar configuration of a memory cell according to the first embodiment.

【図10】図12の平面図における一点鎖線aの部分の
断面を示す図である。
FIG. 10 is a diagram showing a cross section of a portion indicated by alternate long and short dash line a in the plan view of FIG. 12;

【図11】図12の平面図における一点鎖線bの部分の
断面を示す図である。
FIG. 11 is a diagram showing a cross section of a portion indicated by alternate long and short dash line b in the plan view of FIG. 12;

【図12】図12の面図における一点鎖線cの部分の断
面を示す図である。
FIG. 12 is a diagram showing a cross section of a portion indicated by alternate long and short dash line c in the plan view of FIG. 12;

【図13】実施例2での強誘電体記憶素子を用いて構成
したメモリセルの等価回路を示す図である。
FIG. 13 is a diagram showing an equivalent circuit of a memory cell configured by using the ferroelectric memory element according to the second embodiment.

【図14】実施例2でのメモリセルの書き込み、読みだ
し時におけるビット線とワード線に加えられるパルスを
示す図である。
FIG. 14 is a diagram showing pulses applied to a bit line and a word line at the time of writing / reading of a memory cell in the second embodiment.

【図15】実施例2でのメモリセルの平面構成を示す図
である。
FIG. 15 is a diagram showing a planar configuration of a memory cell according to a second embodiment.

【図16】図18の平面図における一点鎖線aの部分の
断面を示す図である。
16 is a diagram showing a cross section of a portion of a dashed-dotted line a in the plan view of FIG.

【図17】図18の平面図における一点鎖線bの部分の
断面を示す図である。
FIG. 17 is a view showing a cross section of a portion indicated by alternate long and short dash line b in the plan view of FIG. 18;

【図18】図18の平面図における一点鎖線cの部分の
断面を示す図である。
FIG. 18 is a diagram showing a cross section of a portion indicated by alternate long and short dash line c in the plan view of FIG. 18;

【図19】従来のキャパシタ型強誘電体メモリセルの等
価回路を示す図である。
FIG. 19 is a diagram showing an equivalent circuit of a conventional capacitor-type ferroelectric memory cell.

【図20】従来のMFSFET型強誘電体メモリの断面構造を
示す図である。
FIG. 20 is a diagram showing a cross-sectional structure of a conventional MFSFET type ferroelectric memory.

【図21】従来の2重ゲートとしたMFSFET型強誘電体メ
モリの断面構造を示す図である。
FIG. 21 is a diagram showing a cross-sectional structure of a conventional MFSFET type ferroelectric memory having a double gate.

【符号の説明】[Explanation of symbols]

1 強誘電体キャパシタ 2 常誘電体キャパシタ 3 MOSFET 4,5,6 端子 7 シリコン半導体基板 8,9 ソース・ドレイン不純物拡散領域 10 常誘電体薄膜 11 下部電極 12 強誘電体薄膜 13 上部電極 14 セル選択用スイッチングトランジスタ 15 ワード線 16 ビット線 17,18 ポリシリコンゲート電極 19,20 ゲート酸化膜 21,22,23,24 n+不純物拡散領域 25 常誘電体キャパシタ下地Pt電極 26 常誘電体Ta2O5薄膜 27 強誘電体キャパシタ・常誘電体キャパシタ共通
Pt電極 28 強誘電体PZT薄膜 29 強誘電体キャパシタ上部Pt電極 30 シリコン半導体基板 31 素子分離領域 32 層間絶縁膜 33,34,35 コンタクト 36 Al配線
1 Ferroelectric Capacitor 2 Paraelectric Capacitor 3 MOSFET 4, 5, 6 Terminal 7 Silicon Semiconductor Substrate 8, 9 Source / Drain Impurity Diffusion Region 10 Paraelectric Thin Film 11 Lower Electrode 12 Ferroelectric Thin Film 13 Upper Electrode 14 Cell Selection Switching transistor 15 word line 16 bit line 17,18 polysilicon gate electrode 19,20 gate oxide film 21,22,23,24 n + impurity diffusion region 25 paraelectric capacitor underlying Pt electrode 26 paraelectric Ta 2 O 5 Thin film 27 Common for ferroelectric capacitors and paraelectric capacitors
Pt electrode 28 Ferroelectric PZT thin film 29 Upper Pt electrode of ferroelectric capacitor 30 Silicon semiconductor substrate 31 Element isolation region 32 Interlayer insulating film 33, 34, 35 Contact 36 Al wiring

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 21/8247 29/788 29/792 Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location H01L 21/8247 29/788 29/792

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 強誘電体薄膜を絶縁膜の構成要素とする
強誘電体キャパシタと、常誘電体薄膜を絶縁膜とする常
誘電体キャパシタとが直列に接続され、前記強誘電体キ
ャパシタと前記常誘電体キャパシタの共通電極が所定の
しきい値で電流量を変化せしめて情報を記憶するトラン
ジスタのゲート電極に接続され、前記常誘電体キャパシ
タの前記共通電極でないもう一方の電極を前記トランジ
スタのドレイン端子に接続したことを特徴とする強誘電
体記憶素子。
1. A ferroelectric capacitor having a ferroelectric thin film as a constituent element of an insulating film and a paraelectric capacitor having a paraelectric thin film as an insulating film are connected in series, and the ferroelectric capacitor and the The common electrode of the paraelectric capacitor is connected to the gate electrode of a transistor that stores information by changing the amount of current at a predetermined threshold, and the other electrode of the paraelectric capacitor that is not the common electrode is connected to the gate electrode of the transistor. A ferroelectric memory element characterized by being connected to a drain terminal.
【請求項2】 前記ドレイン端子に読み出しトラジスタ
を付加したことを特徴とする請求項1に記載の強誘電体
記憶素子。
2. The ferroelectric memory element according to claim 1, wherein a read transistor is added to the drain terminal.
【請求項3】 前記強誘電体キャパシタと前記常誘電体
キャパシタを入れ換えた構造を有することを特徴とする
請求項1または2項に記載の強誘電体記憶素子。
3. The ferroelectric memory element according to claim 1, having a structure in which the ferroelectric capacitor and the paraelectric capacitor are interchanged.
JP05335336A 1993-12-28 1993-12-28 Ferroelectric memory element Expired - Fee Related JP3131340B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05335336A JP3131340B2 (en) 1993-12-28 1993-12-28 Ferroelectric memory element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05335336A JP3131340B2 (en) 1993-12-28 1993-12-28 Ferroelectric memory element

Publications (2)

Publication Number Publication Date
JPH07202138A true JPH07202138A (en) 1995-08-04
JP3131340B2 JP3131340B2 (en) 2001-01-31

Family

ID=18287379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05335336A Expired - Fee Related JP3131340B2 (en) 1993-12-28 1993-12-28 Ferroelectric memory element

Country Status (1)

Country Link
JP (1) JP3131340B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09139472A (en) * 1995-11-10 1997-05-27 Nec Corp Ferroelectric memory
KR100349687B1 (en) * 1999-12-28 2002-08-22 주식회사 하이닉스반도체 Ferroelectric capacitor and method for manufacturing the same
US6495878B1 (en) * 1999-08-02 2002-12-17 Symetrix Corporation Interlayer oxide containing thin films for high dielectric constant application
JP2003060054A (en) * 2001-08-10 2003-02-28 Rohm Co Ltd Semiconductor device having ferroelectric capacitor
US6898105B2 (en) 2002-06-19 2005-05-24 National Institute Of Advanced Industrial Science And Technology Ferroelectric non-volatile memory device having integral capacitor and gate electrode, and driving method of a ferroelectric non-volatile memory device
US9390781B2 (en) 2013-08-29 2016-07-12 Fujitsu Semiconductor Limited Semiconductor device and method for manufacturing semiconductor device
CN112018185A (en) * 2020-09-07 2020-12-01 中国科学院微电子研究所 Semiconductor device with ferroelectric or negative capacitor, method of manufacturing the same, and electronic apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230129531A (en) * 2021-01-29 2023-09-08 후아웨이 테크놀러지 컴퍼니 리미티드 Ferroelectric memory and storage devices

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09139472A (en) * 1995-11-10 1997-05-27 Nec Corp Ferroelectric memory
US6495878B1 (en) * 1999-08-02 2002-12-17 Symetrix Corporation Interlayer oxide containing thin films for high dielectric constant application
KR100349687B1 (en) * 1999-12-28 2002-08-22 주식회사 하이닉스반도체 Ferroelectric capacitor and method for manufacturing the same
JP2003060054A (en) * 2001-08-10 2003-02-28 Rohm Co Ltd Semiconductor device having ferroelectric capacitor
US6898105B2 (en) 2002-06-19 2005-05-24 National Institute Of Advanced Industrial Science And Technology Ferroelectric non-volatile memory device having integral capacitor and gate electrode, and driving method of a ferroelectric non-volatile memory device
US9390781B2 (en) 2013-08-29 2016-07-12 Fujitsu Semiconductor Limited Semiconductor device and method for manufacturing semiconductor device
CN112018185A (en) * 2020-09-07 2020-12-01 中国科学院微电子研究所 Semiconductor device with ferroelectric or negative capacitor, method of manufacturing the same, and electronic apparatus
WO2022048159A1 (en) * 2020-09-07 2022-03-10 中国科学院微电子研究所 Semiconductor device having ferroelectric or negative capacitor, method for manufacturing same, and electronic device
CN112018185B (en) * 2020-09-07 2024-03-05 中国科学院微电子研究所 Semiconductor device with ferroelectric or negative capacitor, method of manufacturing the same, and electronic apparatus

Also Published As

Publication number Publication date
JP3131340B2 (en) 2001-01-31

Similar Documents

Publication Publication Date Title
EP0490240B1 (en) Ferroelectric capacitor and method for forming local interconnection
US5303182A (en) Nonvolatile semiconductor memory utilizing a ferroelectric film
US6584008B2 (en) Ferroelectric non-volatile memory device including a layered structure formed on a substrate
KR100258751B1 (en) Nonvolatile memory based on metal-ferroelectric-metal-insulator semiconductor structure
US6362500B2 (en) Memory structure in ferroelectric nonvolatile memory and readout method therefor
US20030103372A1 (en) Ferroelectric memory and operating method therefor
KR20010030545A (en) Non-volatile memory
US6373743B1 (en) Ferroelectric memory and method of operating same
US6888736B2 (en) Ferroelectric transistor for storing two data bits
JP3131340B2 (en) Ferroelectric memory element
JP2692610B2 (en) Semiconductor non-volatile memory cell and operating method thereof
JP2000349251A (en) Semiconductor device
JP3160325B2 (en) Semiconductor storage element
JP2000323669A (en) Semiconductor nonvolatile memory device
JP4827316B2 (en) Method for driving ferroelectric transistor type nonvolatile memory element
JPH05342850A (en) Semiconductor memory
KR19980067045A (en) Field transistor with ferroelectric film
JP2006032526A (en) Ferroelectric memory device
JPH05135570A (en) Non-volatile semiconductor memory device
KR100322742B1 (en) A nondestructive read-out CMOS transistor ferroelectric memory and an operating method thereof
JP4100958B2 (en) Ferroelectric memory device and manufacturing method thereof
JP2000251478A (en) Semiconductor device and its operation method
JPH09148541A (en) Ferroelectric storage device and its driving method
Yoon et al. Write and read-out operations of novel 1T2C-type ferroelectric memory cells with an array structure
JPH05160410A (en) Field effect transistor and manufacture thereof, and nonvolatile storage element using same, and nonvolatile storage device using the transistor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081117

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees