JPH07201743A - Device for vapor deposition - Google Patents

Device for vapor deposition

Info

Publication number
JPH07201743A
JPH07201743A JP5336431A JP33643193A JPH07201743A JP H07201743 A JPH07201743 A JP H07201743A JP 5336431 A JP5336431 A JP 5336431A JP 33643193 A JP33643193 A JP 33643193A JP H07201743 A JPH07201743 A JP H07201743A
Authority
JP
Japan
Prior art keywords
susceptor
substrate
shaft
cylindrical
deposition apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5336431A
Other languages
Japanese (ja)
Inventor
Toru Okamoto
徹 岡本
Satoshi Murakami
聡 村上
Kenji Maruyama
研二 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP5336431A priority Critical patent/JPH07201743A/en
Publication of JPH07201743A publication Critical patent/JPH07201743A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Formation Of Insulating Films (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To inverse a susceptor in the cleaning and heat treating step of substrate for avoiding the pollution in a deposition chamber in relation to the susceptor holding the substrate. CONSTITUTION:A susceptor 1 includes a U-shaped driver 4 fixed to the upper end of a vertical shaft 6, cylindrical cams 1c, 1d that move up and down in response to the rotation of the shaft 6. The substrate holding surface 1a is formed on one end of the susceptor 1. The cylindrical cams 1c, 1d double symmetrically provided are free rotatably held by a holding part 4 around a swivelling axle to be vertically hung. In such a constitution, the susceptor 1 is lifted by the acceleration of the shaft 6 to be inversed when the center of gravity gets higher than the swivelling axle thereby reversing the substrate holding surface 1a.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は基板からの蒸発に起因す
る汚染が少ない気相堆積装置に関し,特に堆積時以外は
基板保持面を堆積時の反対方向に向けることができるサ
セプタに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vapor phase deposition apparatus which causes less pollution due to evaporation from a substrate, and more particularly to a susceptor which can orient a substrate holding surface in a direction opposite to that during deposition.

【0002】半導体基板上に半導体薄膜を堆積する気相
堆積装置,例えばCVD(化学気相堆積)装置,MBE
(分子線エピタキシ)装置では,堆積前に基板表面を清
浄にするために基板を加熱する。
A vapor deposition apparatus for depositing a semiconductor thin film on a semiconductor substrate, for example, a CVD (chemical vapor deposition) apparatus, MBE
In a (molecular beam epitaxy) device, the substrate is heated to clean the substrate surface before deposition.

【0003】しかし,この加熱により基板表面から蒸発
した基板の構成元素は,装置内壁に付着し,その後,半
導体薄膜の堆積時に原料ガス中に混入して薄膜を汚染
し,薄膜の品質を劣化させる。
However, the constituent elements of the substrate evaporated from the surface of the substrate due to this heating adhere to the inner wall of the apparatus, and are then mixed into the raw material gas during the deposition of the semiconductor thin film to contaminate the thin film and deteriorate the quality of the thin film. .

【0004】そこで,かかる基板からの汚染を防止でき
る気相堆積装置が希求されている。
Therefore, there is a demand for a vapor deposition apparatus capable of preventing such contamination from the substrate.

【0005】[0005]

【従来の技術】従来の気相堆積装置について,HgCd
Te薄膜のCVD法による堆積例を参照しつつ説明す
る。
2. Description of the Related Art HgCd is a conventional vapor deposition apparatus.
A description will be given with reference to an example of depositing a Te thin film by the CVD method.

【0006】赤外素子に用いられるHgCdTe薄膜
は,格子不整の小さなCdTe又はCdZnTeを基板
としてその上にエピタキシャル成長により堆積すること
ができる。しかし,CdTe及びCdZnTeは,高価
であり又大面積の基板を製造することができない。この
ため,安価で大面積の基板を容易に入手し得るGaAs
単結晶が基板として用いられる。
The HgCdTe thin film used in the infrared device can be deposited by epitaxial growth on CdTe or CdZnTe having a small lattice mismatch as a substrate. However, CdTe and CdZnTe are expensive and cannot manufacture a large-area substrate. Therefore, it is possible to easily obtain a large-sized substrate at a low cost.
Single crystal is used as the substrate.

【0007】GaAsをHgCdTe薄膜の基板として
用いる場合に,基板中のGa元素がHgCdTe堆積層
に拡散しn型不純物として作用すること,また基板と堆
積層との格子定数の不整が大きいため堆積層の結晶欠陥
密度が高いことが問題となる。この問題を解消するため
に,通常,CdTeからなるバッファ層が基板とHgC
dTe薄膜との間に設けられる。
When GaAs is used as the substrate for the HgCdTe thin film, the Ga element in the substrate diffuses into the HgCdTe deposited layer and acts as an n-type impurity, and the lattice constant between the substrate and the deposited layer is large, so that the deposited layer is large. The problem is that the crystal defect density is high. In order to solve this problem, a buffer layer made of CdTe is usually used for the substrate and HgC.
It is provided between the dTe thin film.

【0008】ところで,GaAs基板表面にCdTeバ
ッファ層を堆積するためには,堆積前に,GaAs基板
を600℃程度の温度に加熱して基板表面を清浄化する
必要がある。しかし,この清浄化のための基板加熱によ
り,堆積室の内壁が汚染される。即ち,初めにGaAs
基板表面から解離圧の高いAsが蒸発し,次いでAsと
の結合を失ったGaが飛散し,これらAs及びGaが堆
積室の内壁面に付着する。これら堆積室内壁に付着した
不純物元素は,堆積の際に原料ガスに混入し,又は直接
に飛来して,堆積する薄膜中に不純物として取り込まれ
る。
By the way, in order to deposit the CdTe buffer layer on the GaAs substrate surface, it is necessary to heat the GaAs substrate to a temperature of about 600 ° C. to clean the substrate surface before the deposition. However, the heating of the substrate for cleaning cleans the inner wall of the deposition chamber. That is, first GaAs
As having a high dissociation pressure evaporates from the surface of the substrate, then Ga that has lost its bond with As scatters, and these As and Ga adhere to the inner wall surface of the deposition chamber. These impurity elements adhering to the inner wall of the deposition chamber are mixed with the raw material gas at the time of deposition, or fly directly and are taken into the deposited thin film as impurities.

【0009】例えば,GaAs基板上に有機Cd( 例え
ばDMCd) を原料ガスに含むCVD法によりHgCdTe
薄膜を堆積する場合,DMCd+Hg →DMHg↑+Cd ↓,3DMHg+
2Ga(GaAs) →2TMGa ↑+Hg なる化学反応によって, 堆積
室の内壁面に付着したGaが,有機Cdと水銀との反応
生成物である有機水銀( 例えばDMHg) と反応して有機G
a( 例えばTMGa) を生ずる。この結果,原料ガス中に有
機Gaが混入して多量のGa不純物をHgCdTe薄膜
中に取り込んでしまうことが,R.Korenstein等によりJ.
Vac.Sci.Technol.,A8,p1039(1990) 報告されている。
For example, HgCdTe is formed on a GaAs substrate by a CVD method containing organic Cd (eg DMCd) as a source gas.
When depositing a thin film, DMCd + Hg → DMHg ↑ + Cd ↓, 3DMHg +
By the chemical reaction of 2Ga (GaAs) → 2TMGa ↑ + Hg, Ga adhering to the inner wall surface of the deposition chamber reacts with organic mercury (eg DMHg) which is a reaction product of organic Cd and mercury.
yields a (eg TMGa). As a result, organic Ga is mixed in the raw material gas and a large amount of Ga impurities are taken into the HgCdTe thin film by R. Korenstein et al.
Vac.Sci.Technol., A8, p1039 (1990).

【0010】従って,気相堆積装置において原料ガスに
暴露される堆積室内壁を,堆積前の加熱によって生ずる
基板の構成元素による汚染から防護する方法が,高純度
の堆積層を形成するために必要となる。
Therefore, a method for protecting the inner wall of the deposition chamber, which is exposed to the source gas in the vapor deposition apparatus, from the contamination by the constituent elements of the substrate caused by the heating before the deposition is required to form the high-purity deposition layer. Becomes

【0011】[0011]

【発明が解決しようとする課題】上述したように,従来
の気相堆積装置では,基板の加熱処理の際に基板の構成
元素が堆積室内壁面に付着するため,これら基板の構成
元素が堆積薄膜中に不純物として取り込まれるという問
題があった。
As described above, in the conventional vapor deposition apparatus, the constituent elements of the substrate adhere to the inner wall surface of the deposition chamber during the heat treatment of the substrate. There was a problem that they were taken in as impurities.

【0012】本発明は,サセプタの上下面を反転するこ
とにより,堆積室内を汚染するおそれがある基板加熱時
にはサセプタの基板保持面を堆積時と上下反対向きに
し,堆積室の汚染を減少して,高純度の薄膜を堆積する
気相堆積装置を提供することを目的とする。
According to the present invention, by reversing the upper and lower surfaces of the susceptor, the substrate holding surface of the susceptor is turned upside down when the substrate is heated, which may contaminate the deposition chamber, thereby reducing contamination in the deposition chamber. , An object is to provide a vapor phase deposition apparatus for depositing a high-purity thin film.

【0013】[0013]

【課題を解決するための手段】図1は,本発明の実施例
サセプタ斜視図であり,気相堆積装置のサセプタの構造
とその支持構造を表している。図2は本発明の実施例気
相堆積装置断面図であり,気相堆積装置の主要部分の概
要を表している。
FIG. 1 is a perspective view of a susceptor according to an embodiment of the present invention, showing the structure of a susceptor of a vapor deposition apparatus and its supporting structure. FIG. 2 is a cross-sectional view of the vapor phase deposition apparatus according to the embodiment of the present invention, showing an outline of the main part of the vapor phase deposition apparatus.

【0014】上記課題を解決するための本発明の第一の
構成は,図1及び図2を参照して,堆積室内に,鉛直か
つ回転自在に設けられたシャフト6と,該シャフト6上
端に保持され,基板保持面1aが形成されたサセプタ1
とを有する気相堆積装置において,該サセプタ1に形成
された円筒部1eと,該円筒部1e側面に形成され,該
円筒部1eの中心軸を対称軸とする2回回転対称な2条
の円筒カム1c,1dと,2条の該円筒カム1c,1d
に該円筒部1eの直径の両端でそれぞれ接触し,該円筒
部1eを挟持する2個の接触子3c,3dと,該シャフ
ト6上端に形成された二股の各枝に各1つの該接触子3
c,3d)を水平直線上に保持し,該接触子3c,3d
により該二股の間に挟持された該円筒部1eを該水平直
線の廻りに回動自在に支持する挟持部4と,該シャフト
6に回転加速度を付加する回転駆動装置7とを有し,該
サセプタ1の重心は,該シャフト6の停止又は定速回転
時に該円筒部1eの中心線が鉛直に垂下する位置に設け
られ,該円筒カム1c,1dと該挟持部4は,該円筒カ
ム1c,1dを従属節とし該接触子3c,3dを原動節
として,該シャフト6の回転加速度に応じて該サセプタ
1を上下直線運動させる円筒カム装置を構成することを
特徴として構成し,及び,第二の構成は,第一の構成の
気相堆積装置において,該U字部4の底辺4aに,該サ
セプタ1からの熱輻射光を該シャフト6に導入し,下端
から導出するための温度観測用窓5を設けたことを特徴
として構成し,及び,第三の構成は,第一の構成の気相
堆積装置において,基板2の加熱洗浄時の該基板保持面
(1a)近傍に揮発成分供給用ガスのノズル8を設けた
ことを特徴として構成する。
The first constitution of the present invention for solving the above-mentioned problems is to refer to FIG. 1 and FIG. 2 and to show a shaft 6 vertically and rotatably provided in a deposition chamber and an upper end of the shaft 6. A susceptor 1 that is held and has a substrate holding surface 1a formed
In a vapor deposition apparatus having: a cylindrical portion 1e formed on the susceptor 1; and a two-fold rotationally symmetric two-piece formed on the side surface of the cylindrical portion 1e and having a central axis of the cylindrical portion 1e as a symmetry axis Cylindrical cams 1c and 1d and two cylindrical cams 1c and 1d
To each of the two ends of the diameter of the cylindrical portion 1e, sandwiching the cylindrical portion 1e, and two contactors 3c and 3d sandwiching the cylindrical portion 1e, and one contactor to each bifurcated branch formed at the upper end of the shaft 6. Three
c, 3d) are held on a horizontal straight line, and the contacts 3c, 3d
A holding portion 4 for rotatably supporting the cylindrical portion 1e held between the two forks around the horizontal straight line, and a rotary drive device 7 for applying a rotational acceleration to the shaft 6, The center of gravity of the susceptor 1 is provided at a position where the center line of the cylindrical portion 1e vertically hangs when the shaft 6 stops or rotates at a constant speed, and the cylindrical cams 1c and 1d and the sandwiching portion 4 have the cylindrical cam 1c. , 1d as subordinate nodes and the contactors 3c, 3d as driving nodes, a cylindrical cam device for linearly moving the susceptor 1 up and down according to the rotational acceleration of the shaft 6 is configured, and In the second configuration, in the vapor phase deposition apparatus of the first configuration, the temperature radiating for introducing the heat radiation light from the susceptor 1 into the shaft 6 at the bottom side 4a of the U-shaped portion 4 and deriving it from the lower end. It is characterized by the provision of a window 5 for The third configuration is characterized in that, in the vapor phase deposition apparatus of the first configuration, a nozzle 8 for supplying a volatile component gas is provided in the vicinity of the substrate holding surface (1a) when heating and cleaning the substrate 2. To do.

【0015】[0015]

【作用】本発明の構成では,サセプタはその一部に円筒
部を有し,この円筒部に直交又は斜交する基板保持面を
有する。かかる形状の一つに円柱状サセプタがある。こ
の場合は,サセプタ全体が円筒部を構成し,円柱の一端
面を基板保持面とすることができる。以下,説明の便宜
のために,サセプタ1が円柱状の例について説明する。
In the structure of the present invention, the susceptor has a cylindrical portion in a part thereof, and has a substrate holding surface orthogonal to or oblique to the cylindrical portion. One of such shapes is a cylindrical susceptor. In this case, the entire susceptor constitutes a cylindrical portion, and one end surface of the cylinder can be used as the substrate holding surface. Hereinafter, for convenience of description, an example in which the susceptor 1 has a cylindrical shape will be described.

【0016】先ず本発明の構成では,図1を参照して,
サセプタ1の円筒部1eに互いに2回回転対称の関係に
ある2条の円筒カム1c,1d,例えば円筒カム溝が設
けられている。この円筒カム1c,1dには,それぞれ
接触子3c,3dのうちの1個が接触し,2個の接触子
3c,3dは円筒部1eの直径上の両端に対向して配置
される。
First, in the configuration of the present invention, referring to FIG.
The cylindrical portion 1e of the susceptor 1 is provided with two cylindrical cams 1c and 1d, for example, cylindrical cam grooves, which are in a two-fold rotational symmetrical relationship. One of the contacts 3c, 3d contacts the cylindrical cams 1c, 1d, respectively, and the two contacts 3c, 3d are arranged so as to face both ends of the diameter of the cylindrical portion 1e.

【0017】これら2個の接触子3c,3dは,二股を
なす挟持部4の垂直な枝4c,4dの通常は先端近く
に,枝4cに円筒カム1cの接触子3cが,枝4dに円
筒カム1dの接触子3dが保持され,かつ,これら接触
子3c,3dが水平直線上にあるように取付けられる。
These two contactors 3c and 3d are normally located near the tips of the vertical branches 4c and 4d of the bifurcated holding part 4, the contactor 3c of the cylindrical cam 1c on the branch 4c, and the branch 4d on the branch 4d. The contactor 3d of the cam 1d is held, and the contactors 3c and 3d are mounted so as to be on a horizontal straight line.

【0018】さらに,円筒カム1c,1dは互いに2回
回転対称の関係にある。従って,円筒部1eは,その直
径を水平直線上に配置された2個の接触子3c,3dで
挟持される。その結果,円筒部1eの直径は常に水平に
挟持されるから,円柱状サセプタ1の中心軸は,接触子
3c,3dを結ぶ水平直線(以下,「水平回動軸」とい
う。)と常に直交するように,言い換えると挟持方向
(水平回動軸方向をいう。)に直交する鉛直面内にある
ように保持される。
Further, the cylindrical cams 1c and 1d have a two-fold rotational symmetry relationship with each other. Therefore, the cylindrical portion 1e is clamped by the two contacts 3c and 3d whose diameters are arranged on a horizontal straight line. As a result, since the diameter of the cylindrical portion 1e is always held horizontally, the central axis of the cylindrical susceptor 1 is always orthogonal to the horizontal straight line connecting the contacts 3c and 3d (hereinafter referred to as "horizontal rotation axis"). In other words, in other words, it is held so as to be in the vertical plane orthogonal to the holding direction (which means the horizontal rotation axis direction).

【0019】次に本発明の構成では,サセプタ1は,挟
持部4の枝4c,4dの間に配置され,水平回動軸の廻
りに正逆回転自在に保持される。かかる機構は,例えば
接触子3c,3dを円柱若しくは球形とすることで,又
は接触子3c,3dを挟持部4の枝4c,4dに回動自
在に支持することで実現できる。
Next, in the configuration of the present invention, the susceptor 1 is disposed between the branches 4c and 4d of the holding portion 4 and is rotatably held in the forward and reverse directions about the horizontal rotation axis. Such a mechanism can be realized, for example, by making the contacts 3c, 3d cylindrical or spherical, or by rotatably supporting the contacts 3c, 3d on the branches 4c, 4d of the holding portion 4.

【0020】この構成において,シャフト6,即ち挟持
部4が停止又は定速回転している場合は,サセプタ1は
その重心を最下点にして垂下する。従って,重心が挟持
位置(水平回動軸の位置)より上にあるときは,重心が
最下点になるように,サセプタ1は速やかに水平回動軸
廻りに回転する。本構成では,サセプタ1が垂下したと
き円筒部4が垂直に位置して垂下するようにサセプタ1
の重心位置が定められている。従って,この回転により
サセプタ1は上下180°反転する。即ち,サセプタ1
の一端に形成された基板保持面1aも,サセプタの反転
に伴いサセプタ1の反対側に移動する。
In this structure, when the shaft 6, that is, the sandwiching portion 4 is stopped or is rotating at a constant speed, the susceptor 1 hangs with its center of gravity at the lowest point. Therefore, when the center of gravity is above the sandwiching position (the position of the horizontal rotation axis), the susceptor 1 rapidly rotates around the horizontal rotation axis so that the center of gravity becomes the lowest point. In this configuration, when the susceptor 1 hangs down, the susceptor 1 is arranged so that the cylindrical portion 4 is vertically positioned and hangs down.
The center of gravity position of is determined. Therefore, by this rotation, the susceptor 1 is turned upside down 180 °. That is, the susceptor 1
The substrate holding surface 1a formed at one end of the substrate also moves to the opposite side of the susceptor 1 as the susceptor is inverted.

【0021】さらに本発明の構成では,円筒部1eと挟
持部4とは,円筒カム1c,1dを従属節とし,接触子
3c,3dを原動節とする円筒カム機構を構成する。こ
の円筒カム機構を図1(a)〜(c)を用いて説明す
る。図1(a)は,シャフト6が静止している当初の状
態を,図2(b)は,シャフトに回転加速を与えた直後
の状態を,図3(c)は,さらにその後の静止状態を表
している。
Further, in the configuration of the present invention, the cylindrical portion 1e and the sandwiching portion 4 constitute a cylindrical cam mechanism in which the cylindrical cams 1c and 1d serve as subordinate nodes and the contacts 3c and 3d serve as driving nodes. This cylindrical cam mechanism will be described with reference to FIGS. 1 (a) shows an initial state in which the shaft 6 is stationary, FIG. 2 (b) shows a state immediately after rotational acceleration is applied to the shaft, and FIG. 3 (c) shows a still state thereafter. Is represented.

【0022】先に述べたように,静止状態では,図1
(a)を参照して,円筒部1eは接触子3c,3dによ
り垂直に挟持されている。この状態で,シャフト6に回
転が加わると,シャフト6上端の挟持部4の回転が加速
される一方,円筒部1eは慣性力により静止状態のまま
に留まる。このため,接触子3c,3dは円筒カム1
c,1dのカム曲線に沿って回転し,図1(b)を参照
して,円筒部1eを上方に垂直に移動する。かかる機構
は,カム曲線を螺旋とする円筒カム,又は,かかる回転
を直線に変換する通常の円筒カムを用いて実現できる。
なお,当初にシャフト6が定速回転をしている場合は,
その回転速度が加速される以外は,上記例と同様の作
用,効果を生ずる。
As described above, in the stationary state, as shown in FIG.
Referring to (a), the cylindrical portion 1e is vertically sandwiched by the contacts 3c and 3d. When rotation is applied to the shaft 6 in this state, the rotation of the holding portion 4 at the upper end of the shaft 6 is accelerated, while the cylindrical portion 1e remains stationary due to inertial force. For this reason, the contacts 3c and 3d are
Rotating along the cam curves of c and 1d, the cylindrical portion 1e is vertically moved upward with reference to FIG. Such a mechanism can be realized by using a cylindrical cam having a cam curve as a spiral or an ordinary cylindrical cam that converts such rotation into a straight line.
If the shaft 6 is rotating at a constant speed initially,
Except that the rotation speed is accelerated, the same actions and effects as in the above example are produced.

【0023】ついで,シャフト6の回転加速を零又はカ
ムが移動しない程度に小さくする。なお,接触子3c,
3dの回転により円筒部1eの回転が加速されることが
あるが,この増加した回転速度を加速度を逆の小さな値
にして,回転を減速することもできる。
Next, the rotational acceleration of the shaft 6 is reduced to zero or to such an extent that the cam does not move. The contactor 3c,
The rotation of the cylindrical portion 1e may be accelerated by the rotation of 3d, but it is also possible to reduce the rotation by setting the increased rotational speed to a small value which is the inverse of the acceleration.

【0024】このシャフト6の回転加速の減少後,又は
その以前に,上方に移動した円筒部1eは,図1(c)
を参照して,その重心が水平回動軸を超えて上方に移動
しているため,既述のように水平回動軸廻りに反転す
る。その結果,当初はサセプタ1の上端面にあり上方を
向いていた基板保持面1aは,反転後はサセプタ1の下
面となり下方を向く。
The cylindrical portion 1e which has moved upward after the decrease in the rotational acceleration of the shaft 6 or before the decrease is shown in FIG. 1 (c).
With reference to, the center of gravity is moving upward beyond the horizontal rotation axis, and therefore, it is inverted around the horizontal rotation axis as described above. As a result, the substrate holding surface 1a, which is initially on the upper end surface of the susceptor 1 and faces upward, becomes the lower surface of the susceptor 1 after turning and faces downward.

【0025】反転したサセプタ1は,シャフト6に同様
の加速を加えることで,再び反転させ当初の状態を回復
することができる。従って,堆積室を気相成長装置の上
方又は下方に設け,堆積時には基板保持面1aに保持さ
れた基板2表面を堆積室内に暴露し,基板2の加熱洗浄
時にはサセプタ1を反転することで基板2を堆積室から
隔離することができる。このため,本構成により,基板
2から飛散する元素による堆積室壁面及び堆積室内の汚
染を防止することができる。従って,不純物の少ない薄
膜が堆積される。
The inverted susceptor 1 can be inverted again to restore the initial state by applying the same acceleration to the shaft 6. Therefore, the deposition chamber is provided above or below the vapor phase growth apparatus, the surface of the substrate 2 held by the substrate holding surface 1a is exposed to the deposition chamber during deposition, and the susceptor 1 is inverted during heating and cleaning of the substrate 2. 2 can be isolated from the deposition chamber. Therefore, with this configuration, it is possible to prevent the deposition chamber wall surface and the deposition chamber from being contaminated by the elements scattered from the substrate 2. Therefore, a thin film containing few impurities is deposited.

【0026】なお,堆積室を気相成長装置の左右何れか
に設け,サセプタ1の側面に基板保持面を形成しても同
様の作用,効果を生ずる。第二の構成では,図1を参照
して,挟持部4の底辺4aに窓5が設けられる。この窓
5は,サセプタ1からの熱輻射光をシャフト6に導入
し,図2を参照して,シャフト6下端から導出するため
の温度観測用窓5であり,シャフト6下端から温度計,
例えば放射温度計によりサセプタ6の温度を観測するこ
とができる。従って,基板温度の制御を容易に精密にな
すことができる。
Even if the deposition chamber is provided on either side of the vapor phase growth apparatus and the substrate holding surface is formed on the side surface of the susceptor 1, the same action and effect are produced. In the second configuration, referring to FIG. 1, a window 5 is provided on the bottom side 4a of the holding section 4. This window 5 is a temperature observation window 5 for introducing the heat radiation light from the susceptor 1 to the shaft 6 and guiding it from the lower end of the shaft 6 with reference to FIG.
For example, the temperature of the susceptor 6 can be observed with a radiation thermometer. Therefore, the substrate temperature can be controlled easily and precisely.

【0027】第三の構成では,基板2の加熱洗浄時の該
基板保持面1a近傍に,例えば堆積室が装置上部に設け
られている場合は下方を向いている基板保持面1aの近
くに,ノズル8を設け,基板の加熱洗浄の際に基板を構
成する揮発性の成分元素を供給する。これにより,基板
表面近くの雰囲気中の揮発性元素の分圧を高め,基板か
らの元素の蒸発を防止することができる。従って,基板
の分解に起因する汚染を減少し,また,結晶性のよい薄
膜を堆積することができる。
In the third configuration, in the vicinity of the substrate holding surface 1a when the substrate 2 is heated and cleaned, for example, in the vicinity of the substrate holding surface 1a facing downward when the deposition chamber is provided in the upper part of the apparatus, A nozzle 8 is provided to supply a volatile component element that constitutes the substrate when the substrate is heated and washed. As a result, the partial pressure of the volatile element in the atmosphere near the surface of the substrate can be increased and the evaporation of the element from the substrate can be prevented. Therefore, it is possible to reduce the contamination caused by the decomposition of the substrate and to deposit a thin film having good crystallinity.

【0028】なお,本発明において,螺旋状の円筒カム
曲線を逆巻きにすることで,原動節である挟持部の回転
方向を逆向きにできることはいうまでもない。
Needless to say, in the present invention, the spiral cylinder cam curve is wound in the reverse direction so that the direction of rotation of the pinching portion, which is the driving node, can be reversed.

【0029】[0029]

【実施例】本発明を,GaAs基板上にHgCdTe薄
膜を堆積するCVD装置の実施例を参照して,詳細に説
明する。
The present invention will be described in detail with reference to an embodiment of a CVD apparatus for depositing a HgCdTe thin film on a GaAs substrate.

【0030】図1を参照して,サセプタ1は直径10.
5cm, 高さ10cmの炭素円柱からなり,その一端に円柱
軸に垂直な基板保持面1aが形成され,側面に2条の円
筒カム1c,1dが形成されている。
Referring to FIG. 1, the susceptor 1 has a diameter of 10.
It is composed of a carbon cylinder having a height of 5 cm and a height of 10 cm, a substrate holding surface 1a perpendicular to the cylinder axis is formed at one end, and two cylindrical cams 1c, 1d are formed on the side surfaces.

【0031】基板保持面1aは,基板2を載置する円柱
軸に垂直な平面からなり,その平面上にサセプタ1と螺
合し基板2周辺を押止するリング状の基板保持具1bを
有する。
The substrate holding surface 1a is a plane perpendicular to the cylinder axis on which the substrate 2 is placed, and has a ring-shaped substrate holder 1b which is screwed onto the susceptor 1 and presses the periphery of the substrate 2 on the plane. .

【0032】円筒カム1c,1dは,螺旋状のカム溝と
して形成される。なお,他のカム曲線を用いることがで
きるのは既述の通りである。接触子3c,3dは,石英
ガラス軸の先端に円,球又は舟形の石英ガラスからなる
接触端が形成されて構成され,石英ガラス軸は挟持部4
に取り付けられ,接触端はカム溝に嵌挿され抱持され
る。
The cylindrical cams 1c and 1d are formed as spiral cam grooves. As described above, other cam curves can be used. Each of the contacts 3c, 3d is formed by forming a contact end made of quartz glass in the shape of a circle, a sphere or a boat at the tip of the quartz glass shaft, and the quartz glass shaft holds the nipping portion 4
The contact end is inserted into the cam groove and held.

【0033】挟持部4は,石英シャフト6の上端に形成
され,U字型の底辺4a中央でシャフト6上端に載設さ
れた石英部材からなる。2個の接触子3c,3dは,挟
持部4の2枝4c,4dの先端の互いに水平位置に設け
られた孔に接触子3c,3dのガラス軸を挿入して取り
付けられる。この取り付けは,接触子3c,3dの接触
端が舟形のときは回動自在に軸支する。円又は球形の接
触端では,接触端がサセプタを回動自在に保持するか
ら,ガラス軸を固設することもできる。
The holding portion 4 is formed on the upper end of the quartz shaft 6, and is made of a quartz member mounted on the upper end of the shaft 6 at the center of the U-shaped bottom side 4a. The two contacts 3c, 3d are attached by inserting the glass shafts of the contacts 3c, 3d into holes provided at the horizontal positions of the tips of the two branches 4c, 4d of the holding part 4. This attachment is pivotally supported when the contact ends of the contacts 3c and 3d are boat-shaped. With a circular or spherical contact end, the contact end holds the susceptor rotatably, so that the glass shaft can also be fixed.

【0034】挟持部4には,その底辺4a上面中央,即
ちシャフト6上端面の直上に光学的平坦面からなる窓5
が設けられる。他方,シャフト6の下端にも同様の窓が
設けられており,シャフト6下端からシャフト6直上に
位置するサセプタ1の温度を放射温度計13(図2参
照)により観測できる。
The nipping portion 4 has a window 5 formed of an optically flat surface in the center of the upper surface of the bottom side 4a, that is, immediately above the upper end surface of the shaft 6.
Is provided. On the other hand, a similar window is also provided at the lower end of the shaft 6, and the temperature of the susceptor 1 located immediately above the lower end of the shaft 6 can be observed by the radiation thermometer 13 (see FIG. 2).

【0035】本実施例の気相成長装置は,図2を参照し
て,上端に原料ガス導入口10を,側壁下部に排気口1
1を有する石英のチャンバ12と,チャンバ12底面中
央部に設けられた回転駆動装置7を貫通して,先端をチ
ャンバ12内に嵌挿されたシャフト6と,シャフト6先
端に支持されたサセプタ1とを有する。
In the vapor phase growth apparatus of this embodiment, referring to FIG. 2, the source gas inlet 10 is provided at the upper end and the exhaust port 1 is provided at the lower portion of the side wall.
1 and a susceptor 1 supported by the tip of the shaft 6 that penetrates the quartz chamber 12 having the No. 1 and the rotary drive device 7 provided at the center of the bottom surface of the chamber 12 and has the tip inserted into the chamber 12. Have and.

【0036】ガス導入口10は,チャンバ上面に例えば
8個のガス導入口を一列に設けられる。先ず堆積時の状
態を説明する。
The gas inlets 10 are, for example, eight gas inlets provided in a line on the upper surface of the chamber. First, the state at the time of deposition will be described.

【0037】サセプタ1は,シャフト6先端の挟持部4
により支持され,堆積中は基板保持面1aを水平にかつ
上に向けて保持される。このとき,基板2とチャンパ1
2上面との間を例えば2cmと近接することで,列設され
たガス導入口10と共に,基板上に一様な流れを形成す
る。本実施例の装置では,このチャンバ12上部が堆積
室9となる。なお,堆積中のサセプタ1は,駆動回転装
置7により一定の速さ,例えば20rpmで回転され
る。
The susceptor 1 has a holding portion 4 at the tip of the shaft 6.
The substrate holding surface 1a is held horizontally and upward during the deposition. At this time, the substrate 2 and the champer 1
By making the distance between the two upper surfaces close to each other by, for example, 2 cm, a uniform flow is formed on the substrate together with the gas introduction ports 10 arranged in a row. In the apparatus of this embodiment, the upper part of this chamber 12 becomes the deposition chamber 9. The susceptor 1 being deposited is rotated by the drive rotation device 7 at a constant speed, for example, 20 rpm.

【0038】基板2は,直径75cmのGaAs結晶ウエ
ーハを用い,初めにCdTeバッファ層を堆積し,次い
でHgCdTe薄膜を堆積した。原料ガスは1気圧の水
素ガスをキャアガスとし,CdTeバッファ層の堆積に
はDMCd(ジメチルカドミウム)を10-5気圧及びD
IPTe(ジイソプロピルテルル)を10-3気圧の分圧
で混合して用いた。続いてなされるHgCdTe薄膜の
堆積には,CdTeバッファ層の堆積の原料ガスに加え
て,金属水銀を300℃に加熱して水銀蒸気を供給し,
チャンバ内に10-2気圧のHg分圧を付与した。基板2
の加熱は,チャンバ12外部に設けられた高周波コイル
によりサセプタ1を誘導加熱することでなされ,堆積中
は例えば360℃に維持される。
As the substrate 2, a GaAs crystal wafer having a diameter of 75 cm was used, and a CdTe buffer layer was first deposited, and then a HgCdTe thin film was deposited. The source gas used was hydrogen gas at 1 atm as a carrier gas, and DMCd (dimethyl cadmium) was added at 10 -5 atm and D for deposition of the CdTe buffer layer.
IPTe (diisopropyl tellurium) was mixed at a partial pressure of 10 −3 atm and used. For the subsequent deposition of the HgCdTe thin film, in addition to the source gas for the deposition of the CdTe buffer layer, metallic mercury is heated to 300 ° C. to supply mercury vapor,
An Hg partial pressure of 10 -2 atm was applied in the chamber. Board 2
Is heated by inductively heating the susceptor 1 with a high-frequency coil provided outside the chamber 12, and is maintained at, for example, 360 ° C. during deposition.

【0039】かかる条件下で,CdTeバッファ層及び
HgCdTe薄膜のいずれも略2.5μm/時の成長速
度で堆積された。次に,堆積前の予備的処理及び堆積後
の処理について説明する。
Under such conditions, both the CdTe buffer layer and the HgCdTe thin film were deposited at a growth rate of approximately 2.5 μm / hour. Next, the pretreatment before the deposition and the treatment after the deposition will be described.

【0040】GaAs基板2は,サセプタ1の基板保持
面1a上に基板保持具1bにより固定される。次いで,
チャンバ12内でサセプタ1を基板保持面1aが下向き
になるように反転する。かかる操作は,基板2の取り付
けをサセプタ1上面で行い,その後サセプタを反転する
ので,基板の操作を容易にし,かつ塵埃の付着を減少す
る。なお,サセプタ1の反転は,既述したように,回転
駆動装置7によりシャフト6に回転加速を加えて行うこ
とができる。また,下を向く基板保持面の近くにはノズ
ル8が設けられている。
The GaAs substrate 2 is fixed on the substrate holding surface 1a of the susceptor 1 by the substrate holder 1b. Then,
In the chamber 12, the susceptor 1 is turned over so that the substrate holding surface 1a faces downward. In such an operation, the substrate 2 is attached on the upper surface of the susceptor 1, and then the susceptor is inverted, which facilitates the operation of the substrate and reduces the adhesion of dust. The susceptor 1 can be inverted by rotating the shaft 6 by the rotation driving device 7 as described above. A nozzle 8 is provided near the substrate holding surface facing downward.

【0041】次いで,サセプタ1を回転駆動装置7によ
り例えば20rpmで回転し,ガス導入口から1気圧の
水素ガスを供給する。次いで,高周波誘導加熱によりサ
セプタ1を加熱し,基板2を600℃,30分間清浄化
のための熱処理を行う。このとき,基板2表面は下方を
向いているため,その表面から蒸発する元素は,堆積室
9であるチャンバ12上部には到達することがない。従
って,堆積室9内壁面及び堆積室内に表出する部材は汚
染されない。
Next, the susceptor 1 is rotated by the rotation driving device 7 at, for example, 20 rpm, and hydrogen gas of 1 atm is supplied from the gas introduction port. Next, the susceptor 1 is heated by high frequency induction heating, and the substrate 2 is subjected to heat treatment for cleaning at 600 ° C. for 30 minutes. At this time, since the surface of the substrate 2 faces downward, elements evaporated from the surface do not reach the upper part of the chamber 12, which is the deposition chamber 9. Therefore, the inner wall surface of the deposition chamber 9 and the members exposed in the deposition chamber are not contaminated.

【0042】この熱処理において,基板2温度が600
℃に昇温してから継続して,基板保持面の近くに設けら
れたノズル8から,分圧10-3気圧のTBAs(ターシ
ャリーブチルアルシン)を基板2表面に照射する。
In this heat treatment, the temperature of the substrate 2 is 600
After the temperature is raised to 0 ° C., the surface of the substrate 2 is continuously irradiated with TBAs (tertiary butyl arsine) having a partial pressure of 10 −3 atm from a nozzle 8 provided near the substrate holding surface.

【0043】次いで,基板温度を堆積温度,例えば36
0℃に降温し,維持する。これらの温度調整は,基板表
面からの熱輻射を,窓6を通しシャフト6下端に設けら
れた放射温度形13により観測して,その結果を高周波
出力に帰還することでなされる。
Next, the substrate temperature is set to the deposition temperature, for example, 36
Cool down to 0 ° C and maintain. These temperature adjustments are performed by observing the heat radiation from the substrate surface by a radiation temperature type 13 provided at the lower end of the shaft 6 through the window 6 and returning the result to the high frequency output.

【0044】次いで,TBAsの照射を停止し,シャフ
ト6の回転を略100rpmまで加速してサセプタ1を
反転させ,基板保持面1aを上方に向ける。反転の操作
は既述と同じである。その後,除々に減速して再び20
rpmとする。
Next, the irradiation of TBAs is stopped, the rotation of the shaft 6 is accelerated to about 100 rpm, the susceptor 1 is inverted, and the substrate holding surface 1a is directed upward. The inversion operation is the same as described above. After that, the speed gradually slows down to 20
rpm.

【0045】反転後,温度が安定した後,既述したCd
Teバッファ層とHgCdTe薄膜との堆積を行う。次
いで,再びシャフト6回転を加速して,サセプタ1を反
転し,基板保持面1aを下方に向ける。これにより,堆
積後に塵埃が基板2表面に降積することを回避すること
ができる。
After the temperature is stabilized after the inversion, the above-mentioned Cd
The Te buffer layer and the HgCdTe thin film are deposited. Then, the rotation of the shaft 6 is accelerated again, the susceptor 1 is inverted, and the substrate holding surface 1a is directed downward. As a result, it is possible to prevent dust from accumulating on the surface of the substrate 2 after the accumulation.

【0046】図3は本発明の他の実施例気相堆積装置断
面図であり,横型気相堆積装置を表している。本実施例
の装置のチャンバーは,図3を参照して,左端閉管,右
端開管の石英ガラス製円筒管からなるチャンバー本体1
2Aと,その開管部に嵌合する石英製キャップ12Bか
ら構成される。チャンバー本体12Aの左方封管部の中
心には原料ガスを導入するガス導入口10Aが開口す
る。キャップ12Bの下端には排気口11Aが開設され
ている。
FIG. 3 is a sectional view of a vapor phase deposition apparatus according to another embodiment of the present invention, showing a horizontal vapor deposition apparatus. Referring to FIG. 3, the chamber of the apparatus of the present embodiment is a chamber body 1 composed of a quartz glass cylindrical tube having a left end closed tube and a right end open tube.
2A and a quartz cap 12B that fits into the open tube portion. A gas inlet 10A for introducing the raw material gas is opened at the center of the left sealed tube portion of the chamber body 12A. An exhaust port 11A is opened at the lower end of the cap 12B.

【0047】基板2を保持するサセプタ1,シャフト6
上端にサセプタ1を支持する挟持部4,及びシャフト6
の回転駆動部7は既述した第一実施例と同様に配設され
る。なお,回転駆動部7は,チャンバ本体12Aの底面
の一部を平坦に加工した領域に設けられる。また,シャ
フト6下端から放射温度形13によりサセプタ1の温度
を測定できることも第一実施例と同様である。
Susceptor 1 for holding substrate 2 and shaft 6
Clamping part 4, which supports susceptor 1 at the upper end, and shaft 6
The rotary drive unit 7 is arranged in the same manner as in the above-described first embodiment. The rotation driving unit 7 is provided in a region where a part of the bottom surface of the chamber body 12A is processed flat. Also, the temperature of the susceptor 1 can be measured from the lower end of the shaft 6 with the radiation temperature type 13, as in the first embodiment.

【0048】堆積中の基板2は,サセプタ1の上端面に
保持され,チャンバ本体の上方におかれる。基板2の清
浄化熱処理時は,サセプタ1を反転し,基板2をサセプ
タ1の下面に下向きに保持する。この状態の基板2表面
近くに開口し,TBAsを放出するノズル8Aを有する
ガス導入管が,チャンバ本体12Aの左端下部から挿入
されている。
The substrate 2 being deposited is held on the upper end surface of the susceptor 1 and placed above the chamber body. During the heat treatment for cleaning the substrate 2, the susceptor 1 is turned over and the substrate 2 is held downward on the lower surface of the susceptor 1. A gas introduction pipe having a nozzle 8A that opens near the surface of the substrate 2 in this state and discharges TBAs is inserted from the lower left end of the chamber body 12A.

【0049】本実施例の操作は,第一実施例と同様にな
される。なお,堆積条件も第一実施例と変わらない。
The operation of this embodiment is the same as that of the first embodiment. The deposition conditions are the same as in the first embodiment.

【0050】[0050]

【発明の効果】本発明の気相堆積装置によれば,堆積時
とそれ以外の時とでサセプタの基板保持面を反転するこ
とができるので,基板表面から蒸発する不純物元素によ
る堆積室内の汚染を回避することができ,純物の高い薄
膜を堆積することができる。
According to the vapor deposition apparatus of the present invention, the substrate holding surface of the susceptor can be inverted during the deposition and at other times, so that the contamination of the deposition chamber by the impurity element evaporated from the substrate surface. Can be avoided, and a thin film having a high purity can be deposited.

【0051】このため,半導体回路を含む電子機器の性
能向上に寄与するところが大きい。
Therefore, it greatly contributes to the performance improvement of the electronic device including the semiconductor circuit.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施例サセプタ斜視図FIG. 1 is a perspective view of a susceptor according to an embodiment of the present invention.

【図2】 本発明の実施例気相堆積装置断面図FIG. 2 is a sectional view of a vapor deposition apparatus according to an embodiment of the present invention.

【図3】 本発明の他の実施例気相堆積装置断面図FIG. 3 is a sectional view of a vapor deposition apparatus according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 サセプタ 1a 基板保持面 1b 基板保持具 1c,1d 円筒カム 1e 円筒部 2 基板 3c,3d 接触子 4 U字部 4a 底辺 4c,4d 枝 5 窓 6 シャフト 7 回転駆動装置 8,8A ノズル 9 堆積室 10,10A ガス導入口 11,11A 排気口 12 チャンバ 12A チャンバ本体 12B キャップ 13 放射温度計 14,14A 高周波コイル 1 Susceptor 1a Substrate holding surface 1b Substrate holder 1c, 1d Cylindrical cam 1e Cylindrical part 2 Substrates 3c, 3d Contactor 4 U-shaped part 4a Bottom side 4c, 4d Branch 5 Window 6 Shaft 7 Rotation drive device 8, 8A Nozzle 9 Deposition chamber 10, 10A gas inlet 11, 11A exhaust port 12 chamber 12A chamber body 12B cap 13 radiation thermometer 14, 14A high frequency coil

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 27/12 G 31/0264 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location H01L 27/12 G 31/0264

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 堆積室内に,鉛直かつ回転自在に設けら
れたシャフト(6)と,該シャフト(6)上端に保持さ
れ,基板保持面(1a)が形成されたサセプタ(1)と
を有する気相堆積装置において,該サセプタ(1)に形
成された円筒部(1e)と,該円筒部(1e)側面に形
成され,該円筒部(1e)の中心軸を対称軸とする2回
回転対称な2条の円筒カム(1c,1d)と,2条の該
円筒カム(1c,1d)に該円筒部(1e)の直径の両
端でそれぞれ接触し,該円筒部(1e)を挟持する2個
の接触子(3c,3d)と,該シャフト(6)上端に形
成された二股の各枝に各1つの該接触子(3c,3d)
を水平直線上に保持し,該接触子(3c,3d)により
該二股の間に挟持された該円筒部(1e)を該水平直線
の廻りに回動自在に支持する挟持部(4)と,該シャフ
ト(6)に回転加速度を付加する回転駆動装置(7)と
を有し,該サセプタ(1)の重心は,該シャフト(6)
の停止又は定速回転時に該円筒部(1e)の中心線が鉛
直に垂下する位置に設けられ,該円筒カム(1c,1
d)と該挟持部(4)は,該円筒カム(1c,1d)を
従属節とし該接触子(3c,3d)を原動節として,該
シャフト(6)の回転加速度に応じて該サセプタ(1)
を上下直線運動させる円筒カム装置を構成することを特
徴とする気相堆積装置。
1. A deposition chamber includes a shaft (6) vertically and rotatably provided, and a susceptor (1) held by an upper end of the shaft (6) and having a substrate holding surface (1a) formed therein. In a vapor deposition apparatus, a cylinder part (1e) formed on the susceptor (1) and two rotations formed on a side surface of the cylinder part (1e) and having a central axis of the cylinder part (1e) as an axis of symmetry. The two cylindrical cams (1c, 1d) symmetrical to each other and the two cylindrical cams (1c, 1d) contact each other at both ends of the diameter of the cylindrical part (1e) to sandwich the cylindrical part (1e). Two contactors (3c, 3d) and one contactor (3c, 3d) for each branch of the fork formed at the upper end of the shaft (6)
And a holding portion (4) for holding the cylindrical portion (1e) held between the forks by the contacts (3c, 3d) so as to be rotatable around the horizontal straight line. , A rotation drive device (7) for applying a rotational acceleration to the shaft (6), and the center of gravity of the susceptor (1) is the shaft (6).
Is provided at a position where the center line of the cylindrical portion (1e) vertically hangs when the cylinder cam (1c, 1c, 1c) is stopped.
The cylindrical cam (1c, 1d) serves as a subordinate node and the contactors (3c, 3d) serve as a driving node for the susceptor (d) and the holding portion (4) according to the rotational acceleration of the shaft (6). 1)
A vapor phase deposition apparatus comprising a cylindrical cam device for vertically moving the cylinder.
【請求項2】 請求項1記載の気相堆積装置において,
該U字部(4)の底辺(4a)に,該サセプタ(1)か
らの熱輻射光を該シャフト(6)に導入し,下端から導
出するための温度観測用窓(5)を設けたことを特徴と
する気相堆積装置。
2. The vapor deposition apparatus according to claim 1,
At the bottom side (4a) of the U-shaped portion (4), a temperature observation window (5) for introducing the heat radiation light from the susceptor (1) into the shaft (6) and leading it out from the lower end is provided. A vapor deposition apparatus characterized by the above.
【請求項3】 請求項1記載の気相堆積装置において,
基板(2)の加熱洗浄時の該基板保持面(1a)近傍に
揮発成分供給用ガスのノズル(8)を設けたことを特徴
とする気相堆積装置。
3. The vapor deposition apparatus according to claim 1,
A vapor deposition apparatus, characterized in that a nozzle (8) for supplying a volatile component gas is provided in the vicinity of the substrate holding surface (1a) when the substrate (2) is heated and washed.
JP5336431A 1993-12-28 1993-12-28 Device for vapor deposition Withdrawn JPH07201743A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5336431A JPH07201743A (en) 1993-12-28 1993-12-28 Device for vapor deposition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5336431A JPH07201743A (en) 1993-12-28 1993-12-28 Device for vapor deposition

Publications (1)

Publication Number Publication Date
JPH07201743A true JPH07201743A (en) 1995-08-04

Family

ID=18299063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5336431A Withdrawn JPH07201743A (en) 1993-12-28 1993-12-28 Device for vapor deposition

Country Status (1)

Country Link
JP (1) JPH07201743A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018071111A1 (en) * 2016-10-12 2018-04-19 Lam Research Corporation Wafer positioning pedestal for semiconductor processing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018071111A1 (en) * 2016-10-12 2018-04-19 Lam Research Corporation Wafer positioning pedestal for semiconductor processing

Similar Documents

Publication Publication Date Title
US4239955A (en) Effusion cells for molecular beam epitaxy apparatus
US4181544A (en) Molecular beam method for processing a plurality of substrates
US4668480A (en) 7C apparatus for forming crystalline films of compounds
JP2728766B2 (en) Semiconductor processing method and apparatus
US4137865A (en) Molecular beam apparatus for processing a plurality of substrates
JP2828152B2 (en) Method of forming thin film, multilayer structure film, and method of forming silicon thin film transistor
GB2195663A (en) Chemical vapour deposition method and apparatus therefor
US5712001A (en) Chemical vapor deposition process for producing oxide thin films
FR2568272A1 (en) APPARATUS FOR FORMING A SEMICONDUCTOR CRYSTAL
JPH0786173A (en) Film deposition
JP3895410B2 (en) Device comprising group III-V nitride crystal film and method for manufacturing the same
JPH07201743A (en) Device for vapor deposition
US3934059A (en) Method of vapor deposition
EP0609886B1 (en) Method and apparatus for preparing crystalline thin-films for solid-state lasers
JPS61280610A (en) Molecular beam epitaxial growing device
CA1184020A (en) Method of manufacturing semiconductor device
JPH09153456A (en) Polycrystalline silicon laminate, thin-film silicon solar cell, and thin-film transistor
JPS6134921A (en) Manufacture of semiconductor device
JP3797229B2 (en) Thin film semiconductor manufacturing equipment
JPS6235512A (en) Manufacture of single crystal thin film of semiconductor
Kang et al. Design and Analysis of GAIVBE System and Application to the Growth of Semiconductor Thin Films: On the Growth of GaAs on Si: On the Growth of GaAs on Si
JPH0427116A (en) Method of forming semiconductor heterojunction
WO2023244419A1 (en) Systems and methods for pulsed beam deposition of epitaxial crystal layers
JPS6134926A (en) Growing device of semiconductor single crystal
JP2861683B2 (en) Method of forming amorphous silicon film

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010306