JPH07201612A - Rotary transformer and its manufacture - Google Patents

Rotary transformer and its manufacture

Info

Publication number
JPH07201612A
JPH07201612A JP6000848A JP84894A JPH07201612A JP H07201612 A JPH07201612 A JP H07201612A JP 6000848 A JP6000848 A JP 6000848A JP 84894 A JP84894 A JP 84894A JP H07201612 A JPH07201612 A JP H07201612A
Authority
JP
Japan
Prior art keywords
winding
groove
core
rotary transformer
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6000848A
Other languages
Japanese (ja)
Inventor
Kageyoshi Hirano
景由 平野
Akitoshi Hirozawa
明敏 廣澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP6000848A priority Critical patent/JPH07201612A/en
Publication of JPH07201612A publication Critical patent/JPH07201612A/en
Pending legal-status Critical Current

Links

Landscapes

  • Recording Or Reproducing By Magnetic Means (AREA)

Abstract

PURPOSE:To enhance the transmission efficiency while reducing noise by a structure wherein the conductor wirings for coupling a transformer are filled tightly in winding slots in flush with the opposing faces of cores while being connected, at the end parts with connection lands formed on the surface on the opposite side. CONSTITUTION:A thin copper film 36 is cut to form insulating grooves 41, 42 around through holes 43, 44. Consequently, connection lands 39, 40 are formed in the insulating grooves 41, 42 formed circularly. Winding slots 64, 65 are filled tightly with windings 62, 63 of thin copper film having surfaces in flush with those of the cores 67, 68. Since reactive flux passing through the winding slots 64, 65 is not generated, the transmission efficiency is enhanced significantly.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、VTR、R−DAT等
の回転ヘッド型磁気記録再生装置に用いる高伝送効率を
有する回転トランス及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rotary transformer having a high transmission efficiency for use in a rotary head type magnetic recording / reproducing apparatus such as a VTR or R-DAT, and a manufacturing method thereof.

【0002】[0002]

【従来の技術】図10は従来の平板型回転トランスの静
止側部材の平面及び断面を示す図である。図において、
1は静止側部材、2は例えばフェライト等の高透磁率材
料で形成された平板円形状の静止側コア、3はコア1の
一方の円形面上に形成された同心円状の静止側巻線溝、
4は静止側巻線溝3の一部から静止側コア2の半径方向
外側に向かって形成された静止側巻線引出し溝、5は例
えば導線等の導電体を用いて同心円状に形成された静止
側巻線、6は静止側巻線5の端部、O−O’は中心軸で
ある。静止側部材1において、静止側巻線5は静止側巻
線溝3の内部に接着材を用いて静止側コア2の表面には
み出さないように埋設されている。端部6は静止側巻線
引出し溝4を通じて静止側コアの外側へ引き出されてい
る。端部6の静止側巻線引出し溝4を通過する部分は静
止側巻線溝4の内部に接着材を用いて静止側コア2の表
面にはみ出さないように埋設されている。
2. Description of the Related Art FIG. 10 is a plan view and a cross section of a stationary member of a conventional flat plate rotary transformer. In the figure,
Reference numeral 1 is a stationary side member, 2 is a flat plate-shaped stationary side core formed of a high magnetic permeability material such as ferrite, and 3 is a concentric stationary side winding groove formed on one circular surface of the core 1. ,
Reference numeral 4 denotes a stationary side winding lead-out groove formed from a part of the stationary side winding groove 3 toward the outer side in the radial direction of the stationary side core 2, and 5 is formed concentrically by using a conductor such as a conductive wire. The stationary winding 5, 6 is the end of the stationary winding 5, and OO ′ is the central axis. In the stationary-side member 1, the stationary-side winding 5 is embedded in the stationary-side winding groove 3 with an adhesive so as not to protrude to the surface of the stationary-side core 2. The end 6 is drawn to the outside of the stationary core through the stationary winding drawing groove 4. A portion of the end portion 6 that passes through the stationary side winding lead-out groove 4 is buried inside the stationary side winding groove 4 with an adhesive so as not to protrude to the surface of the stationary side core 2.

【0003】次に、回転側部材について説明する。図1
1は回転側部材の平面図及び断面図を示す。図におい
て、7は回転側部材、8は例えばフェライト等の高透磁
率材料で形成された平板円形状の回転側コア、9はコア
1の一方の円形面上に形成された同心円状の回転側巻線
溝、10は回転側巻線溝9の一部から回転側コア8の半
径方向外側に向かって形成された回転側巻線引出し溝、
11は例えば導線等の導電体を用いて同心円状に形成さ
れた回転側巻線、12は回転側巻線11の端部、O−
O’は中心軸である。回転側部材7において、回転側巻
線11は回転側巻線溝9の内部に接着材を用いて回転側
コア8の表面にはみ出さないように埋設されている。端
部12は回転側巻線引出し溝10を通じて回転側コアの
外側へ引き出されている。端部12の回転側巻線引出し
溝10を通過する部分は回転側巻線溝10の内部に接着
材を用いて回転側コア8の表面にはみ出さないように埋
設されている。
Next, the rotating member will be described. Figure 1
1 shows a plan view and a cross-sectional view of the rotary member. In the figure, 7 is a rotary member, 8 is a flat circular rotary core made of a high magnetic permeability material such as ferrite, and 9 is a concentric rotary core formed on one circular surface of the core 1. The winding groove 10 is a rotation-side winding lead-out groove formed from a part of the rotation-side winding groove 9 toward the outer side in the radial direction of the rotation-side core 8,
Reference numeral 11 denotes a rotating side winding formed concentrically using a conductor such as a conductive wire, 12 denotes an end portion of the rotating side winding 11, O-
O'is the central axis. In the rotation side member 7, the rotation side winding 11 is embedded in the rotation side winding groove 9 using an adhesive so as not to protrude to the surface of the rotation side core 8. The end portion 12 is drawn out to the outside of the rotation side core through the rotation side winding drawing groove 10. A portion of the end portion 12 that passes through the rotation-side winding lead-out groove 10 is embedded in the rotation-side winding groove 10 with an adhesive so as not to protrude to the surface of the rotation-side core 8.

【0004】図12は図10、11に示す静止側部材と
回転側部材を回転トランスとして使用する際の位置関係
を示す図である。図において、静止側部材1と回転側部
材7は、静止側巻線5と回転側巻線11が近接するよう
に中心軸O−O’を共有して配置されている。この配置
により、回転側部材7が回転しているときでもトランス
結合が得られる。点線で囲んだ部分Aは静止側巻線5と
回転側巻線11が近接する部分を示す。図示しなかった
が例えば、VHS VTR、R−DAT等の回転磁気記
録再生に用いられる場合、回転トランスは回転シリンダ
に内蔵され、静止側巻線端6は記録再生アンプに接続さ
れ、回転側巻線端12は磁気ヘッドに接続される。
FIG. 12 is a diagram showing a positional relationship when the stationary member and the rotating member shown in FIGS. 10 and 11 are used as a rotary transformer. In the figure, the stationary side member 1 and the rotating side member 7 are arranged so as to share the central axis OO ′ so that the stationary side winding 5 and the rotating side winding 11 are close to each other. With this arrangement, transformer coupling can be obtained even when the rotating member 7 is rotating. A portion A surrounded by a dotted line shows a portion where the stationary winding 5 and the rotating winding 11 are close to each other. Although not shown, for example, when used for rotary magnetic recording / reproduction of VHS VTR, R-DAT, etc., the rotary transformer is built in the rotary cylinder, and the stationary side winding end 6 is connected to the recording / reproducing amplifier to rotate the rotary side winding. The wire end 12 is connected to the magnetic head.

【0005】[0005]

【発明が解決しようとする課題】図13は従来の回転ト
ランスの巻線対向部分の拡大図であり、図12中に点線
で囲んだ部分Aを示している。図において、1は静止側
部材、2は静止側コア、3は静止側巻線溝、5は静止側
巻線、5’は静止側巻線5の導体部分、5”は静止側巻
線5の絶縁皮膜、7は回転側部材、8は回転側コア、9
は回転側巻線溝、11は回転側巻線、11’は回転側巻
線11の導体部分、11”は回転側巻線11の絶縁皮
膜、15は接着材、Ф1 は有効磁束、Ф2 、Ф3 は無効
磁束である。回転トランスは回転側部材7を回転させて
使用するので、静止側巻線5及び回転側巻線11はそれ
ぞれ確実に静止側巻線溝3及び回転側巻線溝9内に確実
に埋設しなければならない。そのため、静止側巻線溝3
及び回転側巻線溝9の深さは、それぞれ静止側巻線5及
び回転側巻線11の溝深さ方向の厚さと接着材15の厚
さに、巻線の浮き、はがれマージンを加えて決められて
いた。
FIG. 13 is an enlarged view of a winding facing portion of a conventional rotary transformer, and shows a portion A surrounded by a dotted line in FIG. In the figure, 1 is a stationary member, 2 is a stationary core, 3 is a stationary winding groove, 5 is a stationary winding, 5'is a conductor portion of the stationary winding 5, 5 "is a stationary winding 5 Insulation film, 7 is a rotating member, 8 is a rotating core, 9
Is a winding groove on the rotating side, 11 is a winding on the rotating side, 11 'is a conductor portion of the winding on the rotating side 11, 11 "is an insulating film on the winding on the rotating side 11, 15 is an adhesive, Φ1 is an effective magnetic flux, Φ2, Φ3 is an ineffective magnetic flux Since the rotary transformer rotates and uses the rotating side member 7, the stationary side winding 5 and the rotating side winding 11 are surely the stationary side winding groove 3 and the rotating side winding groove 9 respectively. Therefore, the stationary side winding groove 3 must be securely embedded in the inside.
The depth of the winding groove 9 on the rotating side and the thickness of the adhesive material 15 in the groove depth direction of the winding 5 on the stationary side and the winding 11 on the rotating side are added with the floating and peeling margins of the winding. It was decided.

【0006】このため、例えば、回転トランスの静止側
から回転側へ信号の伝送を行うとき、静止側巻線5に紙
面上方に向かって電流を流すと、大きく分けてФ1 、Ф
2 、Ф3 という磁束線が発生する。この中で、電磁誘導
により回転側へ信号を伝送する役割を果たすのは、回転
側巻線11と鎖交するФ1 だけであり、回転側巻線11
と鎖交しないで静止側巻線溝3内を通過するФ2 及び回
転側巻線溝9を通過するФ3 は無効磁束となる。ここで
従来の回転トランスにおいては、巻線皮膜の厚さ、接着
材15の厚さ、巻線のはがれマージン等を考慮して、巻
線溝を深く形成していたので、有効磁束Ф1 の磁路が長
くなり、有効磁束Ф1 に対する磁気抵抗が大きくなり、
有効磁束Ф1 に対する無効磁束Ф2 、Ф3 の割合が大き
くなり伝送効率が著しく低下するという問題点があっ
た。
For this reason, for example, when a signal is transmitted from the stationary side to the rotating side of the rotary transformer, if a current is passed through the stationary side winding 5 upward in the drawing, it is roughly divided into Φ 1, Φ.
2 and Φ3 magnetic flux lines are generated. Among them, only the Φ1 which links the rotating side winding 11 plays a role of transmitting a signal to the rotating side by electromagnetic induction.
Φ2 passing through the stationary winding groove 3 without interlinking with Φ3 passing through the rotating winding groove 9 is an ineffective magnetic flux. Here, in the conventional rotary transformer, the winding groove is formed deep in consideration of the thickness of the winding film, the thickness of the adhesive material 15, the peeling margin of the winding, and the like. The path becomes longer, the magnetic resistance to the effective magnetic flux Φ1 increases,
There is a problem in that the ratio of the reactive magnetic fluxes Φ2 and Φ3 to the effective magnetic flux Φ1 becomes large and the transmission efficiency is significantly reduced.

【0007】さらに、静止側コア2及び回転側コア8に
は、それぞれ静止側巻線引出し溝4及び回転側巻線引出
し溝10が形成されているので、巻線溝同士が対向する
時としない時では、トランスの組合せインダクタンスが
違うので、回転側部材7を一定周期で回転させると、一
定周期毎に伝送効率が変化し、これが一定周期のスパイ
ク状のノイズとなって伝送信号に悪影響を与えるという
問題点もあった。
Furthermore, since the stationary side winding lead-out groove 4 and the rotating side winding leading-out groove 10 are formed in the stationary side core 2 and the rotating side core 8, respectively, the winding grooves do not face each other. At this time, since the combined inductance of the transformers is different, when the rotating member 7 is rotated at a constant cycle, the transmission efficiency changes at every constant cycle, which becomes spike noise of a constant cycle and adversely affects the transmission signal. There was also a problem.

【0008】この問題を解消するために例えば、特公平
3−55961号公報に示されているように、アルミニ
ウム薄板上に回路部以外の対応する所にレジストパター
ンを形成し、その基板上の回路部にメッキにより導体を
形成した後その導体上に絶縁層を形成し、続いてアルミ
ニウム薄板をエッチング除去し、さらに得られた導体の
上記アルミニウム薄板と接していた面にメッキにより導
体を形成して得たプリント巻線を、複数個の同心円状の
溝とその円の半径方向の複数個の溝が設けられた板状円
形フェライトの同心円状溝に埋没し、取り出し回路部を
該円形コアの半径方向の溝に埋没して回転トランスを構
成するという改善策が知られている。
In order to solve this problem, for example, as disclosed in Japanese Patent Publication No. 3-55961, a resist pattern is formed on a thin aluminum plate at a position other than the circuit portion, and the circuit on the substrate is formed. After forming a conductor by plating on the portion, an insulating layer is formed on the conductor, then the aluminum thin plate is removed by etching, and a conductor is formed by plating on the surface of the obtained conductor which is in contact with the aluminum thin plate. The obtained printed winding is buried in a concentric circular groove of a plate-shaped circular ferrite provided with a plurality of concentric circular grooves and a plurality of radial grooves of the circle, and a take-out circuit portion is provided with a radius of the circular core. A remedy is known in which the rotary transformer is formed by being buried in a groove in the direction.

【0009】この改善策について、図13と同様に静止
側巻線と回転側巻線が近接する部分の拡大図である図1
4を用いて説明を行う。図において、1は静止側部材、
2は静止側コア、3は静止側巻線溝、16はメッキ形成
された静止側プリント巻線、17は静止側プリント巻線
16の導体部分、18はメッキ形成された回転側プリン
ト巻線、19は回転側プリント巻線18の導体部分、2
0は絶縁体、21は接着材、Ф1は有効磁束、Ф2 、Ф3
は無効磁束である。
FIG. 1 is an enlarged view of a portion where the stationary side winding and the rotating side winding are close to each other, as in FIG.
4 will be used for the explanation. In the figure, 1 is a stationary member,
2 is a stationary side core, 3 is a stationary side winding groove, 16 is a stationary side printed winding formed by plating, 17 is a conductor portion of the stationary side printed winding 16, 18 is a rotating side printed winding formed by plating, Reference numeral 19 is a conductor portion of the rotary side printed winding wire 2,
0 is insulator, 21 is adhesive, Φ1 is effective magnetic flux, Φ2, Φ3
Is the ineffective magnetic flux.

【0010】この方法においては、静止側プリント巻線
16の導体部分17及び回転側プリント巻線18の導体
部分19がそれぞれ絶縁皮膜を被っていないので、前記
従来例に比べて巻線溝3、9を若干浅くすることができ
る。これにより、有効磁束の磁路長が短くなり、有効磁
束Ф1 に対する磁気抵抗が低減され、伝送効率の改善が
行える。しかし、依然プリント巻線を接着材を用いて巻
線溝に埋設するという行程が存在するので、プリント巻
線のはがれマージンが必要となり、巻線溝が浅くなった
とはいえ溝内に空間が有るので無効磁束Ф2 、Ф3 は小
さくなったとはいえ存在していた。
In this method, since the conductor portion 17 of the stationary side print winding 16 and the conductor portion 19 of the rotating side print winding 18 are not covered with the insulating film, the winding groove 3, 9 can be made slightly shallower. As a result, the magnetic path length of the effective magnetic flux is shortened, the magnetic resistance to the effective magnetic flux φ1 is reduced, and the transmission efficiency can be improved. However, there is still a process of embedding the printed winding in the winding groove using an adhesive material, so a peeling margin of the printed winding is required, and there is space in the groove even though the winding groove becomes shallow. Therefore, the invalid magnetic fluxes Φ 2 and Φ 3 existed even though they became smaller.

【0011】また、図示していないが、上記改善策にお
いてもプリント巻線の端子部を引き出すための巻線引出
し溝が、前記従来例と同様に必要なので、回転側部材7
を一定周期で回転させると、一定周期毎に伝送効率が変
化し、これが一定周期のスパイク状のノイズとなって伝
送信号に悪影響を与えるという問題点は依然解消されて
いなかった。
Although not shown, a winding lead-out groove for pulling out the terminal portion of the printed winding is required in the above-mentioned improvement measure as in the case of the conventional example.
However, the problem that the transmission efficiency changes every fixed cycle and this becomes spike noise of a fixed cycle and adversely affects the transmission signal has not been solved.

【0012】本発明は前記のような問題点を解消するた
めになされたものであり、伝送効率の向上及びノイズ対
策を講じた回転トランス及びその製造方法を提供するこ
とを目的とする。
The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a rotary transformer and a manufacturing method thereof in which transmission efficiency is improved and noise countermeasures are taken.

【0013】[0013]

【課題を解決するための手段】請求項1の発明に係る回
転トランスは、トランス結合に用いる導電体巻線は絶縁
皮膜を被せられておらず、巻線表面がコアの対向面から
はみ出さず、丁度コア対向面と一致して、隙間無く巻線
溝に充填されており、導電体巻線の端部は、電気的に導
通した貫通穴を通じて、巻線を具備した面に対して反対
側の面上に形成された結線ランドに接続されるものであ
る。
In the rotary transformer according to the invention of claim 1, the conductor winding used for transformer coupling is not covered with an insulating film, and the winding surface does not protrude from the facing surface of the core. The conductor winding is filled in the winding groove with no gaps, exactly matching the surface facing the core, and the end of the conductor winding is on the opposite side to the surface provided with the winding through the electrically conductive through hole. Is connected to the connection land formed on the surface of the.

【0014】請求項2に係る回転トランスの製造方法
は、あらかじめ同心円状の溝が形成されており、該溝中
には少なくとも1つの貫通穴が形成された強磁性体から
なる平板円形状のコア全体に導電体で成膜し、該成膜
後、同心円状の溝が形成されている面の表面を研磨する
ことにより、溝内及び貫通穴内に導電体を充填するので
ある。これに係る回転トランスは、巻線溝に導電体を充
填することにより、巻線を構成し、コアの外周面及び巻
線を具備した面に対する反対側の面が非磁性導電体で覆
われているものである。
A method of manufacturing a rotary transformer according to a second aspect of the present invention is such that a concentric circular groove is formed in advance, and at least one through hole is formed in the groove. A conductor is formed on the entire surface, and after the film is formed, the surface of the surface on which the concentric groove is formed is polished to fill the groove and the through hole with the conductor. In this rotary transformer, the winding groove is filled with a conductor to form a winding, and the outer peripheral surface of the core and the surface opposite to the surface having the winding are covered with a non-magnetic conductor. There is something.

【0015】請求項3の発明に係る回転トランスは、請
求項2記載の回転トランスにレーザーを照射してコイル
状の絶縁溝を形成するものである。
According to a third aspect of the present invention, the rotary transformer according to the second aspect irradiates the rotary transformer with a laser to form a coil-shaped insulating groove.

【0016】請求項4の発明に係る回転トランスは、請
求項2記載の方法を用いて、導体短絡環を形成するもの
である。
A rotary transformer according to a fourth aspect of the present invention uses the method of the second aspect to form a conductor short-circuit ring.

【0017】請求項5の発明に係る回転トランスは、請
求項2記載の回転トランスにレーザーを照射して結線ラ
ンドを形成し、請求項1の回転トランスを形成するもの
である。
According to a fifth aspect of the present invention, a rotary transformer according to the second aspect is formed by irradiating the rotary transformer with a laser to form connection lands to form the rotary transformer of the first aspect.

【0018】請求項6の発明に係る回転トランスは、ヘ
ッドから回転トランスを経て記録再生アンプに至る伝送
系に必要とされる共振周波数fr と、ヘッド、回転トラ
ンスの合成インダクタンスLT 、回転トランスの結合容
量以外の記録再生アンプの結合容量CAP、巻線の断面厚
x、巻線溝の直径R、巻線数n、巻線溝内の誘電率εか
ら、次式により巻線溝幅Lを決定するものである。
According to a sixth aspect of the present invention, in the rotary transformer, the resonance frequency fr required for the transmission system from the head to the recording / reproducing amplifier via the rotary transformer, the combined inductance LT of the head and the rotary transformer, and the coupling of the rotary transformer. The winding groove width L is determined by the following formula from the coupling capacity CAP of the recording / reproducing amplifier other than the capacity, the winding section thickness x, the winding groove diameter R, the number of windings n, and the dielectric constant ε in the winding groove. To do.

【0019】[0019]

【数2】 [Equation 2]

【0020】[0020]

【作用】請求項1の発明に係る回転トランスは、巻線引
出し溝がコア対向面に存在しないので、使用状態におい
て回転側部材が回転しても組合せインダクタンスは変化
しない。
In the rotary transformer according to the first aspect of the present invention, since the winding lead-out groove does not exist in the core facing surface, the combined inductance does not change even when the rotary member rotates in the used state.

【0021】請求項2の発明に係る回転トランスは、コ
アの外周面及び巻線を具備した面に対する反対側の面が
非磁性導電体で覆われているので、外来ノイズに対する
電磁シールドとなる。
In the rotary transformer according to the second aspect of the present invention, the outer peripheral surface of the core and the surface on the side opposite to the surface provided with the winding are covered with the non-magnetic conductor, so that they serve as an electromagnetic shield against external noise.

【0022】請求項2及び3の発明に係る回転トランス
は、巻線溝に導電体が隙間無く充填されているので、従
来生じていた巻線溝内を通過する無効磁束を皆無にする
ことができる。
In the rotary transformer according to the second and third aspects of the present invention, since the winding groove is filled with a conductor without a gap, it is possible to eliminate the reactive flux passing through the winding groove that has been conventionally generated. it can.

【0023】請求項4の発明に係る回転トランスは、導
体巻線を形成すると同時に隣接チャンネルのクロストー
ク対策の導体短絡環を形成できるので生産性に優れてい
る。
The rotary transformer according to the invention of claim 4 is excellent in productivity because the conductor winding can be formed and at the same time the conductor short-circuiting ring for the crosstalk of the adjacent channel can be formed.

【0024】請求項5の発明に係る回転トランスは、請
求項2及び請求項1に記載の回転トランスの両方の長所
を有することができる。
The rotary transformer according to the invention of claim 5 can have the advantages of both the rotary transformers of claims 2 and 1.

【0025】請求項6の発明に係る回転トランスは、特
定の式を用いることにより、容易に伝送効率の優れた回
転トランスが設計できる。
The rotary transformer according to the invention of claim 6 can easily design a rotary transformer having excellent transmission efficiency by using a specific formula.

【0026】[0026]

【実施例】【Example】

実施例1.図1〜図8を用いて本発明の一実施例による
回転トランスの製造方法について説明する。まず、請求
項2に記載したように同心円状の溝が形成されており、
該溝中には少なくとも1つの貫通穴が形成された強磁性
体からなる平板円形状のコアを用意する。図1は本発明
による回転トランスの巻線加工前のコア形状を示す図で
あり、本実施例で用意する平板円形状のコアの正面(巻
線形成面)、断面、裏面(巻線形成面の反対側の面)を
示している。図において、31はフェライト等の高透磁
率材料を金型を用いて平板円形状に焼結して作製したコ
ア、32はコア31の片方の円形面上に形成された同心
円状の巻線溝、33、34は貫通穴、35は絶縁膜、a
は巻線溝32の深さ、bは巻線溝32の幅、O−O’は
中心軸である。
Example 1. A method of manufacturing a rotary transformer according to an embodiment of the present invention will be described with reference to FIGS. First, as described in claim 2, the concentric groove is formed,
A flat plate circular core made of a ferromagnetic material having at least one through hole formed in the groove is prepared. FIG. 1 is a diagram showing a core shape of a rotary transformer according to the present invention before winding processing, and the front surface (winding forming surface), cross section, and back surface (winding forming surface) of a flat plate circular core prepared in this embodiment. (The opposite side of) is shown. In the figure, 31 is a core made by sintering a high-permeability material such as ferrite into a flat plate circular shape using a mold, and 32 is a concentric circular winding groove formed on one circular surface of the core 31. , 33 and 34 are through holes, 35 is an insulating film, a
Is the depth of the winding groove 32, b is the width of the winding groove 32, and OO ′ is the central axis.

【0027】まず、深さaが100 [μm]、幅bが17
0 [μm]となるように、コア31の正面に、ダイヤホイ
ール等を用いて巻線溝32を研削加工により形成する。
巻線溝32は例えばYAGレーザー、エキシマレーザー
を照射して形成しても良い。また、コア31の焼結に用
いる金型に、あらかじめ深さaが100 [μm]、幅bが
170 [μm]となるように型を形成しておけば研削加工
行程が省ける。
First, the depth a is 100 [μm] and the width b is 17
The winding groove 32 is formed on the front surface of the core 31 by grinding using a diamond wheel or the like so as to have a thickness of 0 [μm].
The winding groove 32 may be formed by irradiating a YAG laser or an excimer laser, for example. Further, if the mold used for sintering the core 31 is formed in advance so that the depth a is 100 [μm] and the width b is 170 [μm], the grinding process can be omitted.

【0028】貫通穴33は直径が50 [μm]で、巻線溝
32の外周に内接するように、例えばYAGレーザー、
エキシマレーザー等を照射することにより形成する。貫
通穴34も直径は50 [μm]で、巻線溝32の内周に外
接するように、例えばYAGレーザー、エキシマレーザ
ー等を照射することにより形成する。
The through hole 33 has a diameter of 50 μm, and is inscribed in the outer circumference of the winding groove 32, for example, a YAG laser,
It is formed by irradiating an excimer laser or the like. The through hole 34 also has a diameter of 50 μm and is formed by irradiating the inner circumference of the winding groove 32 with, for example, a YAG laser or an excimer laser.

【0029】コア31の内周部は回転シリンダに取り付
ける際の位置決めのために必要であるから、この部分の
表面精度がメッキにより劣化しないように絶縁膜35を
メッキを施す前に形成しておく。絶縁膜35は、例えば
有機溶剤で簡単に除去できる高分子材料等を塗布するな
どして形成すればよい。以下同一番号は同一部分を指し
示すものとする。
Since the inner peripheral portion of the core 31 is necessary for positioning when it is attached to the rotary cylinder, the insulating film 35 is formed before plating so that the surface accuracy of this portion does not deteriorate due to plating. . The insulating film 35 may be formed, for example, by applying a polymer material or the like that can be easily removed with an organic solvent. Hereinafter, the same numbers refer to the same parts.

【0030】図2は図1におけるコアに銅メッキを施し
た直後の正面、断面、裏面を示す図である。図におい
て、31はコア、32は巻線溝、33、34は貫通穴、
35は絶縁膜、36はメッキにより形成された銅薄膜、
O−O’は中心軸である。銅メッキは巻線溝32が銅で
充填されれば良いので100 [μm]程度で良い。銅メッ
キにより、貫通穴33、34も銅が充填され、それぞれ
電気的に導通した貫通穴(スルーホール)43、44と
なる。
FIG. 2 is a diagram showing a front surface, a cross section, and a back surface immediately after copper is plated on the core in FIG. In the figure, 31 is a core, 32 is a winding groove, 33 and 34 are through holes,
35 is an insulating film, 36 is a copper thin film formed by plating,
OO 'is the central axis. The copper plating may be about 100 [μm], as long as the winding groove 32 is filled with copper. Copper plating also fills the through-holes 33 and 34 with copper to form electrically-conductive through-holes (through-holes) 43 and 44, respectively.

【0031】銅メッキ後、有機溶剤を用いて絶縁膜35
を除去する。その後、巻線溝32の深さが50 [μm]に
なるまで、巻線溝32を形成してある面を回転研磨器等
を用いて研磨する。こうして、コア31の正面から余分
な銅薄膜及びコア表面部分を除去し、巻線溝32の内部
に銅薄膜が50 [μm]の厚さで充填されているようにす
る。この状態でのコア31の正面図、断面図、裏面図を
図3に示す。図において、37は巻線溝32に充填され
た銅薄膜である。
After copper plating, an insulating film 35 is formed by using an organic solvent.
To remove. After that, the surface on which the winding groove 32 is formed is polished using a rotary polishing machine or the like until the depth of the winding groove 32 reaches 50 [μm]. In this way, the excess copper thin film and the core surface portion are removed from the front surface of the core 31 so that the inside of the winding groove 32 is filled with the copper thin film with a thickness of 50 [μm]. FIG. 3 shows a front view, a sectional view, and a rear view of the core 31 in this state. In the figure, 37 is a copper thin film with which the winding groove 32 is filled.

【0032】次に、正面の銅薄膜37を巻線にする加工
方法について説明する。加工は請求項3に記載したよう
にレーザーを用いて行う。図4は図3における銅薄膜の
拡大図である。図において、30は銅薄膜巻線、38は
絶縁溝、50はレーザー照射軌跡、αはレーザー照射開
始位置、βはレーザー照射終了位置、w1、w2、w3 はレ
ーザー照射軌跡のピッチでありw1 は55 [μm]、w2
は60 [μm]、w3 は55 [μm]である。例えば、YA
Gレーザーもしくはエキシマレーザーの照射を照射開始
位置αから、軌跡50に示した矢印の方向に従って行
い、終了位置βで終了することにより、銅薄膜37を切
断して幅10 [μm]の絶縁溝38を形成する。上記のよ
うに絶縁溝38の形成方法については、レーザーを移動
させても良いが、レーザーを固定してコアの方を動かせ
ても良い。この加工により、銅薄膜37はスルーホール
43、44を端部とする同心円状、断面幅50 [μm]、
断面厚50 [μm]、巻数3[turn]の銅薄膜巻線30とな
る。ここで、一般的に使用されている回転トランスの巻
線は絶縁皮膜を含んで直径80 [μm]程度であり、銅線
の部分は直径50 [μm]程度である。これと比較すると
上記銅薄膜巻線の断面積のほうが広いので巻線の電気抵
抗は低くなり熱雑音が低減できる。
Next, a method of processing the front copper thin film 37 into a winding will be described. The processing is performed using a laser as described in claim 3. FIG. 4 is an enlarged view of the copper thin film in FIG. In the figure, 30 is a copper thin film winding, 38 is an insulating groove, 50 is a laser irradiation locus, α is a laser irradiation start position, β is a laser irradiation end position, w1, w2 and w3 are the pitches of the laser irradiation locus and w1 is 55 [μm], w2
Is 60 [μm] and w3 is 55 [μm]. For example, YA
Irradiation of G laser or excimer laser is performed from the irradiation start position α in the direction of the arrow shown in the trajectory 50, and ends at the end position β, so that the copper thin film 37 is cut and the insulating groove 38 having a width of 10 μm. To form. As to the method of forming the insulating groove 38 as described above, the laser may be moved, but the laser may be fixed and the core may be moved. By this processing, the copper thin film 37 has a concentric circular shape with the through holes 43 and 44 as end portions, and has a cross-sectional width of 50 [μm],
The copper thin film winding 30 has a sectional thickness of 50 [μm] and a winding number of 3 [turn]. Here, the winding of a generally used rotary transformer has a diameter of about 80 [μm] including an insulating film, and the copper wire portion has a diameter of about 50 [μm]. Compared with this, since the cross-sectional area of the copper thin film winding is wider, the electrical resistance of the winding is lower and the thermal noise can be reduced.

【0033】次に、裏面の銅薄膜36を加工して、銅薄
膜巻線30の端部を接続する結線ランドを形成する方法
について説明する。加工は請求項5に記載したようにレ
ーザーを用いて行う。図5はコア31の裏面の拡大図で
ある。図において、36は銅薄膜、39、40は結線ラ
ンド、41、42は絶縁溝、51、52はレーザー照射
軌跡である。例えばYAGレーザーもしくはエキシマレ
ーザーの照射を軌跡51、52に示した矢印の方向に従
って行い銅薄膜36を切断して、スルーホール43、4
4のまわりにそれぞれ絶縁溝41、42を形成すること
により、円形状に形成された絶縁溝41、42の内部に
請求項1に記載した結線ランド39、40を形成する。
Next, a method of processing the copper thin film 36 on the back surface to form connection lands for connecting the ends of the copper thin film windings 30 will be described. The processing is performed by using a laser as described in claim 5. FIG. 5 is an enlarged view of the back surface of the core 31. In the figure, 36 is a copper thin film, 39 and 40 are connection lands, 41 and 42 are insulating grooves, and 51 and 52 are laser irradiation loci. For example, irradiation with a YAG laser or an excimer laser is performed according to the directions of the arrows shown in the loci 51, 52 to cut the copper thin film 36, and the through holes 43, 4 are formed.
By forming the insulating grooves 41 and 42 around 4 respectively, the connection lands 39 and 40 described in claim 1 are formed inside the insulating grooves 41 and 42 formed in a circular shape.

【0034】以上の行程により作製された本発明の実施
例1における回転トランスの構成部材の正面図、断面
図、裏面図を図6に示す。図6に示した構成部材は静止
側部材、回転側部材のどちらの部材としても使用可能で
ある。図において、30は銅薄膜巻線、31はコア、3
2は巻線溝、36は銅薄膜、39、40は結線ランド、
43、44はスルーホール、O−O’は中心軸である。
図7は図6に示した回転トランスの構成部材を2個用い
て回転トランスを構成したときの断面図である。図にお
いて、36は銅薄膜、60は静止側部材、61は回転側
部材、62は静止側巻線、63は回転側巻線、64は静
止側巻線溝、65は回転側巻線溝、67は静止側コア、
68は回転側コア、O−O’は静止側部材60及び回転
側部材61の中心軸であり、回転側部材61の回転軸で
もある。点線で囲んだ領域Bは巻線対向部である。
FIG. 6 shows a front view, a sectional view, and a rear view of the constituent members of the rotary transformer according to the first embodiment of the present invention manufactured by the above process. The constituent member shown in FIG. 6 can be used as either a stationary member or a rotating member. In the figure, 30 is a copper thin film winding, 31 is a core, 3
2 is a winding groove, 36 is a copper thin film, 39 and 40 are connection lands,
43 and 44 are through holes, and OO ′ is a central axis.
FIG. 7 is a sectional view when a rotary transformer is configured by using two constituent members of the rotary transformer shown in FIG. In the figure, 36 is a copper thin film, 60 is a stationary side member, 61 is a rotating side member, 62 is a stationary side winding, 63 is a rotating side winding, 64 is a stationary side winding groove, and 65 is a rotating side winding groove. 67 is the stationary core,
Reference numeral 68 is a rotation side core, and O-O 'is a central axis of the stationary side member 60 and the rotation side member 61, and is also a rotation axis of the rotation side member 61. A region B surrounded by a dotted line is a winding facing portion.

【0035】図8は図7において点線で囲んだ巻線対向
部Bの拡大図である。図において、36は銅薄膜、31
はコア、60は静止側部材、61は回転側部材、62は
静止側巻線、63は回転側巻線、64は静止側巻線溝、
65は回転側巻線溝、66は絶縁溝、67は静止側コ
ア、68は回転側コア、aは巻線溝の深さ、bは巻線溝
の幅、cは巻線溝一本分の幅、Lは絶縁溝66の幅、Φ
1 はコア31内を通過する有効磁束である。巻線溝の深
さaは50 [μm]、幅bは170 [μm]、巻線一本分の
幅cは50 [μm]、絶縁溝66の幅Lは10 [μm]であ
る。このように、巻線溝64、65はそれぞれ銅薄膜巻
線62、63で隙間無く埋められており、各銅薄膜巻線
62、63の表面は各コア67、68の表面と一致して
いるので、巻線溝64、65内を通過する無効磁束は発
生しなくなり、著しく伝送効率が向上する。また、各コ
ア67、68の円形外周部分と裏面は非磁性導電材料で
ある銅薄膜で覆われているので外来ノイズに対する電磁
シールド効果がある。
FIG. 8 is an enlarged view of the winding facing portion B surrounded by a dotted line in FIG. In the figure, 36 is a copper thin film, 31
Is a core, 60 is a stationary side member, 61 is a rotating side member, 62 is a stationary side winding, 63 is a rotating side winding, 64 is a stationary side winding groove,
Reference numeral 65 is a rotating side winding groove, 66 is an insulating groove, 67 is a stationary side core, 68 is a rotating side core, a is a winding groove depth, b is a winding groove width, and c is one winding groove. , L is the width of the insulating groove 66, Φ
1 is an effective magnetic flux passing through the core 31. The depth a of the winding groove is 50 [μm], the width b is 170 [μm], the width c of one winding is 50 [μm], and the width L of the insulating groove 66 is 10 [μm]. Thus, the winding grooves 64 and 65 are filled with the copper thin film windings 62 and 63, respectively, without any gaps, and the surfaces of the copper thin film windings 62 and 63 are aligned with the surfaces of the cores 67 and 68. Therefore, the ineffective magnetic flux passing through the winding grooves 64 and 65 is not generated, and the transmission efficiency is remarkably improved. Further, since the circular outer peripheral portions and the back surfaces of the cores 67 and 68 are covered with a copper thin film which is a non-magnetic conductive material, there is an electromagnetic shield effect against external noise.

【0036】実施例2.実施例1においては、銅でメッ
キを行ったが、例えば、金、白金、白金パラジウム、銀
等の銅より導電率の高い非磁性導電材料を用いれば、薄
膜巻線の抵抗がさらに小さくなり、伝送効率及びシール
ド効果が一層向上する。
Example 2. In Example 1, plating was performed with copper. However, if a non-magnetic conductive material having a higher conductivity than copper, such as gold, platinum, platinum palladium, and silver, is used, the resistance of the thin film winding is further reduced. The transmission efficiency and the shield effect are further improved.

【0037】実施例3.実施例1では、断面積50 [μ
m]、断面厚50 [μm]の銅薄膜巻線について説明を行っ
たが、巻線に必要とされる導電率は伝送する信号の変調
方式、検出方式等により異なるので、巻線断面幅、断面
厚は用いられる伝送信号に対して必要な条件を満たせば
この限りでは無い。また、巻数を回転側、静止側とも3
[turn]としたが、伝送される信号の帯域を満足すれば、
巻線数は3[turn]に限らず、また静止側巻線数を回転側
巻線数より大きくしてもよい。
Example 3. In Example 1, the cross-sectional area is 50 [μ
m] and the cross-sectional thickness of 50 [μm] was explained, but since the conductivity required for the winding depends on the modulation method of the signal to be transmitted, the detection method, etc. The cross-sectional thickness is not limited to this as long as it satisfies the necessary conditions for the transmission signal used. Also, the number of turns is 3 for both the rotating side and the stationary side.
Although [turn] is set, if the band of the transmitted signal is satisfied,
The number of windings is not limited to 3 [turn], and the number of stationary windings may be larger than the number of rotating windings.

【0038】実施例4.実施例1では、導薄膜巻線をレ
ーザー加工で形成したが、例えば、「Journalof Microe
lectromechanical Systems」、VOL2、NO.2、JUNE、1993、IEE
E PUBLICATIONS DEPARTMENT、P87〜94に示されて
いるように、巻線溝内に感光性ポリイミドでレジストを
形成してメッキを行い、その後感光性ポリイミドのレジ
ストを除去して薄膜巻線を形成しても良い。同様の方法
でメッキ前に貫通穴の回りにレジストを形成しておけば
結線ランドも容易に形成できる。
Example 4. In Example 1, the conductive thin film winding was formed by laser processing. For example, “Journal of Microe
lectromechanical Systems ", VOL2, NO.2, JUNE, 1993, IEE
As shown in E PUBLICATIONS DEPARTMENT, P87-94, a resist is formed with photosensitive polyimide in the winding groove and plating is performed, and then the resist of the photosensitive polyimide is removed to form a thin film winding. Is also good. If a resist is formed around the through hole before plating by the same method, the connection land can be easily formed.

【0039】実施例5.実施例1において、回転トラン
スの伝送チャンネルは1チャンネルであったが、伝送チ
ャンネルが複数個であっても、巻線溝を増やせば良いの
で、実施例1と同様の効果を得ることができる。また、
複数個の伝送チャンネルを同時に使用する場合は、各チ
ャンネル間のクロストークを低減するために、請求項4
に記載したように、メッキ前のコアにあらかじめ短絡環
用の溝を形成しておけば、メッキ形成後に表面を研磨す
ることにより容易に短絡環が形成できる。図9は本発明
における回転トランスのその他の実施例を示す図でり、
メッキ前のコアを示している。図において、101はコ
ア、102はチャンネル1巻線溝、103はチャンネル
2巻線溝、104は短絡環用溝、O−O’は中心軸であ
る。なお、短絡環は片方のコアだけに形成しても十分な
効果を発揮するが、両方のコアに形成しておけばさらに
効果が増大する。
Example 5. Although the rotary transformer has one transmission channel in the first embodiment, the same effect as that of the first embodiment can be obtained even if the rotary transformer has a plurality of transmission channels as long as the number of winding grooves is increased. Also,
When a plurality of transmission channels are used at the same time, in order to reduce crosstalk between the channels, the method of claim 4
As described above, by forming the groove for the short-circuit ring in the core before plating in advance, the short-circuit ring can be easily formed by polishing the surface after plating. FIG. 9 is a diagram showing another embodiment of the rotary transformer of the present invention,
The core before plating is shown. In the figure, 101 is a core, 102 is a channel 1 winding groove, 103 is a channel 2 winding groove, 104 is a groove for a short circuit ring, and OO ′ is a central axis. It should be noted that the short-circuit ring exhibits a sufficient effect even if it is formed on only one core, but if it is formed on both cores, the effect is further increased.

【0040】実施例6.実施例1は、平板型回転トラン
スに関する実施例であったが、円筒形のコアを組合わせ
て構成される筒型回転トランスにおいても同様の方法を
用いて実施したところ、同様の効果を奏することができ
た。
Example 6. Although Example 1 was an example relating to a flat plate type rotary transformer, when a similar method is applied to a cylindrical type rotary transformer configured by combining cylindrical cores, the same effect is obtained. I was able to.

【0041】実施例7.実施例1では、導電体薄膜にレ
ーザーを照射して、幅10 [μm]の絶縁溝を形成した
が、絶縁溝幅は隣接する巻線間の結合容量を決定する要
因の一つである。ここで、巻線の断面厚をx、巻線溝の
直径をR、絶縁溝幅をL、巻線数をn、巻線溝内の誘電
率をεとおくと、回転トランスの結合容量CRTは次式
(1)で近似できる。
Example 7. In Example 1, the conductive thin film was irradiated with a laser to form an insulating groove having a width of 10 [μm]. The insulating groove width is one of the factors that determine the coupling capacitance between adjacent windings. Here, if the cross-sectional thickness of the winding is x, the diameter of the winding groove is R, the insulating groove width is L, the number of windings is n, and the dielectric constant in the winding groove is ε, the coupling capacitance CRT of the rotary transformer is Can be approximated by the following equation (1).

【0042】[0042]

【数3】 [Equation 3]

【0043】ここで、実際に回転ヘッド型磁気記録再生
装置に用いる場合について考えると、ヘッドから回転ト
ランス、記録再生アンプという伝送系の伝送帯域は、こ
の伝送系の共振周波数fr で決まる。また、前記伝送系
の共振周波数fr は、ヘッドと回転トランスの合成イン
ダクタンスをLT 、記録再生アンプの総合結合容量をC
P とおくと次式(2)で求められる。
Here, considering the case of actually using the rotary head type magnetic recording / reproducing apparatus, the transmission band of the transmission system including the head, the rotary transformer and the recording / reproducing amplifier is determined by the resonance frequency fr of this transmission system. The resonance frequency fr of the transmission system is LT, the combined inductance of the head and the rotary transformer, and C is the total coupling capacitance of the recording / reproducing amplifier.
If P is set, it can be calculated by the following equation (2).

【0044】[0044]

【数4】 [Equation 4]

【0045】前記回転トランスの結合容量CRTはCP に
含まれるので、CRT以外の記録再生アンプの結合容量を
CAPとおくと、CRTは式(2)を用いて次式(3)で表
すことができる。
Since the coupling capacitance CRT of the rotary transformer is included in CP, if the coupling capacitance of the recording / reproducing amplifier other than CRT is set to CAP, then CRT can be expressed by the following equation (3) using equation (2). it can.

【0046】[0046]

【数5】 [Equation 5]

【0047】ここで、式(1)、(3)より、絶縁溝幅
Lは次式(4)で表すことができる。
From equations (1) and (3), the insulating groove width L can be expressed by the following equation (4).

【0048】[0048]

【数6】 [Equation 6]

【0049】すなわち、伝送系の共振周波数fr 、ヘッ
ド、回転トランスの合成インダクタンスLT 、回転トラ
ンスの結合容量以外の記録再生アンプの結合容量CAP、
巻線の断面厚x、巻線溝の直径R、巻線数nを決めれ
ば、巻線溝幅Lの値は式(4)を用いて決めれば良い。
なお、実際に伝送帯域は十分広く設定する場合も考えら
れるので、請求項6に記載したように巻線溝幅Lは次式
(5)のように設定すれば良い。
That is, the resonance frequency fr of the transmission system, the head, the combined inductance LT of the rotary transformer, the coupling capacitance CAP of the recording / reproducing amplifier other than the coupling capacitance of the rotary transformer,
If the cross-sectional thickness x of the winding, the diameter R of the winding groove, and the number of windings n are determined, the value of the winding groove width L may be determined using equation (4).
In addition, since it may be considered that the transmission band is actually set sufficiently wide, the winding groove width L may be set according to the following expression (5) as described in claim 6.

【0050】[0050]

【数7】 [Equation 7]

【0051】[0051]

【発明の効果】以上のように、本発明の実施例1〜8に
おける回転トランスによれば、巻線溝に導体巻線が隙間
無く充填されているので、従来生じていた巻線溝を通過
する無効磁束を全て解消することができ、伝送効率が著
しく向上する。
As described above, according to the rotary transformers of the first to eighth embodiments of the present invention, since the conductor winding is filled in the winding groove without any gap, it passes through the winding groove which has been conventionally generated. It is possible to eliminate all the ineffective magnetic flux that occurs, and the transmission efficiency is significantly improved.

【0052】さらに、コア対向面上に巻線引出し溝が無
いので、回転側部材が回転している時でも組合せインダ
クタンスの変化が無いので、回転側部材の回転により、
一定周期のスパイク状のノイズが伝送信号に悪影響を与
えるという問題点は全く解消できる。
Furthermore, since there is no winding lead-out groove on the surface facing the core, there is no change in the combined inductance even when the rotating member is rotating.
It is possible to completely eliminate the problem that spike-like noise with a constant period adversely affects the transmission signal.

【0053】また、コアの外周面及び巻線を具備した面
に対する反対側の面が非磁性導電体で覆われているの
で、この部分が電磁シールドとなり、外来ノイズによる
妨害を解消できる。
Further, since the outer peripheral surface of the core and the surface on the side opposite to the surface provided with the winding are covered with the non-magnetic conductor, this portion serves as an electromagnetic shield and interference due to external noise can be eliminated.

【0054】本発明の実施例5における回転トランス
は、伝送チャンネル間に短絡環を有するので、短絡環を
挟んで隣接した2個のチャンネルを同時に使用するとき
でもクロストークが十分小さくできる。さらに、短絡環
は巻線形成と同時に形成できるので、非常に効率が良
い。
Since the rotary transformer according to the fifth embodiment of the present invention has the short circuit ring between the transmission channels, the crosstalk can be sufficiently reduced even when two adjacent channels sandwiching the short circuit ring are used at the same time. Furthermore, since the short-circuit ring can be formed at the same time as the winding formation, it is very efficient.

【0055】本発明に係る回転トランスの溝幅を規定す
ることにより、良好な伝送特性が得られる。
Good transmission characteristics can be obtained by defining the groove width of the rotary transformer according to the present invention.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明における回転トランスの巻線加工前のコ
ア形状を示す図である。
FIG. 1 is a diagram showing a core shape before winding processing of a rotary transformer according to the present invention.

【図2】図1におけるコアに銅メッキを施した直後の正
面、断面、及び裏面を示す図である。
FIG. 2 is a view showing a front surface, a cross section, and a back surface immediately after copper is plated on the core in FIG.

【図3】銅メッキ後に表面研磨を施したコアの正面、断
面、及び裏面を示す図である。
FIG. 3 is a view showing a front surface, a cross section, and a back surface of a core whose surface is polished after copper plating.

【図4】図3における銅薄膜の拡大図である。FIG. 4 is an enlarged view of the copper thin film in FIG.

【図5】コアの裏面の拡大図である。FIG. 5 is an enlarged view of the back surface of the core.

【図6】本発明における回転トランスの構成部材を示す
図である。
FIG. 6 is a diagram showing constituent members of a rotary transformer according to the present invention.

【図7】図6に示した回転トランスの構成部材2個用い
て回転トランスを構成したときの断面図である。
7 is a cross-sectional view when a rotary transformer is configured by using two constituent members of the rotary transformer shown in FIG.

【図8】図7において点線で囲んだ巻線対向部Bの拡大
図である。
8 is an enlarged view of a winding facing portion B surrounded by a dotted line in FIG.

【図9】本発明における回転トランスのその他の実施例
を示す図である。
FIG. 9 is a diagram showing another embodiment of the rotary transformer of the present invention.

【図10】従来の平板型回転トランスの静止側部材の平
面及び断面を示す図である。
FIG. 10 is a view showing a plane and a cross section of a stationary side member of a conventional flat plate type rotary transformer.

【図11】従来の平板型回転トランスの回転側部材を平
面及び断面を示す図である。
FIG. 11 is a diagram showing a plan view and a cross section of a rotary member of a conventional flat plate type rotary transformer.

【図12】従来の図9、図10に示す静止部材と回転部
材を回転トランスとして使用する際の位置関係を示す図
である。
FIG. 12 is a diagram showing a positional relationship when the stationary member and the rotating member shown in FIGS. 9 and 10 of the related art are used as a rotating transformer.

【図13】従来の回転トランスの巻線対向部分の拡大図
である。
FIG. 13 is an enlarged view of a winding facing portion of a conventional rotary transformer.

【図14】従来のその他の回転トランスの巻線対向部分
の拡大図である。
FIG. 14 is an enlarged view of a winding facing portion of another conventional rotary transformer.

【符号の説明】[Explanation of symbols]

30 銅薄膜巻線 31 コア 32 巻線溝 36 銅薄膜 39、40 結線ランド 43、44 スルーホール O−O’ 中心軸 30 Copper thin film winding 31 Core 32 Winding groove 36 Copper thin film 39, 40 Connection land 43, 44 Through hole O-O 'Central axis

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 強磁性体からなる一対の平板円形状のコ
アを有し、各コアは片方の円形面に単数または複数の同
心円状の溝を形成されており、該溝に導電体で形成され
た巻線を配設し、各コアの巻線を配設した面同士を一定
の間隔を隔てて対向させてトランス結合を生じさせて、
少なくとも一方のコアが静止または回転している状態で
単数または複数の伝送チャンネルを有するトランスとし
て使用する平板型回転トランスにおいて、導電体巻線が
絶縁皮膜を被せられておらず、巻線表面がコアの対向面
からはみ出さず、コア対向面とほぼ一致し、導電体巻線
間の微少な間隙を除いて隙間無く巻線溝に充填されてお
り、導電体巻線の端部は、電気的に導通した貫通穴を通
じて、巻線を具備した面に対して反対側の面上に形成さ
れた結線ランドに接続されていることを特徴とする回転
トランス。
1. A pair of flat-plate circular cores made of a ferromagnetic material, each core having one or more concentric circular grooves formed on one circular surface, and the grooves made of a conductor. The windings of each core are arranged, and the surfaces of the windings of the respective cores are made to face each other with a constant gap, thereby causing a transformer coupling,
In a flat plate type rotary transformer used as a transformer having a single or a plurality of transmission channels in a state where at least one core is stationary or rotating, the conductor winding is not covered with an insulating film and the winding surface is a core. Does not protrude from the facing surface of the conductor, is almost coincident with the facing surface of the core, and is filled in the winding groove without any gap except for the minute gap between the conductor windings. A rotary transformer characterized in that it is connected to a connection land formed on the surface opposite to the surface provided with the winding through a through hole that is conducted to.
【請求項2】 あらかじめ同心円状の溝が形成されてお
り、該溝中には少なくとも1つの貫通穴が形成された強
磁性体からなる平板円形状のコア全体に導電体で成膜
し、該成膜後、同心円状の溝が形成されている面の表面
を研磨することにより、溝内及び貫通穴内に導電体を充
填することを特徴とする回転トランスの製造方法。
2. A concentric circular groove is formed in advance, and at least one through hole is formed in the groove. A flat plate circular core made of a ferromagnetic material is formed on the entire core with a conductor to form a film. After the film formation, the surface of the surface on which the concentric groove is formed is polished to fill the inside of the groove and the inside of the through hole with a conductor.
【請求項3】 請求項2に記載の方法を用いてコア対向
面に形成された同心円状の溝に充填された導電体薄膜
に、レーザーを照射してコイル状の絶縁溝を形成するこ
とにより、導電体巻線が構成されていることを特徴とす
る請求項1記載の回転トランス。
3. The method according to claim 2, wherein the conductor thin film filled in the concentric groove formed on the core facing surface is irradiated with a laser to form a coiled insulating groove. The rotary transformer according to claim 1, wherein a conductor winding is formed.
【請求項4】 隣接する伝送チャンネルに対応する巻線
間に、請求項2に記載の方法を用いて、導電体短絡環を
形成したことを特徴とする請求項1記載の回転トラン
ス。
4. The rotary transformer according to claim 1, wherein a conductor short-circuit ring is formed between the windings corresponding to the adjacent transmission channels by using the method according to claim 2.
【請求項5】 請求項2に記載の方法を用いて、巻線を
具備した面に対する反対側の導電体薄膜を被着された面
において、貫通穴のまわりにレーザー照射を行い、貫通
穴の近傍がそれ以外の導電体薄膜と電気的に絶縁される
ように絶縁溝の枠を形成することにより、絶縁溝の内部
に結線ランドを形成したことを特徴とする請求項1記載
の回転トランス。
5. The method according to claim 2, wherein a laser beam is irradiated around the through hole on the surface on which the conductive thin film is applied on the side opposite to the surface on which the winding is provided, The rotary transformer according to claim 1, wherein a connection land is formed inside the insulating groove by forming a frame of the insulating groove so that the vicinity thereof is electrically insulated from other conductive thin films.
【請求項6】 実際に回転ヘッド型磁気記録再生装置に
用いる場合、ヘッドから回転トランスを経て記録再生ア
ンプに至る伝送系に必要とされる共振周波数frと、ヘ
ッド、回転トランスの合成インダクタンスLT、回転ト
ランスの結合容量以外の記録再生アンプの結合容量CA
P、巻線の断面厚x、巻線溝の直径R、巻線数n、巻線
溝内の誘電率εから、次式により巻線溝幅Lを決定する
ことを特徴とする請求項3記載の回転トランス。 【数1】
6. When actually used in a rotary head type magnetic recording / reproducing apparatus, a resonance frequency fr required for a transmission system from a head to a recording / reproducing amplifier via a rotary transformer, a combined inductance LT of the head and the rotary transformer, Coupling capacitance CA of recording / reproducing amplifier other than coupling capacitance of rotary transformer
4. The winding groove width L is determined by the following equation from P, the cross-sectional thickness x of the winding, the diameter R of the winding groove, the number of windings n, and the dielectric constant ε in the winding groove. Rotating transformer described. [Equation 1]
JP6000848A 1994-01-10 1994-01-10 Rotary transformer and its manufacture Pending JPH07201612A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6000848A JPH07201612A (en) 1994-01-10 1994-01-10 Rotary transformer and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6000848A JPH07201612A (en) 1994-01-10 1994-01-10 Rotary transformer and its manufacture

Publications (1)

Publication Number Publication Date
JPH07201612A true JPH07201612A (en) 1995-08-04

Family

ID=11485069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6000848A Pending JPH07201612A (en) 1994-01-10 1994-01-10 Rotary transformer and its manufacture

Country Status (1)

Country Link
JP (1) JPH07201612A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012141279A1 (en) 2011-04-15 2012-10-18 新日本製鐵株式會社 Rotary transformer for rotary ultrasonic flaw detection device and rotary ultrasonic flaw detection device using same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012141279A1 (en) 2011-04-15 2012-10-18 新日本製鐵株式會社 Rotary transformer for rotary ultrasonic flaw detection device and rotary ultrasonic flaw detection device using same
CN103477219A (en) * 2011-04-15 2013-12-25 新日铁住金株式会社 Rotary transformer for rotary ultrasonic flaw detection device and rotary ultrasonic flaw detection device using same
JP5649199B2 (en) * 2011-04-15 2015-01-07 新日鐵住金株式会社 Rotary transformer for rotary ultrasonic flaw detector and rotary ultrasonic flaw detector using the same
US9360458B2 (en) 2011-04-15 2016-06-07 Nippon Steel & Sumitomo Metal Corporation Rotary transformer for rotary ultrasonic testing apparatus and rotary ultrasonic testing apparatus using the same

Similar Documents

Publication Publication Date Title
US5173826A (en) Thin film head with coils of varying thickness
US4165525A (en) Magnetic head having a core provided on a substrate by means of thin-film technology
JPH10255239A (en) Inductive/mr combined thin film magnetic head
JPS62173607A (en) Thin film magnetic head
JPH07201612A (en) Rotary transformer and its manufacture
JPS59149013A (en) Manufacture of rotary transformer
US20020191334A1 (en) Magnetic transducer with pedestal pole piece structure
JP2901035B2 (en) Rotary transformer
JP2972249B2 (en) Rotary magnetic head device and rotary transformer used for it
JPH01158707A (en) Rotary transformer and manufacture thereof
JPH0225244B2 (en)
JPH03148102A (en) Rotatable transformer and manufacture thereof
JPH01166309A (en) Thin film magnetic head
JPS62219506A (en) Rotary transformer
JPH0528732Y2 (en)
JPH0749609Y2 (en) Multilayer wiring thin film coil
JPS62179107A (en) Rotary transformer
GB1560362A (en) Magnetic transducer head
JPH0487010A (en) Thin film magnetic head and its production
JPS61296521A (en) Multitrack magnetic head and its production
JPH05234766A (en) Rotary transformer
JPS61265811A (en) Rotary transformer
JPS6318610A (en) Rotary transformer
JPS63302409A (en) Thin film magnetic head
JPS63312607A (en) Rotary transformer and manufacture thereof